
ADA
AND LARGE REAL-TIME SYSTEMS

IN THE ROYAL NAVY

D. W. DAVIES, B.Sc.(Enc.)
(Admiralty Research Establishment, Portsdown)

ABSTRACT

The Ada programming language was developed in the 1970s and introduced in the 1980s.
This article explains some of the processes necessary for its introduction and the problems
resulting, and describes work being done by ARE to measure these problems and propose
solutions.

Introduction
During the past thirty years many computer programming languages have

been used for the implementation of real-time naval systems. In my own
field-Naval Command and Control Systems and Weapon Systems-this
variety has included machine-code, assembly code, Ferranti autocode,
CORAL 66 and now Ada. This is only a small subset of the usage throughout
MOD. This variety of languages poses great problems for both development
and maintenance. The requirements to reduce these problems are the driving
force behind the development of the Ada programming language for real-
time computer systems by the U.K. MOD and the U.S. Department of
Defense (DOD).

Ada Programming Language-history
The Ada programming language was commissioned by the DOD after

several years study and development work. The language itself was designed
by CH Honeywell Bull after a competitive proposal to the DOD.

The study started with a document called STRAWMAN published in 1975
which outlined the requirements. After discussion and comments this was
further refined and was called WOODENMAN, which was similarly refined to
produce TINMAN in mid-1976. Several current languages were examined
against the TINMAN requirements to see if any could be developed to meet
the requirements. Nothing suitable was found. Further refinements were made
to the document and IRONMAN was produced. Proposals to design a new
language were invited from industry. Seventeen proposals were received and
four were chosen to go ahead in competition. Initial designs were received
in early 1978 and two of these were judged to have sufficient merit to warrant
further development. At this point further refinements to the requirements
document were made to produce STEELMAN. After another year of develop-
ment the final choice was made on 2 May 1979. After a further year of
presentation and discussion the first definitive version of the language was
published in July 1980, and it was proposed to the American National
Standards Institute (ANSI) as a standard. The standardization process took
two years and resulted in a few changes to the language. The ANSI standard
Language Reference Manual' was finally published in January 1983. The
rules of ANSI say that a revision exercise should be undertaken and a revised
standard document produced after ten years. This revision exercise has now
started as an international exercise. It is known as Ada 9X and expects to

produce a revised standard in 1993. A more detailed history can be found in
chapter 3 of Booch7s book2.

Ada is based on PASCAL and is the first practical language to bring
together important features such as data abstraction, multi-tasking, exception
handling, encapsulation and generics. It was originally intended for 'embed-
ded' systems but it is equally suitable for use as a general purpose language.

MOD Computing Policy
The MOD Computing Policy document was first published in December

1987 and is the result of discussions between MOD and Industry. It is
intended for the information and guidance of Project Managers within the
Procurement Executive and for companies bidding for contracts relating to
computer-based systems. This policy document states that MOD preference
is that software intensive projects should use the programming language Ada
for implementing the system. The original policy is being revised in detail.3
The policy covering the programming language has not changed. Ada is the
preferred language, the compiler used must be a validated compiler and must
also have been examined using the MOD-sponsored evaluation process, AES,
and the report must be available to the MOD Project Office.

NATO has also adopted Ada as a preferred programming standard. The
MOD has proposed to NATO how this policy could be implemented. This
proposal includes the following three items, 'Waiver from Policy', 'APSE'
and 'Minimum APSE Toolset Configuration'. In this context APSE is short
for 'Ada Project Support Environment7 and the last item covers allowable
APSE configurations depending on the size of software system to be devel-
oped. The NATO policy document is still under discussion within the NATO
Information Systems Working Group.

Validation
Validation is a process of measuring a compiler and to a very, very small

extent the associated runtime system to ensure that this all conforms to a
recognized standard (DOD STD 1815a). As custodians of this language the
DOD has commissioned a suite of test programs called the Ada Compiler
Validation Capability (ACVC). This validation suite is a collection of test
programs written in Ada that is applied to the vendor's Ada compiler suite.
The validation suite is composed of several thousand tests (version 1.9
contains 3122 tests) and this number is still increasing. It needs to be
emphasized that the Validation test suite does not attempt to examine the
performance of the Ada runtime environment. The compiled code is run, of
course, to ensure that runable code is produced. The validation process is
supervised by the Ada Joint Program Office (AJPO) which is a U.S. DOD
office. The certificate that is issued after successful completion of the tests
lasts until the next version of the validation suite is in service and confirms
that this issue of the compiler has passed the current version of the validation
suite. The version of the validation suite is changed once every two years
(version 1.9 expired on 1 June 1988), and is available to compiler vendors
about six months before its official start date. The certificate is issued to
compiler vendors upon satisfactory completion of the test suite and payment
of the validation fee which is currently about £10 030.

The U.K. has obtained agreement with the DOD that the National Comput-
ing Centre (NCC) is able to carry out the Validation process and to
recommend to MOD the issue of Validation Certificates. The MOD is the
only place outside the United States that is able to issue these certificates.
There are however several other countries able to carry out validation tests,
such as France and West Germany.

The MOD has proposed to NATO a policy to cover Ada Compiler
Maintenance to take care of the fact that Ada compilers will need to be
revalidated every few (two at present) years and this may imply significant
changes to the compiler during the lifetime of the software system, both
development period and in-service use. This proposal was issued by Eng
Pol 31 RAF under reference D/D Eng Pol(RAF) 57/5/12/1; and advice is
given to Project Managers on the selection of an Ada compiler in 'The Use
of Ada Compilers in MOD(UK) Projects' dated 5 October'87 reference D/D
Eng Pol(RAF) 100/3 l / 1.

Evaluation
This process is aimed at examining an Ada compiler and its runtime system

to measure how suitable a particular compiler is for a general purpose
Application. There is a U.K. MOD-sponsored Evaluation process (AES).
The U.S. DOD has also commissioned an Ada Compiler Evaluation program
(ACEC). There are also several other sets of code designed to examine in
detail features of high-level language compilers, e.g. accuracy of floating
point arithmetic and speed of matrix manipulation. In theory all these test
programs could be used to gain insight into the quality of a compiler; in
practice however so much data will be produced from the tests that it would
take too long to read and come to a decision.

U. K. AES
This is a special program designed to examine several parts of an Ada

compiler and its associated runtime environment (RTE). The tests are mainly
aimed at the runtime performance of the compiled code and there are about
200 tests. The tests are arranged in groups, each group devoted to a particular
facet, e.g. compilation speed, arithmetic accuracy, capacity of compiler and
some speed measurements. The first issue of this test suite appeared mid 1987
and the system is being further developed by Software Sciences, Ltd. British
Standards Institution (BSI) handles the commercial aspects of the test in
U.K.

The test suite is available from BSI at a cost of £1500 plus VAT; this is
fully refundable against the first full evaluation fee. The suite will be
maintained free of charge for the first year; subsequent years maintenance
cost £300 per year.

For evaluations carried out by BSI they will provide a copy of the test
suite to the client so this can be configured for the host computer, compiler
and target to be examined, and will later make a formal examination of the
results from the tests. A formal report will be published that will be available
to intending users of the tested facility. The current fee for this evaluation is
about £12 000. The formal report is a bulky document containing the results
of all the individual test programs and, in order to make this information
more digestible, BSI will prepare a short managerial summary.

The MOD evaulation suite is available now for commercial evaluation; five
evaluations have been carried out and the reports are on sale from BSI at
£250 each.

DOD ACEC
The U.S. is also preparing an evaluation suite. It is aimed at performing

a series of 'bench-mark' tests on the compiling and runtime facilities. The
major contractor on this evaluation. suite is Boeing Military Airplane
Company and the first version was released in September 1988 with a
second version due in September 1989. No information is yet available what
evaluation tests have been carried out and with what result. The American
view is that this should be available as a test suite for all those interested

instead of developing a government evaluation agency. After evaluation and
analysis of the results is complete the product evaluated will be awarded a
score. It is intended that this score/figure will be used by contractors and
project offices to help choose the compiler/host/target configuration that will
best fit the project in hand. Only time will tell whether this attitude produces
a better result than the MOD one.

The ACEC consists of approximately 240 test progams comprising over
100 tests and some support tools to analyze the test results. The main
emphasis of the ACEC is execution performance, but it also addresses
compile-time efficiency and code size efficiency. ARE is trying to obtain a
copy of the ACEC with a view to compiling a list of the tests available and
so reduce the amount of work required to develop a comprehensive run time
evaluation suite.

ADA LANGUAGE TECHNICAL ISSUES

The following sections are devoted to the features of the programming
language and its supporting tools. The purpose is to expose some of the
problems associated with the use of the language in naval projects and so
warn prospective users and development managers that there are pitfalls to
be avoided.

Reliability Matters
The Ada language is described in the language reference manual'. The

following features are all taken as being good features which significantly
enhance the language. These three features may not be the only good features
and others will be referred to by the Ada community in order to emphasize
one point or another. The question of software reliability is a controversial
matter, depending not only on development techniques but also on design
decisions. The use of reliability in this section is more to do with robustness
and error-free code that implements very closely the design.

Declaration of Variables
As with other programming languages whenever a variable is declared a

data type can be assigned to it with Ada. Also in Ada it is possible, in fact
overtly encouraged, to invent new data types and the range of values
associated with this new type. The compiler will ensure at compile time that
all statements and expressions conform to the rules associated with data types
and produce error messages when these rules are broken; it will also insert
code to check at run-time that only values within the defined range are used
with the variables. Any departures from these rules detected at run-time will
show up as 'Exceptions' (see below). The unvarying adherence to these typing
rules gives this language advantages over other languages where the compiler
is allowed to guess what the programmer really meant and to do type
conversion if necessary.

In formation Hiding
The language embraces some of the concepts of modular programming by

the use of 'packages'. It has to be emphasized that this is modularity at
compile time and not necessarily modularity at runtime. A package is a set
of declarations and code that are related to a part of the final software
system. Each package has a name that is used for calling purposes. The
package can be separately compiled and tested during development. Any
piece of program that makes use of a package can call for the inclusion of

the package during compilation but only needs to call for those packages
that are really required. In this way the contents of packages not called for
are not available at compile time and hence this information is hidden.

Exception Handling
During the running of any code it is possible for the underlying/supporting

hardware and software to detect errors. These errors may be like attempting
to divide by zero, an arithmetic operation has overflowed (addition result
greater than 2 to the power 32), or attempting to read/write outside the
boundaries of an array. This type of error is described in Ada as an
Exception, and Ada code inserts can be written that will handle the error
and allow the program to recover from the effects of the error. It is also
possible within the Ada source code for the program to raise exceptions
when error conditions are discovered by the program. The handling of all
these types of Exception is fully controlled by the language, including how
the program will behave if the Exception is not handled. Throughout this
document when statements are made concerning runtime checks that can be
left in or taken out, the checks under discussion are some of the ways in
which errors are detected and Exceptions raised.

Safety/Security Critical Systems
The Ada language has no special features to improve the predictability/

reliability of the final code over the features described here and the whole
reason for the language, which is to improve programmer productivity and
target reliability. Any measures taken to further improve quality in this area
will have to be taken by the designer/programmer of the system. The MOD
is taking steps to change this by preparing two defence standards, and
attempting to propose a Project Support Environment standard through the
research programme ST(D)2004 R.

Comments
These three subjects (declaration of variables, information hiding, and

Exception Handling) are some of the many good features of the language.
Strong variable typing rules and information hiding are both measures to
improve the robustness of the compiled code. During the development of a
program much time is spent debugging the object code. Experience has shown
that a lot of debugging time is saved, the majority of programming errors
being detected during compile time mainly due to these two features.

The use of Exceptions and Exception Handlers has been discouraged in
the past mainly because of the time taken to check for errors in the runtime
software and then to change the normal flow of control to the error handling
sequences. It is possible to retain these runtime checks in the final operation
system or indeed to discard these checks usually in the quest for performance.

In my opinion it is not possible to eliminate Exceptions and Exception
Handling completely from the final system because the hardware checks will
always be present. I believe there is a great opportunity here for the
programmer to make the code more robust; but significant effort needs to
be put into the design of the exception system that detects and handles the
runtime errors. Of course more time will be spent doing any particular
sequence but there are several programming devices in the language that can
be employed to reduce the amount of 'exception checking' code the compiler
needs to ins :rt; also with the advent of powerful microprocessors there should
be sufficient power to devote to these features. A major problem may be
that this facility has not been available before and the designers have not
had the training to enable them to recognize possible fault conditions or
consider how to handle them.

Two draft standards covering the 'safety/security critical7 aspects of
software generation (00-55 and 00-56) have been circulated for comment
before publication. A considerable amount of adverse comment was received
and the drafts were subsequently withdrawn for redesign. Nevertheless the
general idea that a hazard analysis is done covering the proposed system and
special treatment is given to some areas of the system seems sensible. In this
context software should not be taken in isolation; the system must encompass
both hardware and software. However the techniques for analysis and
specification of code for an interrupt driven system containing several threads
of concurrent processing are extremely time-consuming and very costly to
the extent that large Command and Control systems are impossible to handle
at present. Work is in hand in this area but a practical foreseeable end date
is not yet in sight.

Real-time Systems
The Ada language is aimed at real-time systems and the compiler vendor

is required to provide not only a language compiler but library routines to
provide input/output and a runtime environment (RTE) to support concurrent
process scheduling.

Parallel Processing
This concept is supplied by the Ada Task structure and the Task scheduling

mechanism. The Language Reference Manual (LRM) ' says Tasks are entities
that may operate in parallel with other Tasks. Of course in the simple case
of a single processor system only one piece of code can be running at any
one time and it is the purpose of the runtime environment to allocate the
processor resources to each Task in turn and thus emulate parallel activity.
The operation of multiple processor systems is discussed later. The ability for
separate Tasks to communicate together is provided by the Ada Rendezvous
mechanism. To use this mechanism an Entry is declared in one Task that is
Called by another Task. There are the usual array of syntax rules to cover
the use of this mechanism. Sufficient to say that when one Task reaches
Entry Call and the other Task reaches the Call accept point these two Tasks
have performed a 'rendezvous7. At this point data can be passed from one
Task to the other in either direction. It is also acceptable for several Tasks
to Call an Entry in one Task, and to cover the possibility that several calls
are in place at some time a first idfirst out queue is associated with each
entry. The RTE is responsible for controlling the processor sequencing to
achieve this 'rendezvous7 effect.

The previous paragraph is a simple description of the Ada 'rendezvous7
mechanism. There are many other combinations of circumstances that the
language caters for and only a careful study of the LRM will reveal all the
possibilities.

Memory Management
It is possible during the operation of any program to share the memory

of the processor between two or more items if it can be guaranteed that at
any time only one of these items needs to be in play. This feature is already
used in the concept of a push down/pop up stack of data. In Ada however
it is possible to have not only data that appears and then disappears during
execution of the program but also Tasks (i.e. program and data) that appear,
start, stop and disappear. As a consequence of this activity it is conceivable
that pieces of memory become available for re-use, and also the whole
memory becomes fragmented with some sections in use and others not in
use. The management of the memory to retain the availability of the whole
memory throughout the operation of the program is a complex and time-
consuming task.

Priority Systems
In a program containing many concurrent Tasks it is quite likely that the

operation of some is more important than of others. To enable the program
designer to inform the RTE which Tasks are more urgent than others it is
possible to assign a priority value to each Task. The LRM describes how
priority shall be prescribed but it is an optional feature. The compiler vendor
does not have to offer priority levels neither is he limited as to how many
levels he provides.

Sclzeduling Mechanisms
The scheduling me~hanisms can be either 'pre-emptive' or 'co-operative',

and the technique of 'time-slicing' may be applied with either mechanism.
In time-slicing the RTE divides the usable time into short periods and at the
end of each period interrupts the normal program flow and examines whether
a reschedule of Ada tasks is necessary and if so activates this change. The
program designer is sometimes allowed to specify the duration of the time-
slice periods. There is a trade-off in this choice, that is quick reaction to
changing circumstances against spending more time checking for rescheduling
and context switching. Theoretically in pre-emptive scheduling whenever a
task is made eligible to run the RTE will check to see whether this 'new'
task has a higher priority than the current task and if so make the necessary
context change to run the 'new' task. Occasions for changing the status of a
dormant task include, after an interrupt, the expiry of a delay period or the
completion of a rendezvous. In 'co-operative' scheduling, once a task has
started to run then only when it reaches a scheduling point will the RTE be
able to reschedule the resources of the processor.

The scheduling mechanism to be used within an Ada-based system is not
prescribed and it is up to the compiler vendor to choose how the RTE shall
perform. The only proviso in the LRM is that when a task of higher priority
than the current task becomes eligible for running then it is right that this
other task should be running. I think this implies 'pre-emptive' scheduling
should be used, but this is not how some compiler implementers have
interpreted the LRM.

Corninents
One characteristic of the Ada Task/Rendezvous mechanism is that it

provides a synchronous data transfer process with no buffer storage space.
This implies that the data must be consumed at the same rate that it is
produced. This may be a suitable mechanism for some data processing
systems; but when, say, radar data processing is being done this mechanism
cannot be satisfactory. One might say that radar targets are detected at a
constant rate of 100 per revolution but there is no way these targets can be
forced to be evenly distributed around the radar set; they are much more
likely to be bunched up in one part of the sky and thinly distributed in the
other. Chapter 14.4 of Barnes's book4 describes how a buffer storage
mechanism can be developed in Ada; but upon analysis this proposal requires
the program to be context switched up to four times just to pass a single
packet of data from one task to another-this must be very wasteful of
resources. The asynchronous data passing mechanism of the MASCOT
channel mechanism is a more economic way of providing this inter-Task data
transfer facility.

Once again taking the air traffic data processing field of work, a very
elegant process is described in Barnes's4 chapter 14.5. This suggests a single
Ada Task is declared that carries out the tracking function for all air tracks,
a new instance of this Task is created when a new track enters the playing
area, and this Task is deleted when the track leaves the playing area. When

new data associated with this track arrives this Task is activated and eventually
scheduled and run under control of the runtime environment. The Task then
becomes dormant again waiting for the next piece of data. When the track
disappears this instance of the task can be deleted and the memory used can
be recovered and allocated to another activity. However the Ada LRM1 says
that the runtime environment should keep some knowledge of the Ada Tasks
that have been run and are no longer in use. The amount of space used for
this knowledge may be small but over the period of a naval mission of several
days a considerable amount of storage will be used up just holding information
that is only of use to the runtime system and not to the air traffic control
system.

Whenever memory management systems are employed in current online
systems, e.g. general purpose multi-user operating systems, the designer of
the system has a choice as to whether to attempt to sweep up the data space
that is available for re-use whenever it is released or to wait until a suitable
point and then collect all the space that has been released. The problem here
is that this strategy is wholly within the control of the RTE and the system
designer has no control over when it is done. Even if it were possible for the
system designer to specify when to do this recovery activity the designer will
not be able to say that there will be time now to do the job because he is
not present at runtime to assess the actual situation. Similarly the operations
team, although they are present at runtime may not be always be able to
allow the system time to do garbage collection when the system needs to do
it. Quite rightly this is a job that should be under the control of the designer
with, maybe some override possible to the operator-it would not be right
for the system to 'die' for a second or two during a missile engagement.
This is a difficult subject that needs a lot more thought before a suitable
answer can be given.

Some compiler vendors may think they are doing the system designer a
favour by giving him a large number of priority levels. This, in my view, is
not true; a designer with a vast number of priority levels will have great
difficulty sorting out the assignment of priority to the various Ada Tasks
within the system. There will be temptation to attempt to use many more
levels of priority than are really required to make the system work. I suggest
that no more than five different levels will be needed in a Command and
Control system.

'Time-slicing' is an easy way of providing a scheduling process; everything
seems to be under the control of the RTE designer. However this mechanism
still causes a delay before a high priority item is run in preference to a low
priority item. The maximum delay period is equal to the time-slicing period.
The only way to actually get the higher priority item to run as soon as it is
eligible to run is by use of the pre-emptive scheduling mechanism; but this
mechanism must be properly designed so that it is a true pre-emptive
mechanism and there are no holes through which rescheduling instances are
missed. The 'co-operative' mechanism is not to be recommended because it
is too easy for a programming mistake to provide a low priority Ada Task
that could 'hog' the processor by getting into an endless loop which contains
no rescheduling point. Special effort has to be made by the system designer
to ensure that every Ada Task contains rescheduling points. This imposes
extra constraints on the system designer who now has to recognize when long
time sequences in the applications code have to be broken into so that other
tasks can have a share of the central processing unit (cpu). This requires
artificial breaks to be inserted into the target code, i.e. the program has to
cooperate with the RTE. There is also no statement in the language that says
'this program can be interrupted at this point if necessary'.

Large Systems
Two types of system are developed for the R.N. These are Command and

Control systems that interface with the Command team, and pre-processor
systems that handle individual pieces of equipment, e.g. radar auto-extractors
and data link controllers. The latter type are of various sizes but usually
medium sized; however the command and control systems are usually large
containing several hundred thousand lines of source code. It is about these
large systems that this section is concerned.

The use of computers in both types of system has been changing from the
physically large central processing units typified by Type DAA and Type DAB
developed during the 1960s to the present proposals using microprocessors
embedded within the equipment. FIG. 1 shows a typical microprocessor board,
which carries a computer many times more powerful than the Type DAA
computer plus a memory whose size is about a hundred times larger.

--- - - - - --

;e;e;e m < W S. g e C & h m - p =U W R T 2 @@Wjb sER PORT t

The technique used to develop the software for such a microprocessor is
to design, implement and test the software on a Host computer, then
recompile this software into Target code and retest on the actual processor
in its final target environment. This technique is depicted in FIG. 2.

Interfaces to other Software and the External World
In a large software system it would be unwise to attempt to write all the

code required afresh. A definite attempt must be made to re-use other code
in the form of specialized operating systems or I S 0 standard packages. In
order to use the interface between Ada and the other software package the
programmer must be able to define down to 'bit' level the packets of data
that are transferred between the two coding languages. Now that Ada is
being promoted as a standard, this interface can sometimes be obtained and
maybe from the same supplier as the non-Ada code.

' TARGET RUNTIME DEBUGGING I

\ - \ I DESIGN
\ \ I
\ \

\ I

I r TARGET SYSTEM

1-1 I I 1-1 I I

I (Operat~ng system, I I
text ed~tor , 1 1 I
Ada complier,
library flies, (Ada RTE, I 1
HostITarget I~nker, Target code) 1 I
loader, 1 I

(~ e b u ~ ~ l n ~ tools) 1 I I U l /

IMPLEMENTATION I TESTING

FIG. 2-HOST/TARGET DEVELOPMENT PROCESS

The same problem arises when the processor interrupt mechanism is being
used. There is a construct in the Ada language that has been put in to enable
such data constraints to be described-this is the Representation clause. The
facilities supplied by this clause will certainly be machine dependent and may
probably be compiler dependent as well so there is a strong likelihood that
the code produced will not be portable, this is not important from the point
of view of target machine dependence but could certainly introduce problems
from the independence from compiler view.

There is also no reason why a multi-processor system needs to be built
using only one type of processor. If such a multi-type processor system is
developed it is more than likely that different Ada compilers will be used for
the different processors and hence the data representation in one type of
processor will be different from the representation in another type. Once
more the Representation clause will have to be used to enable data to be
transferred from one processor to another.

Distributed Systems
With the advent of the modern microprocessor boards, complex systems

are being developed which contain several separate microprocessors linked
together either by the standard bus mechanisms or by a local area network
system. This development enables the system designer to build in redundancy
and resilience. The ultimate aim is to develop the software system in isolation
from the target hardware and then to lay the target code over the target
hardware, again with little knowledge of the hardware structure, and let the
RTE schedule the combined processors and software. Technology is still a
long way from this ideal; the concept of a distributed RTE that can handle
more than one processor is still in the' laboratory experiment stage. This
means that each processor is a separate entity with its own scheduling
mechanism and interrupt system. The partitioning of the application system
and then mapping this over several processors needs careful thought in order
to minimize the amount of inter-processor data transfer that is required.

Library Management at 'Compile Time'
When developing a software system in Ada it is not necessary to compile

the whole system at each iteration of the design. Rather Ada allows the
separate compilation of smaller units of source code and then the inclusion
of the source and object codes as required in later compilation activities.
The way the host compiling system handles this feature will make significant
impact on how a large system is developed.

Development Time
The majority of examples of use of Ada for programming real-time systems

are based on small prototypes. By the very nature of prototyping, these
systems are required to be quickly and easily modified and rebuilt. However
when considering large software systems the actual time taken to rebuild the
system may become significant in the allowed turn-around time for changes,
especially the changes required during the test and acceptance period of the
system life-cycle. This development time hinges on the power available from
the host compiling facility and the techniques used by the compiler writer to
handle the results of large compilations (see also the previous section).

Automatic Source-Code Generation
The development of a large complex software system requires a lot of

expert design processes before the software can actually be written. It is
current practice to implement these design processes on some form of
computing facility. Also, considerable effort is being expended to build
facilities that allow the design team to capture their design in such a way
that it can be converted automatically into target code. Part of this process
is available by using compiling facilities; the other part requires the production
of source code from the design. There are, of course, several different
methods of analysing the problem and designing the target system and hence
there are several methods proposed for automatic code generation.

The MASCOT Design and Support Environment being developed under
an ALVEY scheme is such a product. This will assist the system/program
designer to describe a software system using the MASCOT 3 methodology
and then generate Ada source code to implement the software design.

The Command and Control System for the present and future submarines
(SMCS) and the Command and Control System for the Type 23 frigate
(SSCS) are both being developed by Dowty/Sema. The company's proposal
describes the software design being done using Jackson System Design (JSD)
and Jackson System Programming (JSP) methods with the use of automatic
generation of Ada code from the JSD designs.

Comments
Interfaces to the non-Ada world are still in their infancy. The problems

with other packages, e.g. GKS or SQL, are twofold. In general these packages
are single thread programs with no ability to be re-entrant or multi-thread,
whereas Ada is designed to support multi-thread processing. The other
problem is the efficiency of the interface mechanism. For instance it would
be fairly straightforward to develop an interface between Ada and SQL where
all the messages passing across the interface are the equivalent of the text an
operator might use in a traditional man-machine dialogue. In this way all of
the features available in SQL would be available but the processing overheads
of translating the required queries into ASCII text and translating the ASCII
text answers into the Ada format could be enormous in both storage and
processing time. The other method would be to develop a special language-
to-language interface; this is being done. The efficiency of such an interface
may be acceptable but it would probably not provide the full range of
facilities to the Ada program that the package is capable of providing.

The textbook and LRM references to microprocessor interrupt systems are
rather vague, probably because authors of these documents have been
insulated from such low level features by their use of mainframe and
mini-computer operating systems. These operating systems provide all the
connectivity with the outside world that the programmer requires. It is a
specialized field constructing device drivers for current multi-user operating
systems. This however is an important area for the embedded microprocessor
programmer. In real-time systems there is a premium to pay for poor interrupt
program design, in terms of time delays and the possibility of locking out
other interrupt requests. The efficiency of handling interrupt programs needs
to be examined further; this is not covered in the MOD Evaluations suite.

This brings us on to distributed microprocessor systems. There is at present
no Ada runtime kernel that will schedule an Ada program that is distributed
over several microprocessors. Proposals are in place for systems composed
of several loosely-coupled microprocessors. In these systems each micropro-
cessor is a self-contained unit that is able to communicate with the other
microprocessors and so share the work required of the total system. Each
microprocessor will have its own section of the applications code and its own
copy of the Ada runtime kernel. Communication will be through specially
coded interrupt systems. It is possible that such a system could be composed
of dissimilar microprocessors with code produced by different Ada compilers
and running under the control of different runtime kernels. The techniques
for developing and testing such a system need further examination if sensible
comment can be made whenever such a system is proposed. Two programmes
of work are in place to examine these problems. The Software Engineering
Institute (SEI) in the U.S. is attempting to produce a true multi-processor/
single-scheduler system and the University of York is using a 'loosely-coupled'
multi-processor system for teaching and experimental work.

The problems of library management at compile time and development
time, are not really Ada language issues, except inasmuch as new compiling
systems are being developed for Ada with little thought being given to the
problems that will be encountered when trying to meet the requirements of
large systems. The syntax of library units is covered in the LRM but this
does not cover the handling of either a large number of separate units or a
small number of very large units and either case, or a combination of them
both, will arise in the development of a large system.

The matter of Automatic Ada code generation is also not an Ada issue.
What is quite likely to happen is that only a few of the Ada language facilities
will be produced by the automatic facility. This is of course not invalid, as
most human coders will never use all of the facilities in the language.

RESEARCH AND FUTURE

ARE Research Work
The software engineering section in AX Department of ARE is running a

research programme5 which includes examination of the programming
language Ada and its use for the construction of Naval Command & Control
systems and Weapon Control systems. The work to date has covered use of
the Ada Evaluation Suite to examine two cross-compilers (aimed at M680XO
and Inte180386) and the use of GROW technology to examine three compiler
types (DEC, Alsys & Telegen). The results of these tests have been
published6. '.

Also, ARE is helping with the construction of a representative, although
small, Command & Control system. This system will be used as a test vehicle
and measurements of its performance will be made when running on single
microprocessor boards and distributed over several microprocessor boards.
The contractor is Yard Ltd. of Glasgow and ARE has supplied (on loan)
the infrastructure hardware and software for the firm to construct, using
MASCOT technology, a Command and Control system. The final version of
the application software will be delivered to Portsdown in mid 1990; from
then on AXC4 will measure the performance of the delivered system and
then recompile the software using different compilers and measure the system
performance for each compiler. Whilst the results will provide some measure
of the performance that could be expected from several compilers when used
for MASCOT Command and Control systems, the whole activity will provide
insight into Ada, multi-processor systems and real-time systems.

Proposals are also being formulated to examine how JSD, JSP and OOD
(Object Oriented Design) map onto the Ada language and perform in a real-
time system.

Application Domain Evaluation
Experience has shown that the information obtained from general test

suites such as the Ada Evaluation Service is not sufficient to allow accurate
advice to be given to R.N. project officers concerning their use of Ada for
large real-time systems. Two areas of particular interest are under discussion,
the establishment of real-time characteristics for runtime environments and
the ability of Ada Programming Support Environments to accommodate
large systems.

This work is still in its infancy, hence the paucity of results. A 1988 report8
describes the results so far of attempts to use the early versions of the AES
test suite. This has not been an easy task. The software was developed on a
DEC VAX system and it would appear little effort has been applied to the,
not trivial, task of measuring the performance of a target microprocessor. It
is still early days in the life of this product and no doubt as BSI come up
against these sorts of problems so effort will be applied to ease their task.

The Ada Future
Although slow to catch on, Ada is now being proposed for more R.N.

projects. This indicates that the joint MOD/Industry Computing Policy is
having effect. The result of this will mean there will be more statistics relating
cost of development, development time, size of code and reliability, thus
enabling a true assessment of the benefits of Ada to be made.

The Ada development community has recognized that the language is not
perfect and several voices are being raised requiring changes to be made.
Also, because the language is an I S 0 standard, a review has to be conducted
and the standard re-appraised every ten years. This activity has started for

Ada as the 'Ada 9X review'. Seven hundred 'Revision Change Requests'
have been submitted from throughout the Ada community and these are now
being studied by a technical team set up by the Ada Joint Program Office of
the U.S. DOD with the aim of completion and final revision being published
in 1993.

Two features considered important by ARE for R.N. systems are the
provision of asynchronous message passing facilities, and the provision of a
well-defined interface between the generated target code and the runtime
environment supplied to support this code. The former is definitely a language
definition matter but the latter is a compiler implementation matter and as
such is not covered by the Ada 9X review. These form only a small portion
of the problem space as is shown by the large number of Revision Change
Requests submitted. What is certain is that the language will be revised
during the mid 1990s and this will have to be taken into account by project
officers where Ada forms a significant part of the chosen technical solution.
Also because Ada is today's long-term solution, one should be aware that
changes to the language standard may occur every ten years for the foreseeable
future.

CONCLUSIONS

As can be seen, there are still a large number of unknowns connected with
the programming language Ada associated with the areas of performance,
suitability for a particular purpose and usability. The MOD has adopted this
language as a programming standard and this must be a good thing from a
standardization point of view; but we are not yet in a good enough position
to advise potential users of either the benefits that could be achieved or the
problems that will confront them.

This note has attempted to show what the Ada programming language
hype is all about and to demonstrate that only the careful use of the language
will result in the anticipated improvements to development costs and runtime
reliability. It is the author's view that the use of Ada should be encouraged
wherever possible but that it is not sensible to sit back in the assumption
that because Ada is being used that all will be well. Project officers should
still be vigilant throughout the development period to ensure that the right
software development procedures are also being adopted.

In the style of advertisements for slimming foods-'Ada can only help
improve the quality of software products when used in conjunction with other
products and methods similarly aimed at software quality improvement'.

References
1 . Reference rnanual for the Ada progr-an~tning language; ANSI/MIL-STD 1815A, 1983.
2. Booch, G.: Software engineering wit17 Ada; Benjamin/Cummings Publishing Co., 1983 (ISBN

0 8053 0600 5).
3. Joint MOD(PE)/Industry computing policy for military operational systems. 1987. A first

revision dated 14 Dec. 1989 was published under references DUS(DP) 925/11/2/9 and
DUS(DP) 924/11/2/9. A second revision is due at the end of 1990.

4. Barnes, J . G. P.: Progromtning in Ado; Addison-Wesley, 1989 (ISBN 0 201 17566 5) .
5. AXC4 research programme; A R E report TM(AXC) 90002, 1990.
6. Software engineering consultancy, contract SWN21A/1098; A R E report TM(AXC) 90003,

1990.
7. Performance metrics for assessing Ada run-time environments for microprocessors used in

embedded applications; A R E report TM(AXC4) 88006, 1988.

	JNE Volume 32 Book 03 - December 1990
	ADA and Large Real-Time Systems in the Royal Navy

