
SOFTWARE
ENGINEERING MANAGEMENT

K. GEARY, B.Sc.,M.B.C.S.,G.I.M.A.
(Sea Systems Controllerate)

This article is based on a paper presented by the author at the Eighth
Ship Control Systems Symposium in the Hague in October 1987.

ABSTRACT
Software introduces its own style of managenent problems. If software development is not

made visible and tangible, it becomes difficult to control. Poorly controlled software development
can take up a major proportion of equipment development costs, cause delays to delivery, and
degrade equipment performance. This paper describes how these problems can be avoided and
discusses the management practices involved. The impact of software on equipment configur-
ation, ease of operation and the reliability and safety of equipment is also considered.

Introduction
Software is the logic that is embedded within the hardware of equipment

control mechanisms. Software therefore can have a significant effect on
equipment performance in terms of availability, reliability and maintain-
ability. Additionally, it can have an indirect but significant impact on
equipment configuration management, equipment to equipment communi-
cations, ease of operation, and safety of personnel.

Ever-increasing requirements for improved facilities on marine equipment
have promoted computer software as the prime means of implementing
control logic. Software offers significant advantages over hard-wired logic
by giving designers the ability to implement orders of magnitude greater
complexity. Software enables the hardware control element of equipment to
be constructed from general purpose digital components that are relatively
inexpensive, very reliable, and compact. Logic design changes have little
effect on the hardware production line as any changes can be implemented
in software.

Software, therefore, brings major advantages in equipment control, but it
also represents a major change in technology. The impact of software is far
greater than just providing for enhanced functionality of equipment. It
introduces its own problems of project management, equipment development
costs, and quality assurance. Software development is purely a design exer-
cise. In the equipment production phase, reproducing software becomes
merely a matter of automated replication from a master copy.

Software Appreciation
There are now very many cheap computers available in consumer shops.

The general public can go out and buy a home computer which can be used
by all the family, enabling the creation of software to be accomplished by
children and their parents alike. Digital technology is relatively new and
some equipment project managers may have gained an appreciation of
software through this route.

Amateur programming is useful in that it gives familiarity with computing
and raises awareness of some of the problems that can occur. However,
programming in an uncontrolled environment also allows poor practices to
develop. Problems can arise when computer programming practices that are

J . Nav. Eng., 31(3), 1989

adequate for programming small quantities of recreational software in the
home are transferred to the management of software development in the
engineering environment. There are major differences between recreational
software and marine equipment software (TABLE I) which will significantly
affect requirements for management and quality control.

It is necessary, therefore, for project managers to possess an awareness of
the principles of management of software development. Managers need to
be aware of the stages in the software life cycle and the milestones that
identify progress. They need to know what estimates and plans must be
made in order to avoid future problems and they need to know what items
must be delivered to complete each stage of work. Those managers that treat
software development as a single self-contained entity are likely to find that
the software will cause the project to run over time and over budget.
Software, like other engineering disciplines, needs careful control. The
controlled development of software through staged management practices,
as shown in FIG. l , is known as 'Software Engineering'.

TABLE I-Comparison of recreational and operational software

Tangibility
When compared to hardware development, software development appears

intangible. Traditional supervisory inspection of hardware can give an experi-
enced project manager some measure of progress of work. With software,
this is not so easy. Counting the number of lines of code written does not
give a good measure of progress. Furthermore, if a manager were to use
such a technique it would encourage the bad practice of writing code before
the design has been well thought out. This would lead to many lengthy
sessions being spent by the programmers at terminals, as they try to find
and correct a plethora of errors, referred to as 'testing out . the errors'.
Such practice is indicative of poor software design, weak management and
ineffective quality control practices. The result will almost certainly be soaring
development costs, late delivery, and system reliability problems.

Software must be made in relation to its development cycle. The only way
to achieve tangibility is through formal issue of documentation covering each
stage of work. This practice also has the benefit of ensuring that the
documentation reflects the design and is not a chore that must be completed
after programmers have experienced the accomplishment of producing work-
ing code.

Recreational Software

Implemented on general purpose computer
purchased to suit leisure

Recreational/interest/hobby
No software development costs (except leisure

time)
No software maintenance costs (except leisure

time)
Maintained by the author

Limited lifespan (up to 2 or 3 years)
Specified, designed and used by author and

immediate family
Up to a few hundred lines of code
Reliability unimportant
Not time critical

J . Nav. Eng., 31(3), 1989

Operational Software

Implemented on special purpose or bespoke
computer designed to suit the application

Functionally necessary
Expensive software development costs

Expensive software maintenance costs

Life of software greater than the availability
of the author

20 to 30 year lifespan
Specified, designed and used by different

people
Several thousands or millions of lines of code
Reliability very important
Often time critical

----_ ----- --,---=------ - - - _ _ _ _ _ _ - - - - - - ----_ ----
SYSTEM TEST SCHEDULE

SOFTWARE TEST SCHEDULE

CONTRACTOR
MODULE TEST SCHEDULE

FIG. 1 -THE CONTROLLED DEVELOPMENT OF SOFTWARE

Once software development has been made tangible, it can be controlled.
Deliverable documentation must be placed under configuration management,
with formal issue states. So often, software and its documentation is not
brought under configuration management until after equipment delivery.
Such practices avoid the process of formal change control, but they also
avoid managerial control. The software then becomes a constantly changing
entity; it is never complete and costs and timescale escalate. By placing
completed documentation under configuration management, project man-
agers can maintain visibility of design changes.

By using the life cycle stages, shown in F1c.1, the project manager
can make software development visible. By demanding documentation to
demonstrate the completion of a unit of work, software can be made
tangible. By placing completed items of work under configuration control
during development, software can be made controllable.

Estimation
In the planning phase, one of the most difficult problems to overcome is

accurate estimation of the work involved to develop a new piece of software.
Past experience of similar projects is a useful aid to this. There are various
models that may be used to assist in the task, and most of them are now
implemented on one of the new generation of personal business computers.
None of the models is guaranteed to give absolute accuracy, but they are all
more consistent and useful than intuitive methods.

Cost estimation models require input of estimated parameters, such as
number of lines of code, or some other sizing parameter. Managers using
these models must be aware that if the original sizing estimates are wrong
then the costing and work schedule proposed by the model will also be
wrong. It is therefore necessary for managers to ensure that the sizing
estimates are realistic. One of the benefits of such models is that they do
encourage realistic estimates because they require the planner to give more
thought to sizing than a quick guess.

Work load estimation is also useful to the customer procurement officer
during tender assessment. If, in the invitation to tender, the supplier is
required to complete an appropriate questionnaire, such as Def Con 143,
the procurement officer can process the information through one of the
models to check whether estimates are realistic. With current trends towards
fixed contracts, cost checking would appear irrelevant. However, the customer
will also be interested in whether timescales are realistic. Contractual clauses
may offer compensating protection, but they do little for timely delivery of
equipment if a supplier is put out of business.

A useful spin-off from cost estimation is that all the sizing information
will be available to estimate processor loading and memory requirements.
Such data will enable designers to choose a processor with sufficient power
to suit the application. This will help to avoid the bad practices and escalating
costs associated with fitting the software into hardware that has insufficient
power and capacity to suit the application.

Quality Assurance
Quality assurance is the monitoring of quality control practices. Both

quality assurance and quality control are on-going activities throughout the
project life cycle. Application of quality assurance and control to hardware
engineering disciplines is generally well understood. However, available
quality assurance requirements are often written in general engineering
terminology and therefore require considerable interpretation to relate to
software.

J . Nav. Eng., 31(3), 1989

A problem occasionally encountered in the area of software quality control
is a lack of awareness amongst supplier and customer project managers.
Often, because programs are listed on paper, the only formal quality control
applied to software can be configuration management of the paper code
listings, which are considered to be equivalent to hardware design drawings.
Quality control of the software design itself is sometimes left to informal and
uncontrolled practices which may or may not be applied by the programmer.

Where there is insufficient quality assurance and control, design reviews
become poorly conducted or may be omitted altogether. A common mistake
in design reviews is to discuss the documentation format and conventions
used to express the design, and omit to review the actual design. Formal
design review procedures should be employed on the specification as well as
the design, the specification being a greater source of errors than the whole
of the remainder of the software development cycle. Furthermore, as all
subsequent quality control practices are carried out to ensure compliance to
the specification, errors in the specification will not be realized until after
the equipment is accepted into service. This accounts for the very high
support costs of some software-based equipment. Correction of errors is
much more expensive if discovered at a late phase in the life cycle.

Planned and controlled progressive testing is part of quality control.
Experience has shown that it is a mistake to place full reliance on equipment
acceptance tests, allowing the software to receive no formal unit or module
tests and little formal integration testing. Once software modules have been
integrated, the number of possible control paths increases to a point where it
is not feasible for equipment acceptance tests to exercise the code adequately.
Programs must be tested and successful completion formally recorded at
unit-test, module test and integration stages. ~ e c o r d s of progressive develop-
ment testing should be required as part of the acceptance procedure. At the
formal completion of each stage, the accepted unit of code, program module
or system software must come under configuration management to ensure
that any subsequent design changes are controlled and adequately tested.

Project managers should beware of using research or prototype software
in production equipment. As with some prototype hardware, such software
is produced quickly with little or no quality control, the objective being to
produce a study report or feasibility demonstration. It is not possible to
enhance software quality retrospectively and it is therefore necessary to
discard poor quality software and rewrite new software with proper quality
controls.

Integrity/Reliability
The issue of reliability should be considered from a 'systems' viewpoint.

It is of secondary interest to the user whether it is a hardware or software
problem that is resulting in the system failing. Software, like hardware, can
contribute to the unreliability of a system and therefore must not be
discounted, but the methods used in determining or obtaining high integrity
software differ from those used for hardware. Hardware reliability consider-
ations are dominated by determination of the 'wear-out' characteristics of
components in the system, enabling designers to predict quantitatively the
likely order of the resulting system's reliability. Other factors influencing the
reliability of the hardware design are therefore largely discounted from the
ensuing calculations.

Software on the other hand has no tangible existence other than through
the medium of hardware. It follows therefore that it has no 'wear-out'
characteristic. Any functional failure is due to inherent error in the design

J . Nav. Eng., 31(3), 1989

or implementation of the software. A principle element in most reliability
calculations is 'time'. However when considering software the passage of
'time' may have little impact. Any fault in the software will have been there
since its design and will only become apparent when that feature is called
into use. So, one may have a situation where the system is exhibiting total
reliability but the software component contains errors that have yet to
manifest themselves.

The customer will state a reliability objective for a system. In apportioning
the reliability objectives to the constituent portions of the proposed system the
design must consider the software and in doing so it would be unacceptable to
assume that the software never fails. The software element will make a finite
contribution to the overall reliability of the system and therefore software
integrity objectives should be stated in the supplier's equipment design
outlining the software functions.

The greatest influence on the quality and reliability of software will be the
management and quality control procedures and the skill of the people
involved in the specification and design of that software and its test schedules.
Confidence in the software should be based on the achievement of the
software team members in designing similar systems under similar quality
control procedures and the perceived reliability and performance of those
systems.

Equipment Configuration
Equipment design changes may be carried out much more quickly and

easily by changing software than by changing hardware. Hence there are
often many more changes to the software than to the hardware. Traditional
configuration management for equipment is adequate for infrequent and
slowly changing hardware designs; however, software may be changed rapidly
and frequently and installed in a hardware configuration item without any
externally visible alterations.

It is necessary to review hardware-oriented configuration management
procedures in the light of engineering advances into the use of software.
The configuration management system must control the many software design
changes that affect pre-programmed integrated circuits known as 'firmware'.

Information Transfer
Software-based equipment control has Iead to a wide availability of control

data. It is now possible to integrate different equipments on a platform into
a co-ordinated management system. This raises many issues concerning
communications, but the one relating directly to software is the integrity of
information transferred.

Project managers need to be aware of the old software adage, 'garbage
in, garbage out'. When equipments were isolated, any errors in the control
logic would affect only that piece of equipment. Now that data can be
readily transferred between different equipments, it is possible for a software
malfunction to have an impact on other areas of the platform. Hence,
systems which accept information from other sources should be designed to
validate incoming data before making use of that information.

A further design consideration is the way in which data transferred from
one equipment to another will be put to use. Misconceptions concerning the
interface data specification could lead to data being used in a way that was
unforeseen by the data source designer. It is therefore necessary to ensure
that all interfaces are clearly specified and understood.

J . Nav. Eng., 31(3), 1989

Man Machine Interface
The user's view of the equipment is through the man machine interface

(MMI), or human computer interface (HCI) as it is sometimes known.
Increasingly this interface is being designed and implemented using software.
Equipment designers are becoming aware of the need for an easy-to-use
MM1 but often they impose their own ideas on the design.

The MM1 is probably one of the most difficult areas for the customer to
specify, but from the operator's point of view it is one of the most important.
If an equipment is designed with a poor MMI, changes to make it easier to
use may involve a major software rewrite with significant cost escalation and
time delays. It is usually difficult to get the MM1 design correct first time, so
it would be beneficial to be able to create a prototype version that can be
refined. There are now several software tools available that enable designers
to construct a prototype of the MMI. Operators can then be asked to
evaluate the design and advise on refinements before the operational MM1
software is finally written.

Safety Critical Software
Software is now being used in applications which require very high

integrity, such as control of equipment that can be a hazard to the safety of
personnel. It is not possible to prove software 100% correct. Safety assessors
are, therefore, becoming concerned over the risk to human life posed by
possible software errors.

CREATIVE PHASE VERIFICATION PHASE

SPECIFICATION -t DESIGN -W- CODING TESTIINTEGRATION ACCEPTANCE --)

Formal Methods

111 +
Fault Tolerance --

Fall Safe

1

Safe Subset -
Quality Tools

+ ~ ~ ~ 1 ~ 1 ~ 1 1 1 1 1 M-* II111111111111111 +
Defensive Programm~ng

Static Analysis

4 1 1 1 1 1 1 - m 1 + * 1 1 1 1 1 1 +
Dynamic Analysis

411111111 -
FIG. 2-HIGH INTEGRITY SOFTWARE MEASURES IN THE SOFTWARE DEVELOPMENT CYCLE

J . Nav. Eng., 31(3), 1989

Technology to achieve the very high integrity required for safety critical
software is relatively new. There are a number of measures which should be
applied in addition to the conventional software engineering practices dis-
cussed above. These measures, specified by the High Integrity Annex to
Naval Engineering Standard 620, are shown in F1c.2 in relation to their
application in the software development cycle. Further guidance may be
found in a MOD paper, the Chief Naval Weapon System Engineer (CNSWE)
Guide to Software for Safe Control of Weapon Systems (AD/PWS Memo
1/87).

~ i t i l recently, there has been a preference for fault-tolerant techniques
such as 'diverse' or 'redundant' software. This involves two or more indepen-
dent software teams designing and coding separate programs to carry out
the same functional task, usually running in parallel. Whilst this technique
may be useful in hardware technology to avoid the effects of random
hardware failures, its usefulness with software is not so clear. Any errors in
the originating specification will be reflected in the design of all versions of
the software. There are also several other factors which may compromise
avoidance of common mode design errors, such as a common technical
monitoring point or a common designers' educational background.

Intuitively, it may appear that more testing should be applied and that
such testing should be independent of the software designers. Extensive
independent testing is a useful technique, identified in F1c.2 as 'Dynamic
Analysis', and should be included in the range of measures applied. However
its limitations should be recognized. The input domain, even for a small
program, will almost certainly be too large to test exhaustively. For example,
with only four bytes of information (i.e. a 32-bit word) the input domain is
in the order of 4000 million possibilities.

Current preference is for the use of formal mathematically-based methods
and tools. Formal mathematical notation can now be used to express
specifications and design precisely. Notations receiving most interest in the
UK are 'Z' and VDM. In addition, software 'Static Analysis' tools are
becoming available. These tools enable detailed analysis of the design and
code, and thus can be used to identify logic errors which may cause the
program to malfunction.

Use of formal mathematical techniques has largely been confined to
experimental application. However, they are now starting to be used on real
safety critical equipment projects. There is some debate over their cost of
application, but experience is beginning to suggest that the use of mathemat-
ical methods results in more cost-effective software than that developed using
non-mathematical engineering design practices.

Conclusions
Software is now an important area of technology that must be properly

addressed by customer and supplier project managers alike. The management
practices of software engineering are well established and managers need to
ensure that these practices are applied effectively to equipment software.
Naval Engineering Standard 620 provides a concise set of requirements which
should be referred to in contracts for equipment containing software. It is
not possible for MOD project managers to understand detailed aspects of
the many technologies used to construct modern operational equipment but
the engineering control mechanisms should be known. Awareness and early
recognition of possible problems is important and managers need to be able
to call on knowledgeable advice when required.

J. Nav. Eng., 31(3), 1989

	JNE Volume 31 Book 03 - June 1989
	Software Engineering Management

