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ABSTRACT 

hlodern military operations have been carried out in the littoral environment. l 'he performance of the 
radar pulse in this arena can be degraded by the effects of clutter and interference. It is possible to 
design a radar waveform that minimizes the effect of t h ~ s  unwanted lnterkrence by careful 
specification of' the waveforms' ambiguity function. Recent advances in waveform design have used 
genetic algorithms to find near optlmum waveform parameters that produce a specified ambiguity 
i'unction. This paper proposes a practical FSK PSK waveform that is capable of reducing the effects of 
interference and clutter in specified areas ofrange and Doppler in the ambigu~ty function. A new linear 
FM PSK waveform is proposed and ~ t s  performance is compared with the FSK PSK waveform. 711e 
composite ambiguity function is used to compare a set of FSK PSK waveforms with a set of linear FM 
1 5 K  waveforms. 'I'he results show that whilst the Imear  FM PSK waveform gives better range and 
Ilopplcr discrimnation properties, it does not offer any appreciable performance when minlrnizing 
spcclfied areas with~n the ambiguity function. Durlng the initial research of this project, a genetlc 
algorithm was designed to find new @-bit bl-phase codes. Four codes were found that offer better 
performance than codes discovered In previous research. 

Background 

Military operations over the last few years have been carried out predominantly in 
littoral areas. Here, the radar operating environment is extremely complex and 
difficult to characterize in terms of clutter and interference. Although it has been 
possible to model the environment, it is often not possible to modify in-service 
sensors to validate this model and subsequently improve radar performance. 



Software based sensors are being developed that allow almost real time 
modifications of sensor parameters such as waveform generation. If the nature of 
clutter and interference are known, the radar waveform could be designed such 
that the effect of clutter and interference is minimized. The ambiguity function of 
a waveform can characterize its performance in clutter but there is no 
mathematical route from a desired ambiguity function to the waveforms 
parameters. Traditionally, radar waveforms have been designed by either trial and 
error or using past experience. As the waveforms become more complex, it is 
impractical to search exhaustively through all possible permutations to discover 
which waveform gives the best performance. A genetic algorithm is a stochastic 
search algorithm that can find optimized solutions in a large search space in a 
fraction of the time taken to search exhaustively the same space. 

Summary of recent research 

Recent research has shown that radar waveforms can be designed, using genetic 
algorithms, such that they reduce the effects of clutter whilst still maintaining good 
Doppler and range discrimination properties. A waveform that gives the good 
range and Doppler discrimination is the FSK PSK waveform. A FSK PSK 
waveform had been designed such that sidelobes within a specified area of range 
and Doppler of the waveforms ambiguity function have been reduced. This 
reduction has the consequence of minlrnizing the effect interference or clutter 
within that specified area. The design of this waveform was completed using a 
genetic algorithm. 

Previous research also showed that using multiple waveform sets. instead of single 
waveforms. the range and Doppler discrimination of radar could be enhanced by 
utilizing the composite ambiguity function. Here, the composite ambiguity 
function of a set of FSK PSK waveforms was calculated and it was shown that the 
sidelobes within a specified area of range and Doppler were reduced compared to 
the single waveform ambiguity function. It was also shown that the range and 
Doppler discrimination was improved. The FSK PSK pulses designed did not 
have realistic or practical values of phase and frequency such that these 
waveforms could be used in radar systems. 

Project aim 

This project investigates the design of a practical FSK PSK waveform using 
genetic algorithms that generates an ambiguity function that minimizes the effect 
of clutter within a specified range and Doppler region. A new waveform. the 
Linear FM PSK waveform is introduced in this research. This waveform is a 
variation of the FSK PSK waveform. Its performance is compared with the FSK 
PSK waveform to determine which offers the best minimisation within specified 
areas or range and Doppler. 

In addition, this project investigates the use of genetic algorithms to design 
practical FSK PSK and Linear FM PSK waveform sets. The performance of the 
composite ambiguity function of these waveform sets can be compared to the 
single waveforms' ambiguity function mentioned above. 

During the initial stage of this projects research, the performance of a genetic 
algorithm searching for optimum 25-bit bi-phase codes was compared to the 
performance of an exhaustive search. A genetic algorithm was designed to search 
for an optimum 64-bit bi-phase code. A genetic algorithm was also designed to 
search for a 13-bit generalized BARKER sequence. 



Summary of results 

The results show that there is no appreciable performance advantage of the new 
practical linear FM PSK waveform over the practical FSK PSK waveform when 
comparing the minimization of sidelobes in specified areas within the ambiguity 
function. The performance of the composite ambiguity function of both 
waveforms sets was similar. 

The composite ambiguity function of the waveform sets allowed better sidelobe 
minimization when compared to the ambiguity function of the single waveform. 
The Linear FM waveform gave cons~stently better range and Doppler 
discrimination when compared wlth the FSK PSK waveform. 

The bi-phase code investigation discovered two new 63-bit bi-phase codes that 
offered a better performance than codes found using a different search method in 
previous research. A new 13-bit generalised BARKER sequence was found. 

Introduction 

There are a number of pulse types available to the radar designer when designing a 
radar system. These pulses range from the simple bi-phase radar code to the more 
complex and novel FSK PSK pulse diverse waveforms which vary frequency and 
phase in each chip within the pulse. In order to explore all of these options with 
some detail, the literature search was divided into a number of sections. 

Bi-phase codes with minimum sidelobe levels. 
Polyphase codes with low autocorrelation sidelobes. 
Pulse diverse waveforms. 
Radar codes and the use of genetic algorithms to find codes with 
specified ambiguity functions. 

Bi-phase codes with minimum sidelobe levels 

In 1953. BARKER' discovered a set of bi-phase codes that were deemed perfect 
such that the autocorrelation of these codes would yield sidelobes that fluctuated 
between 1 and 0. There are nine BARKER codes' in total; the longest is a 13 bit 
code? It has been calculated that BARKER codes do not exist up to at least 6.084 
bits. For lengths greater than 13 bits, bi-phase codes whose autocorrelation 
produces the rmnimum peak sidelobes for a given length are deemed the best. 

COHEN' details bi-phase codes up to a length of 48 bits which. when 
autocorrelated. give the minimum peak sidelobe levels. For example, Cohen 
discovered that there exists two 25-bit bi-phase codes that when autocorrelated. 
have a minimum peak sidelobe level of 2. COHEN did not discover a pattern to his 
results and thus the search process was extremely lengthy. The search up to 48 
bits was carried out using a tree structured search algorithm. This greatly reduced 
the time to search compared to an exhaustive search method of taking each 
possible code and computing the autocorrelation. No reference to exhaustive 
searches beyond 48 bits has been found. 

In 1993. a Simulated Annealing Search Algorithm was developed to search for 
long bi-phase codes.' This reference outlines two resulting 64-bit codes which 
when autocorrelated give low sidelobes and have good cross correlation 
properties. Work carried out during this project will show that better alternative 
64-bit codes have been found using a genetic algorithm. Although this previous 
research was completed in 1993 and computing power has been increased since, 
no reference to follow up work has been found. 



Polyphase codes producing Generalized BARKER Sequences 

In the early stages of this project. it was intended to design a genetic algorithm to 
search for long polyphase radar codes with specified ambiguity functions. The 
literature search revealed that this subject had been researched comprehensively 
using different search methods. During this project a genetic algorithm was 
designed to search for a 13-bit generalized BARKER sequence that proved the 
principle that genetic algorithms could be used in this area of radar code design. 
The literature search of polyphase codes is outlined below for completeness. 

In the previous section. the term bi phase coding referred to the phase being 
selected from either 0" or 180". The term polyphase coding means that the phase 
of each bit in the code can be chosen from some alphabet (M). They are time- 
discrete complex sequences with constant magnitude and variable phase.' The 
alphabet can be any length from 2 (bi-phase) to infinity (continuous phase). 

As discussed above, BARKER codes were defined as perfect. It is possible. with 
polyphase codes with a magnitude of unity and a suitable phase alphabet, to design 
polyphase codes such that the auto correlation has sidelobe levels of unity or less. 
These codes are called Generalized BARKER Sequences and they were discovered 
in 1965." 

In  1989. sixty-phase Generalized B A K K ~ R  Sequences were discovered up to a 
length of 19 bits.7 At the same time, an iterative search method was used to find 
generalised BARKER sequences up to length 

As the length of code increases, so to does the search space and possible 
permutation of auto correlation outputs. It was not until 1994, when computing 
power had improved. that polyphase Generalized BARKER Sequences up to length 
31 were discovered and doc~~men ted .~  Here. the search method utilized was the 
heuristic Great Deluge Algorithm. Instead of a limited alphabet of phases, the 
alphabet tends to infinity such that the phase becomes continuous. Whilst in 
theory the approach of continuous phase gives the required Generalized BARKER 
Sequence, in practice. continuous phase systems are not, at present, technically 
feasible." 

Generalized BARKER Sequences to length 36 were reported in 1996."' The search 
algorithm used was the Great Deluge Algorithm. but this time, the search was 
initialized using starting vectors derived from HUFFMAN sequences. Instead of 
being continuous, the phase alphabet was selected from values that were viable. 

The final paper relating to Generalized Barker Sequences outlines sequences up to 
length 45 using small alphabets.' The search strategy is a modified Great Deluge 
Algorithm with random starting vectors. The maximum alphabet of length (M) 
used was 120 i.e. in 3" steps (3601120) for sequence lengths of 40 to 44. This 
maximum length of M=45 is claimed to be possible to implement.' 

Pulse diverse waveforms 

In the previous sections. only phase has been altered within the relevant pulse. In 
FSK PSK pulse diverse waveforms, both the frequency and the phase of chips 
within a pulse can be varied from chip to chip to give a desired output from a 
matched filter. A generic FSK PSK pulse diverse waveform is shown in (F1c.1) 



FIG. l - FSK PSK WAVEFORM COMPOSITION 

It should be noted that the frequency and the phase values within each chip remain 
constant throughout the chip duration. The issue of frequency sweep (linear FM) 
within each chip is the basis for investigation later. 

The technique of using FSK PSK pulse diverse waveforms is relatively new and 
there are few references found to this work. 

GUEY and BEIL" developed the theory for designing multiple pulse diverse 
waveform sets that offer superior Doppler and range discrimination. They 
introduced the composite ambiguity function that allows superior discrimination to 
be achieved. 

Two papers have been published that use a genetic algorithm and the theory 
developed by GUEY and BELL to design multiple pulse diverse waveform sets that 
produce tailored ambiguity functions. WON(;'' designed a four-signal waveform 
set where the sidelobes of the ambiguity function were minimized. This was 
achieved using a simple genetic algorithm and using non-realistic radar 
frequencies and phases in steps of U1024 radians. 

This project investigates the effect of using realistic frequencies in pulse diverse 
waveforms and addresses the issue of using practical phase increments. 

Use of genetic algorithms in radar waveform design 

In addition to the work completed above by WONG, two other references have 
been discovered that use genetic algorithms for radar code design. The first 
paper'J details the use of genetic algorithms to develop an eight-phase polyphase 
code that has good Doppler tolerance and low range sidelobes around the main 
peak of the autocorrelation function. In practice. this clearance around the main 
peak allows good range discrimination of two very close targets. It details two 
codes of length 256 that, in addition to the autocorrelation criteria, have good cross 
correlation properties. The paper only considers eight-phase polyphase codes and 
does not investigate different phase alphabets. 

It should be noted that although this reference is relatively recent, it was not 
discovered in the initial literature search. Furthermore, this paper was not 
discovered using the library search but during an Internet search on the subject in 
week eight of the project. This paper has not been referenced in work carried out 
in this area since 1997. P ~ R I S I  has confirmed personally that to his knowledge, 
this work has not been pursued further. The discovery of this reference was a 
setback because the original thrust of the project was along similar lines. 



The second paper in this field15 examines the design of a generic spread spectrum 
radar polyphase code using a genetic algorithm. It then compares the results with 
other search methods such as Implicit Enumeration Techniques, Multi-level Tabu 
Search, Monte Carlo method and non-linear programming. The results show that 
the Multi Level Tabu Search and genetic algorithm performed comparably and 
both found the generic solution. However, the genetic algorithm was deemed 
superior because it was able to exploit its parallelism and perform searches for 
codes of longer length. 

Other forms of radar waveforms 

Other forms of waveforms used in radar include: 
a. Pseudo-random Binary Phase codes (M sequence).' 
b. Random binary phase.'" 
c. Step frequency m~dula t ion . '~  
d. Polyphase Frank codes (PI, P2, P3 and ~ 4 ) . ' "  
e.  HUFFMAN codes.'" 
f. Complementary codes.'' 

These codes do not offer simultaneous good range and good Doppler 
discrimination properties and are not part of this research. 

An overview of a simple genetic algorithm 

Genetic algorithms are part a wider field of evolutionary algorithm which is based 
largely on Charles DARWIN'S theory of evolution and survival of the fittest. The 
parallel drawn here is that in a genetic algorithm, a solution to a problem is 
evolved over a number of generations to meet a desired objective and hopefully 
find a good solution. 

The genetic algorithm is a stochastic global search method. A number of possible 
solutions. known as a population, are evolved using the principle of survival of the 
fittest. The values within the initial population are random and therefore. no 
knowledge of the search space is required. At each generation, members of the 
population are selected for breeding based on their level of fitness and how well 
they solve a problem. New offspring are formed and evaluated for fitness. Fitter 
members supersede weak or less fit members of the population. This method of 
evolution leads to a population that is better suited to their environment. 

The computer coding for the genetic algorithm was conducted in MATLAB. The 
genetic algorithm ut~lized the Genetic Algorithm Toolbox developed by Sheffield 
university." The objective functions, that describe the search problem, were 
designed for each particular search 



The basic genetic algorithm 

The basic genetic algorithm is shown in (F1G.2). 

l. START - INITWI, RANDOM POPULATION 

2. EVALUATE POPULATION AGAINST AN OBJECTIVE FUNCTION 

3. GENERATION LOOP 
ASSIGN FITNESS to each member of population 

SELECTION of parents for breeding 

CROSSOVER of parents to create offspring 

kIUT4TE some of the offspring 

EV.AI,UATE OFFSPRING against an objective function 

REINSERT offspring into population 

4. END ON R.IAXEV1UR.I NUMBER OF GENERATION 

Chrorno.some.s and poyulation 

The chromosome is the basic building block for the genetic algorithm. Each 
chromosome contains a number of encoded parameters called genes. Genes are 
selected from some finite alphabet that can be binary. ternary or integer value that 
together can be decoded to form the parameters needed to solve the problem of 
interest. A population is made up from n individual chromosomes. The initial 
chromosome contains genes with random values 



Objective f~inction, eval~~ation and fitness of the pop~ilation 

Each chromosome in the population is evaluated using an objective function. This 
function takes in the chromosome, and produces an output. The individual 
chromosome output is compared with the outputs produced by other members of 
the population. A fitness value is then determined for each chromosome that will 
describe how it compares with the other members of the population. Consider the 
simple example shown in (FIG. 3). 

CHRObIOSO\IE 2 OBJ F1 U 2 

L 

CI~RO\IOSOhIE 1 OBJ Fr \i 1 

Chromosomes 1,2 and 3 are initialized with random values. Together they form a 
population of three. The chromosomes are then passed individually to the 
objective function (Shown at point A in  FIG.^). Here, the objective function is 
simply adding all the genes in each chromosome together. The objective function 
is defined by the user and is search space dependent. It is common practice to 
design the objective function such that its output will be minimized. The objective 
functions used in this project are discussed later. 

The output of the objective function (point B) is now applied to the fitness 
function. The fitness function used here is a simple ranking function whereby 
each objective function output is ordered with the minimum (best) at the top and 
the maximum (worse) at the bottom (Point C). 



Selection of chromosomes for breeding 

Selection for breeding is based on the fitness of the individual chromosome. The 
level of fitness determines how many times an individual is chosen for 
reproduction. The better chromosomes (high fitness) are more likely to become 
parents for breeding. Poor chromosomes (low fitness) are not as likely to be 
selected for breeding. It is normal practice to allow worse fit individuals to breed, 
albeit less likely, as they may contain some useful genetic material. 

Crosso~.er and mating operators 

i4nj twTo chromosomes can breed. During breeding, the offspring are formed by 
selecting genes from the parents. This selection of genes and formation of 
offspring is carried out by a recombination operator. The simplest operator is the 
single point crossover. This operator selects a single point within the parent 
chromosome at which the genetic information is swapped. This is shown 
graphically in  FIG.^). 

The multi-point crossover operator was used during this research and this works 
by dividing the chromosome up into gene segments. Each segment has a 5050 
chance of swapping with its counterpart segment in the other parent. Two new 
offspring are produced. This operator is shown in (FIGS). The grey values 
indicate those genes that are to be swapped. 

. . . .  
FIG.5 - M l m - P O I N T  CROSSOVER 

Miitation 

Another genetic operator used in conjunction with crossover is called mutation. 
hlutation is applied to each gene in the new offspring with a set probability. 
Mutation of a binary sequence chromosome is shown in (Frc.6). 

F I c . 6  - MUTA'TION OPERATOR 

Mutation rate has the effect of allowing the genetic algorithm to increase its search 
space. This should prevent the genetic algorithm settling on a local minimum as 
opposed to a global minimum. If the mutation rate is too high, the genetic 
algorithm behaves as if it were a random search. Conversely, if too low, the 
genetic algorithm may converge on a local minimum. 



After mutation has been applied, the new chromosomes are passed to the objective 
function and the evolution cycle is repeated. This full cycle is known as one 
generation. The whole genetic algorithm process can be summarized in  FIG.^). 

/ O R J  FUN 2 - OBJECTIVE FliVCTIOU - 
( > ~ I N I \ I I Z E  SUM)  / \8 

C l l R O l O S O l E  2 + O B J  F1 .T  ? 

ST:\R'l . \C; l \ i  

O S E  GENEHTION 

l A 

><t'T.\TE 

t 
CROSS OVER 

SELECTION 

rIG.7 - GENETIC A12GOKI?'HM PROCESS, ONE GENERATION 

CHROhlOSOr\lE 1 

CHHOMOSO\IE ? 

C H R O ~ I O S ~ ~ I E  3 

~ 1 I \ l ~ l 1 ' \ 1  

(BEST) 

>14a lh lr la l  

( W O R S E )  1 
The number of generations in the Algorithm is set at initialization. Once the 
genetic algorithm has completed the required number of generations, the process is 
halted. 

Ambiguity Function 

Introduction 

The ambiguity function is utilized during this project. This section aims to 
highlight the salient points of this function. There are many references to the 
computation of the ambiguity function and often there is different use of 
terminology and symbols to calculate essentially the same result. 

Dej!Ji'nition $the a m h i g u i ~  function 

The ambiguity function is a time-frequency transform of a waveform used by 
radar or sonar to characterize the response of the matched filter as a function of 
delay and Doppler errors.18 The ambiguity function characterizes the waveform in 
such a way that it can be used to determine the effects of Doppler at the output 
from the matched filter. From the function, one can also determine the resolutions 
of Doppler and range. effect of clutter and the effects of range-Doppler coupling. 

The mathematical definition of the output of the matched filter is given below in 
equation 1 .- T, indicates a target return at a Doppler frequency Fd. A positive Fd 
denotes an incoming target. 



The squared magnitude of equation 1 is called the ambiguity function and when it 
is plotted, it is called the ambiguity diagram. The ambiguity function has a 
number of important properties that are described in detail at references 2 and 19. 
The most important ones are summarized below: 

( U )  The maximum value of the ambiguity Function is found at the origin 
and its value is ( 2 ~ ) '  where E is the energy in the Pulse. 

( h )  The total volume under the Ambiguity Function is ( 2 ~ ) ' .  

The icleul Anzhiguih F~tnction 

The ideal ambiguity tiinctjon would be a single spike with an infinitesimal small 
width as shown in (Fr~.8).-  

The ideal ambiguity function would allow both extremely high simultaneous range 
and Doppler resolution. This would mean that there would be no oi~tput from the 
matched filter unless the Doppler of the echo matched that for the matched filter 
and the range resolution would be accurate and targets close t o ~ t h e r  could be 
discriminated. However, in practice. this is an impossible ambiguity function 
because it does not fulfil the peak and volume properties of ( 2 ~ ) . '  An 
approximation of the ideal ambiguity function. which fulfils the peak and volume 
properties. is represented in (FK;.~).  ' 



Here. B is the signal bandwidth and Z is the signal pulse width. Although this 
may be ideal in term of satisfying the properties of the ambiguity function. the 
pract~cal limitations of the range and Doppler resolutions ( 11 Z and ]/B), may 
mean that this is ambiguity function not ideal to the radar designer. 

Working within the properties of peak and volume. i t  is pqssible to view the 
ambiguity function as a mass of clay with a volume of (2E)-. The peak at the 
origin must always have amplitude of ( 2 ~ ) ' .  The clay can be distributed wherever 
one likes but no clay may be added or taken away. As discussed before. the ideal 
ambiguity function is one with a peak at the origin of small width. this would give 
good range and Doppler resolutions. This would mean that the remaining clay has 
to be distributed elsewhere. It may be concentrated at a peak elsewhere, or maybe 
distributed evenly across the range/Doppler floor. (FIG. 10) shows the ambiguity 
fi~nction having a small peak with the consequence of a higher floor around the 
main peak. This ambiguity function is often referred to as the Thumbtack 
ambiguity function. The floor around the main peak should be as smooth as 
possible. any spikes or peaks in this are undesirable as they may be confused with 
r;rrset returns. Similarly. areas of range and Doppler in the floor may be subject to 
the effects of external radar clutter and therefore the height of the floor at these 
points inn) need to be minimised. The minimization of the floor in certain areas is 
investigated during this article. 



Shl,\l,l, WIDTH PEAK FOR 

GOOD T.\KGET DISCKIhIIN.4TION 

'CLAY' DISTRIBUTED HERE I I 

The ambiguity function is normally drawn as a three-dimensional plot with power 
(response). time and Doppler frequency as the axes. An example of a three- 
dimensional ambiguity function for a 13 bit Barker sequence is shown at (FIG. 1 1 ). 
All the ambiguity functions in this article have been produced using a modified 
MATLAB routine. l "  

FIG, l 1 - AR.1RIGl~l~l'Y FI IN(:TION I'OIZ I\ 13 BIT B:iRKIlK CODI: 

Ambiguity diagrams can be plotted in two dimensions and are commonly plotted 
at zero Doppler and at zero range. The zero Doppler plot is the result of 
autocorrelation of the waveform. From this plot. the range discrimination and 
pulse compression of the pulse can be determined. The zero range plot can be 



used to determine the compressed pulses Doppler discrimination properties. These 
two plots for a 13-bit Barker code are shown in (Frcs.12~ & B). 

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 l 

DOPPLER SHIFT (Hz) ~ 1 0 '  

FIG. l l;\ - ZERO RANGE PI.07' OF A 1 3-B17' B ARKER CODE 



Finally. another useful plot method is the contour plot that can be tailored to show 
different levels from the peak of the main lobe. (FIG. 13) shows the contour plot of 
a 13-bit Barker code. 



13 BIT BARKER 0.5,1,3,10,15,20 AND 3 0 ~ B  CONTOURS 

Generation ( f a  specifieci anzbiguih. filnction 

Producing a signal waveform to meet a specified ambiguity function is very 
difficult because there is no mathematical route from the desired ambiguity 
function to a waveform. Methods of selecting waveforms that meet a particular 
ambiguity fi~nction were discussed earlier. In practice, radar system designers use 
ambiguity functions to determine the performance of a selected waveform. 
Selection of a suitable waveform is either by trial and error or from previous 
system experience. This article examines using genetic algorithms to select 
practical pulse diverse waveforms to meet specified ambiguity functions. 

Composite Ambiguity Function 

The composite ambiguity function was introduced by GUEY and BELL" as a tool 
to measure the delay and Doppler discrimination characteristics of pulse diverse 
PSK FSK waveform sets. They proved that the composite ambiguity function 
produced a better Doppler and range resolution than single ambiguity function. 
The composite ambiguity fun~&ion IS plotted on the same axes as the ambiguity 
function. WONG and CHUNG- showed that by using a genetic algorithm as a 
design tool, an area of the composite ambiguity function could be minimized as to 
reduce the effect of interference such as clutter. 



Definition of the composite arnhig~li~junction 

In mathematical terms, the composite ambiguity function is defined as the 
magnitude of the coherent sum of the individual signals' output from their 
matched filter. The mathematical expression is shown in equation 2. 

Thc individual signals' sidelobe level output from the matched filter is such that 
\vtlcn the! x c  summed coherently. the overall sidelobe level is reduced. 
Skmlnrly. the main peak of the output of each individual matched filter is 
coherently summed. The overall effect is to enhance the main peak whilst 
suppressing the unwanted sidelobes. 

The project examines the use of the composite ambiguity function to design 
practical waveform sets that offer enhanced Doppler and range discrimination. 
Practical FSK PSK pulse diverse waveform composite ambiguity functions will be 
compared to practical linear FM PSK composite ambiguity functions. 

PREI~I~IINARY INVESTIGATION OF RADAR CODE DESIGN AND GENETIC 
ALGORITHhlS 

Introduction 

This section outlines the results of the preliminary investigation into using genetic 
al~orithms to search for basic radar codes that have low sidelobes when 
autocorrelated. This investigation was carried out in the early stages of this 
project and yielded some interesting results. Two types of radar codes were 
investisated, bi-phase and continuous polyphase codes and in each case a genetic 
algorithm was designed and compared to an exhaustive search of the same codes. 
:9 genetic algorithm was designed and found new 64-bit bi-phase codes with low 
sidelobes. In addition, a genetic algorithm was designed to search for a 13-bit 
generalised Barker sequence continuous polyphase code. 

Bi-phase code investigation 

It was decided that the definition of a best code was one whose autocorrelation had 
the minimum peak sidelobe level and minimum RMS level within the sidelobes. 
This definition is based on the property of Barker codes. which have a minimum 
peak sidelobe level of unity. A MATLAB programme was designed to 
exhaustively search the autocorrelation of bi-phase codes of length 3-31bits and 
record the minimum peak sidelobe levels for each n bit code. Complementary 
codcs have the same autocorrelation function. For example, the autocorrelation 
function of (1. - 1. 1 ,  - 1) is the same as (- 1, 1. - 1, l). This property was used in the 
exhaustive search to halve the search space for a given n bit code. 

Res~l1t.s ofr,uha~istive search 

The results of the exhaustive search are detailed in Table 1 



TABLE. 1 - Resu1t.v of exhuu.rtive search 

Column 2 
Details the number of codes to check which is derived from the 
number of bits n. 

Column 3 
Details the minimum peak sidelobe level of the n bit code. 

Bits 

3 

1 

5 

6 

% total codes 
that are 

'hest' 

500E+O 1 

500E+O 1 

1.25E+01 

4.38E+0. l 

3.13E+00 

6.25E+00 

3.13E+00 

3.91E+00 

2.OOE-0 1 

3.9OE-0 1 

5.00E-02 

4.40E-01 

2.00E-0 I 

4.00E-02 

2.00E-02 

6.10E-03 

1.53E-03 

7.63E-04 

7.63E-04 

5.72E-04 

2.86E-04 

4.77E-05 

2.38E-05 

3.58E-05 

2.98E-06 

2.98E-06 

1.49 E-06 

7.50E-07 

3.70E-07 

Rms dB 

-12.55 

-13.8 

-16.99 

-14.1 
p~ 

-19.91 

-17.48 

-17.32 

-18.1 

-23.84 

-22 

-25.29 

-21.27 

-21.37 

-21.37 

-2 1.6 

-23.43 

-22.45 

-23.01 

-24.14 

-24.16 

-23.94 

-25.66 

-25.33 

-25.75 

-27.09 

-26.27 

-25.8 

-26.48 

-26.34 

hlin Peak 
SSL 

1 

1 

1 

2 

1 

2 

2 

2 

I 

2 

I 

2 

2 

2 

2 

2 

2 

2 
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Column 4 
Expresses column 3 as a ratio in decibels with respect to the main 
peak of height n 

Column 5 
Details the RMS value of the sidelobes. 

Column 6 
Shows the number of best codes. 

It should be noted that the number of best codes is the complementary value. The 
actual number of best codes is half the value indicated in column 6. The best 
codes are codes that when autocorrelated satisfy the minimum peak sidelobe 
criteria and the minimum RMS criteria. The final column shows the percentage of 
the best codes out of the total number of codes. As n increases, this percentage 
decreases. This implies that when searching for the best codes. the genetic 
algorithm will have to be very good to find these codes. This result is useful when 
determining the performance of the genetic algorithm search. 

I t  was decided that the reference for the genetic algorithm would be the 25-bit 
code and therefore. the statistics of the 25-b~t code will be discussed. A histogram 
of the minimum peak sidelobe levels found by the exhaustive search of a 25-bit 
code is shown at (FIG. 14). 
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There are only two codes from all the possible combinations of 25 bit codes that 
have a peak sidelobe level of 2. This highlights the fact that the genetic algorithm 
will have a difficult task in finding the best code due to the very small percentage 
of best codes (1.92x10-' 5%) of the total search space. The search space for a 25-bit 
code is now known. A genetic algorithm can be designed and its performance 
tested against this reference. 

Genetic algorithnz search for 25-bit bi-phase codes 

The operation of a genetic algorithm has been discussed earlier. A genetic 
algorithm was designed, using the Genetic Algorithm Toolbox in MATLIZB'~ to 
search for the best 25-bit code found in the exhaustive search. 

Genetic Algorithm Design 

The number of variables in the chromosome was set to the length of the code (n). 
The value of the individual gene within the chromosome could be either + 1 or - 1.  
The chromosome is passed to the objective function for evaluation. The objective 
function simply autocorrelated the code (chromosome) and recorded the value of 
the peak sidelobe level. A desired minimum peak sidelobe level was introduced as 
a target for the genetic algorithm. The sidelobe levels of each code produced by 
the chromosome were compared to the desired level. A difference matrix was 
aenerated and the sum of this matrix was used as the output from the objective 
Function. This output had to be minimized and once the difference is zero, the 
genetic algorithm had found the code that had the desired sidelobe level. This 
process is shown in (FIG. 15). 

- 1 1 1 - 1 1 1 - 1 1 1 1  

CALCULATE ACF 

RECORDPEAK 
SIDELOBE LEVELS 

COMPARE WITH DESIRED LEVEL 
TO GET DIFFERENCE 

MINIMIZE THIS DIFFERENCE 

GENERATED BY GA 

Frc. 15 - BI-PHASE CODE GENE'I'IC ALGORII'HM REPRESENTATION 

Re.s~i1t.s of Genetic Algorithm search o f a  25 hit Bi-phase code 

The desired sidelobe level was set at 2. The genetic algorithm was repeated 110 
times and the results are shown in the histogram at (FIG. 16). 
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FIG.  16 - RESIJI-TS OF'IHE GENETIC ALGORITT-IM SEARCHING 1:OR 'EiE IDEAL 25 B I T  CODE 

The results show that the genetic algorithm managed to find the desired sidelobe 
level of 2 twice in 110 runs (1.81%). The autocorrelation of the best code found 
by the genetic algorithm is shown in (FIG. 17). The desired sidelobe level of 2 is 
plotted for reference. The parameters used in the genetic algorithm are also 
detailed on FIG. 1 7. 
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This result proved that the genetic algorithm was capable of searching and finding 
a small number of optimal solutions in a very large search space. This result gave 
tiix;. necessary confidence to develop the genetic algorithm to search for longer 
cctcles ( ~ 3 1 )  and that any result gained could be close to. if not at. the global 
mlnJnlum. 

Genetic algorithnz search o f a  64-bit hi-phase code 

It was decided to extend the search to n=64bits. There are no exhaustive search 
results for codes of length 64 bits. In 1990. an exhaustive search of 48 bits took 16 
days.' If one assumes that this 48-bit exhaustive search could be carried out in 
today in 2iFhrs, an exhaustive search of 64 bits would take approximately 180 
years. 

Re.sults ofgenetic algorithm searclz of a 64-hit bi-phase code 

The desired sidelobe level was set at an arbitrary level of 5 .  The genetic algorithm 
was run 140 times. Various crossover rates and initial population sizes were used 



until a combination was found that would achieve the desired sidelobe level. The 
histogram of the results is shown in (FIG. 18). 
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FIG 18 - HISTCIGRAM OFRESCTLTS OF 6J BITGF.N~;TIc ALGORITHM SEARCH 

F1c.18 shows that four codes of minimum peak sidelobe level of 5 were found. 
The genetic algorithm is finding the codes that produce minimum peak sidelobe 
close to the desired level of 5 .  There were no codes found with a minimum peak 
sidelobe level of less than this. This is indicated by the grouping of frequency of 
occurrence towards the left in FIG. 18. 

Four best codes were found. The autocorrelation of two of them, along with the 
genetic algorithm parameters used is shown in (FIG. 19). 



ACF OF TWO 64 BIT CODES FOUND WITH GA 

ACF VALUE 
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The 64-blt codes are too long to dtsplay In bl-phase form and therefore they are 
displayed In hexadec~mal The two codes are. 

(U) 7A2242EE927 11800 (hex) Code 1 
(I?) C49 1 C95E6FFA0000 (hex) Code 2 

These two codes are shown because the cross-correlation of these two particular 
codes gives the smallest peak cross correlation product when compared to the 
cross correlation products of the other codes in turn. Code 2 has been inverted 
such that both codes can be shown on the same plot. 

Conzpa~*i.ron of 64 hit code re.rulr to other ,\eai*ch methods 

Two 64 bit codes were discovered using Simulated Annealing in 1993.' These 
two codes had a minimum peak sidelobe level of 11 and a minimum peak cross 
correlation product of l l .  The cross correlation product of two codes is an 
important issue when two codes are used for radar and communications 
applications. Here. the cross correlation product needs to be reduced as much as 
possible so that two separate codes of the same length can be used on the same 
channel. 



Clearly. 
of 5 (cf. 
is poore 
codes 1 

the codes found in this project have a better minimum peak sidelobe level 
l l )  however, the best cross correlation product was found to be 15? which 

:r than 11 found by Simulated ~ n n e a l i n g . ~  The cross correlation product of 
and 2 are shown in (FlCi.20). 

CROSS CORRELATION OF TWO 64 BIT CODES FOUND WITH GA 

The objective function of the genetic algorithm was not designed, in this case, to 
search for two codes with minimum peak sidelobe levels and minimum cross 
correlation product. In the opinion of the author a genetic algorithm could be 
designed to search for this objective. however, due to limiting time, it was decided 
that this would not be pursued. Furthermore. best codes of length greater than 64- 
bits (128. 256. 512 etc.) could have been sought but this was not the main aim of 
this project. It is left as an area of further research. 

Generalized BARKER Sequences investigation 

Having completed the investigation into bi-phase codes, the next logical step was 
to investigate polyphase coding. This investigation was not as detailed as the bi- 
phase research for a number of reasons outlined at the end of this section. To 
demonstrate the applicability of the use of genetic algorithms as a search tool in 
this area. a genetic algorithm was developed to search for a 13-bit continuous 
phase Generalized BARKER Sequence. 



Definition of Genemlised BARKER Sequences 

The term polyphase coding means that the phase of each bit can be chosen from an 
alphabet of size (M>2). They $ae time-discrete complex sequences with constant 
magnitude and variable phase: The alphabet (M) can be any length from 2 (bi- 
phase) to infinity (continuous phase). It is possible, using polyphase codes with a 
suitable phase alphabet (M), to design polyphase codes such that the 
autocorrelation in the zero Doppler plane has side$be levels less than unity. 
These codes are called Generalized Barker Sequences. 

D c ~ s i ~ n  cfgenetic algorithm to searcizfi)r Generalised BARKER Seq~iences 
5 Previous research using an iterative algorithm, defined the phases used to 

genc'tiitt" 3 13 hit continuous phase Generalized BARKER Sequence. A genetic 
nlgorithrr~ v, 3s developed to prove its applicability in this area. 

The genetic algorithm produced a population of chromosomes with individual 
genes that each had a phase value (in radians). Each chromosome was passed to 
the objective function where. using the phases defined in the chromosome. a 
ws\reforrn was produced. The peak sidelobe level of the autocorrelation of this 
wa\;t.fbrm was computed. The genetic algorithm attempted to minimize the peak 
sici?,.)obe level to below unity to find a Generalized BARKER Sequence. The 
oh~ec:\\~e function is summarised in (FG.2 1 ). 

MINIMIZE THIS LEVEL - (TO BELOW UNITY) I- 
R ~ S L L ~ ~ S  o f g e r w t i ~ ,  algorithnz search 

The parameters used by the genetic algorithm are shown in Table 2 
TABLE 2 - Genetic illgorithm pclrametrrs for 13 hit  continuou.~ pha.re codr 

Parameter 

Populat~on 

Generations 

Crc~ssover rate 

Mutation Rate 

Generation Gap 

Value 

200 

300 

0.85 

l % 

0.9 



486 

The phases (in radians) of the best code found by the genetic algorithm are: 

These are different from previous recorded results.' This code gives a 13-bit 
Generalized BARKLR Sequence autocorrelation function shown in A FIG.^^). It can 
be seen that the peak sidelobe level is unity with the remaining sidelobe levels 
below that value. The peak sidelobe is -22.29dB from the main lobe peak. the 
same as a 13-bit BARK~:R code. 

The practicalities of generating the continuous phase are not examined in detail. 
however. previous research" suggest that these would be difficult to generate. 
Moving to an alphabet of say 60 would be more practical. A genetic algorithm to 
search tor these polyphase codes could be investigated as part of future research. 

7 

7.8 1 

Preliminary investigation conclusion 

A genetic algorithm can be used to find bi-phase codes with minimum peak 
sidelobes. This was proved by finding the two best 25-bit bi-phase codes. The 
genetic algorithm was developed further to search for 64-bit codes and four new 
codes were discovered that had a better minimum peak sidelobe level than codes 
found by previous research using a different search method. Search of longer 
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length codes was not pursued but the author is confident that genetic algorithms 
could be applied in this area. 

A genetic algorithm was designed to find a 13-bit polyphase Generalized Barker 
Sequence. The principle of using genetic algorithms to search for polyphase codes 
has been proved, albeit on relatively short length codes. Based on the experience 
gained during the investigation of the bi-phase codes, it is the opinion of the author 
that if more tlme were available: a genetic algorithm could be designed to search 
for codes of length 45+. This could be the subject of further research later. 

PULSE DIVERSE WAVEFORM DESIGN 

Introduction 

Previous researchl\suggested that a pulse diverse PSK FSK waveform could be 
designed to produce an ambiguity function that had minimal sidelobe levels in 
specified areas of range and Doppler. A genetic algorithm was used to design 
s~lch a pulse but the phase increments and frequencies used were not realistic for 
current radar design. This section will outline the design of a practical PSK FSK 
pulse diverse waveform that can be designed to meet a specified ambiguity 
function and composite ambiguity function. 

In this project, a variation to the FSK PSK waveform is proposed. It is called a 
Linear FM PSK waveform. A practical design of this new waveform is examined 
such that it meets the same specified ambigu~ty function and composite ambiguity 
function as the FSK PSK case. 

PSK FSK waveform design 

The PSK FSK waveform'' is a single pulse containing six individual chips where 
each chip is capable of having a different frequency and phase from the next. This 
is shown in (Frc.23). 

FIc3.23 - GENERIC: PSK FSK WAVE1:ORM DESIGN 

The chips within the pulse diverse PSK FSK waveform in" were designed such 
that the frequency and phase increments are not practical for radar system design. 
For instance, the frequency range was between 10 Hz and 74 Hz and the phase 
was incremented in 1024 steps of 360" or steps of X15 12 radians. These values 
are clearly impractical for modern radar design. 

Practical pulse design 

A radar operating at 5GHz may typically have a bandwidth of 10 % -500 MHZ.~ .  
p203 A typical uncompressed pulse length of 1 . 2 ~ s  equates to a range resolution of 



180m. It was decided initially to design a pulse to approximately these 
parameters. A pulse length of 1 . 2 ~ s  would allow a chip width of 0.2ys (assuming 
six chips). The sampling frequency would have to be at least twice the highest 
frequency (Nyquist) and therefore at least lGHz sample frequency was required 
for a maximum intermediate frequency of 500 MHz. It follows that each chip of 
0 . 2 ~ s  would consist of 200 samples and the whole pulse of six chips would 
contain 1.200 samples. When this s am~led  signal was passed through the 
ambiguity function MATLAB programme-' it took 2 minutes to compute an 
output and used up most of the computer memory such that it became very slow to 
run. To enable the FSK PSK and Linear FM PSK waveform comparison. the 
ambiguity function had to be repeated 1.000 times per genetic algorithm run. It 
was planned to do at least 90 good genetic algorithm runs in total for this 
in\estlgi~tion and this would have taken approximately three weeks. This was 
dzernetl ui~acceptable and a shorter pulse with a lower sampling frequency was 
1equ1rt.d. 

It was decided to reduce the size of the pulse and reduce bandwidth of the radar to 
200 MHz. This in turn reduces the operating frequency to 3GHz. The practical 
frequency of each chip is in the range of 20 - 200 MHz and the practical phase 
was in 128 steps of 360" (2.1825"). The sampling frequency was chosen to be 
5004lf Iz and thus the sampling interval is 2ns. Each chip contained 51 samples 
n l a k ~ r r ~  306 samples for the six-chip pulse. The new length of the pulse is reduced 
from 1 2 ~ ~ s  is 612ns. The pulse is shown graphically in (FG.24). 

4 .-.--..U- + Possrsr,~ FREQUENCY RANGE = 20 TO 200 MHz 

0.612 ps = 306 SAMPLES @ 211s per SAMPLE 

F1c.24 - PRACTICAL PSK FSK PULSE DESIGN 



For a 3 GHz radar, a maximum range of 180km is assumed. The maximum 
unambiguous range is set to 225km (1.25 X max range) and therefore the PRF is 
set at 600Hz. The radar's parameters can be summarized in Table 3. 

TABLE 3 - Rrzdar purumerer\ for PSK FSK d e ~ l g n  

I Frequency chosen wlthln the range wlthln each chlp I 20-200MHz 1 

Parameter 

Frequency 

Value 

3GHz 

The sampled FSK PSK waveform shown in Flc.24 can be generated easily within 
MATLAB 

Sampling frequency 

Pulse width (uncompresseci) 

Samplcs per pulse 

Max Unambiguous Range 

PR[: 

Linear FM PSK waveform 

500MHz (2ns) 

0.61 2ps 

306 

225km 

600Hz 

In the section above. the frequency and phase in each of the six chips of FSK PSK 
pulse diverse waveform were constant throughout the duration of the chip. A 
variation of this could be that the frequency within the chip is altered throughout 
the chip duration by effectively applying a frequency sweep in each chip. The 
phase in each chip remains constant. This new pulse diverse waveform. 
introduced in this research, is referred to as a Linear FM PSK pulse diverse 
waveform. The ambiguity function of this new waveform is compared to that of 
the FSK PSK case to see which waveform offers a better performance. The 
comparison in performance is discussed later. 

Practical Linear FM PSK wavejhmz design 

The radar parameters are the same as those detailed in table 3. the only difference 
is that now there is a start and stop frequency of the individual chip. The start and 
stop frequencies can be any frequency between 20 and 200 MHz that facilitates a 
possible up or down frequency sweep. 

The Linear FM PSK pulse diverse waveform used in this research is s ~ l i t  into six 
chips as shown in ( ~ k . 2 5 ) .  This sampled waveform can be generateh easily by 
MATLAB. 



1 ~ 1  srAn.rl SA~KPLE FREQUENCY = 5OOhl~z 
F1 STOP SAILIPLE TIME = 211s 

.c------, POSSIBLE START A N D  STOP FREQUENCIES = 20 TO 200 ILIHz 

0.612 pS = 306 SAMPLES @ ~ N S  PER SAMPLE 
F'IG.25 - I . INr i \ l l  FM PSK \V;\\;ril:()ltM 

A MATLAB programme" was used to generate the ambiguity function of the 
pulse diverse waveforms. Recalling that the pulse length is 0.612ps and the PRF 
is 600Hz, (Table 3) the size of the axis of the ambi~uity function are _+0.612~~s  
along the delay axis and f 3OOHz along the Doppler axis. These axes are set by the 
ambrgiiity function programme and can not be altered. 

F6 SrAR'l 

F(; STOP 

PH 6 

F1 ST,\KT 

F1 STOP 

PH 1 

The delay axis can be converted to a range axis of k 92m using equation 3. 

R =  cT/2 - - - - - - - - - - - (3) 
Where c=3x 10"s. z is pulse width in seconds. R is range in metres 

F2 sr.ARr 
F2 STOP 

PH 2 

The Doppler axis can be converted from Doppler frequency of 2 300Hz to a 
relative velocity axis of + 15rnIs using equation 1. 

Where v is in d s .  fLf is in Hertz, h is in metres (0. l m) 

It should be noted that the peak of the ambiguity function is at the origin. This is 
one of the properties of the ambiguity function discussed earlier. 

F5 ST.iRT 

F5 STOP 

PH 5 

F3 ST.iKT 

F3 STOP 

PH 3 

The composite ambiguity function of a set of say six waveforms can be generated 
by summing each individual signal's ambiguity function. This princ~ple was 
discussed earlier. The composite ambiguity function is simple to achieve in 

F4 ST,\RT 

F4 S'I'OP 

PH 4 



MATLAB by modifying the ambiguity function programme. The range and 
velocity axes will be the same as those described above. 

U,s e (?f' MA TLA B 

As stated above, all the waveforms were designed using MATLAB. This 
computer language was chosen for two reasons: 

(a) The Genetic Algorithm ~ o o l b o x ' ~  had been designed for MATLAB. 
( h )  A MATLAB function to produce an ambiguity function of a specified 

waveform had been designed." 

However, MATLAB is a slower language than, say, 'C' and this was a penalty 
during this project. 

Ptilse design conclii.sion 

The waveforms that are to be investigated during this project can be generated by 
MATLAB. The sampled waveforms can be input to the ambiguity function 
programme and their individual ambiguity functions can be calculated and 
displayed in terms of velocity and range. Sidelobe levels within specified areas of 
the ambiguity function can be examined. It will be shown that sidelobe levels 
within specific areas of the ambiguity function can be minimized by designing the 
waveforms using a genetic algorithm. 

RADAR WAVEFORhIS AND GENETIC ALGORITHM DESIGN 

Introduction 

There is no mathematical route from a specified ambiguity function to a waveform 
that generates that particular ambiguity function. Talung the practical pulse 
diverse waveforms, one possible method would be to try every possible 
combination of frequency and phase in each chip and record the generated 
ambiguity fi~nction. The waveform whose ambiguity function gives the best fit to 
the specified shape could be selected. This is clearly impractical, as the number of 
possible permutations is excessive. 

It has been shown that a genetic algorithm could be designed to search for bi- 
phase codes that when autocorrelated generated a minimum peak sidelobe level 
that is the same as some arbitrary desired level. Taking this one stage further. it is 
possible to design a genetic algorithm that would search for the phase and 
frequency parameters of pulse diverse waveforms that produce an ambiguity 
function that is minimized in some area. A similar argument applies when 
minimizing areas within a composite ambiguity function of a set of pulse diverse 
waveforms. This section outlines the select~on of the masked areas and the design 
of the genetic algorithm that searches for the optimum waveform parameters. 

Mask design - Areas of minimization 

As discussed earlier, the FSK PSK and Linear FM PSK pulse diverse waveforms 
produce ambiguity functions over the range k I 5 d s  in velocity and +92m in range. 
Three masks of different sizes were designed for this research such that the peak 
levels within the masks should be reduced. The choice of area is somewhat 
arbitrary but if a range and velocity of clutter or interference were known then any 
mask could be designed accordingly. 

The masks are shown in (FIGS 26, 27 and 28). The black area of the mask is the 
area where the sidelobes are to be minimized. The corresponding range and 
velocity for each area can be read from the plots. 



Mask l .  

An arbitrary 'normal' mask. 
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Mask 2. 
Based on Mask 1 but with the area in whjch the sidelobes are to be 
reduced is biased towards the centre peak. 

-80 -40 0 40 80 

RANGE (m) 

I : I G . ? ~  - MASK 2 



Mask 3. 
The same inner boundaries as Mask 2 but the area specified for 
sidelobe reduction is extended away from the central peak. 

RANGE (m) 

The three masks are used by the genetic algorithm to search for the parameters of 
the pulse diverse waveform that will give the minimum peak sidelobe level in that 
area. It should be noted that areas outside the mask are deemed not important and 
thus will not be specifically minimized. 

Design of genetic algorithm for FSK PSK waveforms. 

Clzronzo.sonze designfi~r a FSK PSK waveform 

The practical FSK PSK pulse diverse waveform above has twelve variables: six 
frequencies and six phase variables. The chromosome comprises 12 genes. The 
chromosome design is shown at the top of   FIG.^^). 
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In accordance with the radar and pulse parameters outlined at Table 3, the 
frequency for each chip was chosen Erom the range 20 - 200 MHz and fixed for the 
duration of the chip. The phase in each chip is fixed and is an increment of 
2.81 25" (1 28 steps in 360"). 

FSK PSK waveform objective f~inction design. 

The Objective Function is described in detail in Fr~.298. The stages in the 
Objective Function are: 

(U) Create a pulse diverse waveform from chromosome. 
( h )  Calculate ambiguity function of waveform. 
( C )  Apply mask to generate masked ambiguity function. 
(4 Calculate the peak of masked ambiguity function. 

( e )  Record this level for chromosome fitness assignment. 

Chromosomes that return a lower value of peak masked ambiguity function are 
desired. The frequency and phase values within the chromosomes will be those 
that will generate a FSK PSK waveform that have the minimum peak sidelobe 
within the masked area. The MATLAB code for the objective function is shown 
at Annex B. 

The genetic algorithm will attempt to minimize the objective of minimum sidelobe 
lejel within the mask area only. The areas outside the mask are not of interest. 
Instead of using the peak output of the masked ambiguity function as the objective 
to minimize. a number of other objectives could have been used. These are 
described below. 

(a) Minimizing the ratio of masked ambiguity function to the main peak 
of the ambiguity function. 

( h )  In addition to the masked output, the area outside the mask could 
have been examined with a view to also reducing and large peaks 
that may be undesirable. 

(C) The volume of the masked output may have been minimized instead 
of the peak level. 

All the above options are possible. Based on previous experimentation. each 
objective would probably have yielded a different final waveform. All of the 
above objectives could have been incorporated within the objective function with 
appropriate weightings attached to each objective. However, this approach would 
have needed time to design and the tuning of the individual weightings is normally 
carried on a trial and error basis. Alternatively a multi-objective genetic algorithm 
could have been designed and compared to a single objective genetic algorithm 
tlseig in  this project. Multi-objective genetic algorithms are not addressed in this 
article and this may be an area for further research. 



Selection of genetic algorithm parameters 

The settings used by the genetic algorithm were used within the Genetic 
Algorithm Toolbox are shown in Table 4. 

T A B I ~ E . ~ ~  - FSK PSK waveform generic ulgorithm parllmeters 
p p  

Composite Amhiguit?; Function of a FSK PSK wave$)rm 

Parameter 

Population 

Number of Generations 

Fitness Assignment 

Selection Method 

Crossover rate 

Kecomb~ning Method 

Mutation rate 

Generat~on Gap 

The composite ambiguity function of the FSK PSK pulse diverse waveform is 
compared to that of the Linear FM PSK pulse diverse waveform. It was decided 
that only Mask 2 (central peak bias) would be used for this comparison. The 
objective function that incorporates the composite ambiguity function is 
essentially similar to that described in  FIG.^^. The differences are that instead of 
one signal. the composite ambiguity function comprises six individual PSK FSK 
pulses. Therefore, the chromosome comprises seventy-two genes as opposed to 
twelve. The steps of the objective function are shown below and summarized in 
 FIG.^^). 

(a) Produce six individual PSK FSK waveforms from the chromosome 
produced by the genetic algorithm. 

Value 

100 

100 

Ranlung 

Stochastic Universal Sampling 

0.85 

Multi-point Crossover at each gene 

5 'X. 

0.9 

( h )  Compute the output from the matched filter (MF) of each of these 
individual waveforms. 

(C) Sum the individual output of matched filters to produce the 
composite ambiguity function. 

(4 Apply the mask (Mask 2). 
( e )  Record the peak sidelobe level within this mask. 
(f) Record this value for chromosome fitness assignment within the 

genetic algorithm. 

The parameters used by the composite ambiguity genetic algorithm are the same 
as those outlined in Table 4. 



Generic algorithn? esecztrion 

Three separate genetic algorithms were run each using a different mask. Each 
genetic algorithm was run ten times. as it is known from experience that the best 
solution may not be foiind on the first run. The total time per genetic algorithm is 
in the region of 20 hours making a total time of 60 hours. 

The composite ambiguity function genetic algorithm with Mask 2 was run eight 
times. This took 18 hours to complete. 

Design of a genetic algorithm for a Linear FM PSK waveform 

The design of this genetic algorithm is almost the same as for the PSK FSK pulse 
described above. The only difference is that now there is a start and stop 
frequency in each chip to allow a linear frequency sweep. 

Chronzo.sonze design of Linear FM PSK wavrfornz 

The Linear FM PSK waveform described at F1ti.24 has eighteen variables: 6 start 
frequencies. 6 phases and 6 stop frequencies. The chromosome comprises 18 
genes. The chromosome design is shown at the top of (Flcr.31). The start and stop 
frequency in each chip was chosen from the range 20 - 200 MHz. The phase was 
chosen as an increment of 2.8125" (128 steps in 360"). 
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CHROMOSOME 
GENERATEDBY GA 

1 C ~ M P U T E  kI.AXIkIUbIV.411UEOF MASKEDOUTPUT. THIS IS THE 1 
I VALUETHAT NEEDS TO BE kIINIk1IZEDBY THE GA. 

FIG.3 1 - OBJEC'I'IVE FIINCTION J7OR LINEAI< FM PSK WJIVEFORM 

Objectionf~~nction design. 

The stages in the objective function were: 
(a) From chromosome obtain start and stop frequency and phase of each 

chip. 

(h) Create Linear FM PSK diverse waveform. 
(c) Calculate ambiguity function of waveform. 
(cl) Apply mask to generate masked ambiguity function. 
( e )  Record the peak of masked ambiguity function. 

V) Record this level for chromosome fitness assignment. 

Chromosomes that return a lower value of peak masked ambiguity function are 
desired. 

Design of composite ambiguity function for Linear FM PSK Waveform 

The design of the composite ambiguity function for the Linear FM PSK waveform 
is similar to the FSK PSK case except for the different chromosome design 
highlighted in  FIG.^ 1. 

Genetic Algorithm execution 

Execution times for the Linear FM PSK waveform genetic algorithm and the 
composite ambiguity function are the same as those detailed previously. 



Comparison of waveforms ambiguity functions 

Three masks were defined and FSK PSK waveforms and Linear PSK waveforms 
were designed using a genetic algorithm to minimize the peak in the masked floor 
of the resulting ambiguity function. 

Tht: results are shown in Tables 5,6 and 7. The frequencies and phases that make 
up the pulse diverse waveforms are shown at Annex A. 

TAUI.E.S - Cornpuri.ron of wuveforv~?s using Mask l 

PARAMETER 

Peak mask floor 

Central peak of Ambiuity Funct~on 

R a t ~ o  of peak masked floor to central peak (dB) 

-6dH width of range at zero Doppler (m)  

-6db width of velocrty at Lero range (rnls) 

PARAMETER 

Peak mask Iloor 

Central peak of Arnbiuity Function 

Ratio of peak masked floor to central peak (dB) 

-6dB width of range at zero Doppler (m) 

-6db width of vclocity at zero range (mls) 

Comparison of peaked ma.skedjZfloor valttes 

PARAMETER 

Peak mask floor 

Central peak of Ambiuity Function 

Ratio of  peak masked floor to central p a k  (dB) 

-6dR width of range at zero Doppler (m) 

-6db width of velocity at zero range (rnls) 

The peak masked floor levels achieved by the two waveforms for each mask can 
be compared. The summary of the comparison is detailed below. 

DIFFERENCE 

0.49 

- 2.8 

0.56 

10 

0 

WAVEFORM TYPE 

FSK PSK 

12.5 

149.44 

- 21.5 

18 

0.2 

DIFFERENCE 

2.98 

- 1.6 

1.7 

6 

0 

WAVEFORM TYPE 

LINEAR PSK 

12.01 

152.24 

- 22.06 

8 

0.2 

FSK PSK 

18.55 

150.6 

-18.1 

10 

0.2 

DIFFERENCE 

- 0.3 1 

l .25 

- 0.2 

6 

0 

WAVEFORM TYPE 

LINEAR FM PSK 

15.57 

152.2 

- 19.8 

4 

0.2 

FSK PSK 

14.99 

152.81 

- 20.1 

14 

0.2 

LINEAR FM PSK 

15.3 

151.56 

- 19.9 

X 

0.2 



(a) The peak masked floor of Mask l(Tab1e 5) is similar for both types 
of waveform. 

( h )  The peak masked floor of Mask 2 (Table 6) is smaller when using 
linear FM PSIS waveform than the value achieved by the FSK PSK 
waveform. 

(c) The peak masked floor of Mask 3 (Table 7) is similar for both types 
of waveform. 

These results suggest that the only significant differences in peaked mask floor 
levels are seen using Mask 2. However, the value of the masked floor peak is 
more usefully expressed as a ratio of the main peak of the ambiguity function. 
The reason for this is discussed below. 

Use c!f'maskedJloor to main peak ratio 

The values of the peak levels in Table 6 show that the peak valued varied between 
139.33 to 152.81. These values should be the same. given that all the signals 
contain the same number of samples. However, they do not contain the same 
amount of energy due to the effect o7f producing a sampled signal within 
MATLAB. The power in a signal is Y2 A-. This is proportional to the amount of 
energy (E) as in this case time is constant. Recalling the groperties of the 
ambiguity function, the peak of the ambiguity function is 2E-. Waveforms of 
certa~n frequencies within the range 20-200MHz will not sample correctly at the 
sample frequency of SOOMHz to produce signals of similar amplitudes. 

This is best explained by plotting the two signals that generated the ambiguity 
functions with the minimum peak of 149.34 (FSK PSK pulse Table 5) and a 
maximum peak of 152.8 1 .(FSK PSK pulse Table 7). These are plotted in (FIGS 32 
and 33) respectively. Due to the restrictions using sampled signals the amplitude 
in some parts of the signal  FIG.^^ are smaller than the amplitudes shown in Frci.33. 
To overcome this in practice. one could exclude the frequencies in the range 20- 
200MHz that when sampled at 500MHz give lower amplitudes similar to those 
seen in FE.32. Alternatively. increasing the sampling frequency could minimize 
this effect. 
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FSK PSK PlJLSE MASK 3 - BEST SIGNAL FOUND B\.' GA 

I I 

1 1 ,  

I ( l  I I l l1  1 '  
' I !  
, ] I  

, I  

j I 

; i i 

Because of the fluctuations in amplitude of the main peak, i t  would be better to 
compare the ratio of the masked floor with respect to the main peak. 



Maskedjloor level comparison 

For each individual mask, there is very little difference in the value of the masked 
floor ratio achieved by each waveform. A comparison can be made of all three 
separate masked floor levels ratios achieved in all three masks by both waveforms. 
The mean masked floor to central peak ratio on all three masks with both 
waveforms is -20.24dB and the standard deviation is 1.4dB. This implies that for 
both waveforms the masked floor to central peak ratio over all three masks was 
similar. 

It appears that. when comparing the ratio of peak masked floor to central peak of 
all three masks on both waveforms. there is little benefit in using a Linear FM 
PSK pulse over a FSK PSK pulse. A practical design of a Linear FM PSK system 
would be more complex than the FSK PSK system. Based on the results from this 
project, the additional cost of designing a complex Linear FM PSK system will 
outweigh the benefits that i t  gives. 

More chips within the pulse may yield different results but this is beyond the 
scope of this project. This is an area of further research. 

T o  illustrate the effect of the masked area and the clearance achieved by the 
genetic algorithm, the results of the waveforms ambiguity functions using mask 3 
are shown in ( F 1 ~ s . 3 4 ~  8L 343). The contours are set at 3. 10, 15, and 20 dB down 
from the main peak. The level of the masked floor is 20dB down from the main 
peak. There are no contours shown below the masked floor level. The mask 
shape is also shown. 



PSK FSK PULSE I L I A S K ~  - 3,10,15, ( MASK FLOOR) DB CONTOURS 

RANGE (m) -) 



LINEAR FM PSK PULSE MASK 3 - 3,10,15, ( MASK FLOOR) DB CONTOURS 

RANGE (m) -) 
F1G.3413 - I.INE,\K FM I'SK W,\VI:I O R M  

Conzlmrisorz of' Doppler arzcl range di.scrinzination.s 

The objective function in the genetic algorithm was desi8ned such that it only 
minimized the peak floor level. It did not consider the discrimination properties of 
the two types of pulse diverse waveforms. However. there is an observation that is 
worth noting. For each mask. the -6dB width of the central peak in range and 
Doppler discrimination was recorded and the following is noted: 

(a) The velocity discrimination at zero range of all masks for both types 
of waveforms are the same at 0.2m/s. ,.Zn example of the velocity 
discrimination properties for the FSK PSK waveforms for mask 2 is 
shown in (Fr~i.35). The very narrow central spike indicates good 
discrimination properties. 



PSK FSK PULSE ILIASK 2 - ZERO DELAY CUT 

( h )  When comparing the performance of range discrimination at zero 
velocity. the Linear FM PSK p ~ ~ l s e  is better in all masks. The range 
discrimination properties of the FSK PSK waveform and the Linear 
FM PSK waveforms for mask 1 are shown in (FIGS 36 & 37) 
respectively. It  can be seen that the width of the main peak is smaller 
for the Linear FM PSK pulse than the FSK PSK pulse. Similar 
results can be shown for masks 2 and 3. 



LINEAR FM PSK PULSE MASK 1 ZERO-DOPPLER CUT 
AR.IPLITUDE 

150 

100 

50 
----------- ----------v 

0 
- 100 - 50 0 50 100 

PSK FSK PULSE MASK 1 - ZERO-DOPPLER CUT 
AMPLITUDE 

A 
150 - 

- 
- 

RANGE (hi )  - 
FIc; .?~ - LINEAR FM PSK W A V E ~ O K R . ~  RANI;I: D I S C K I M I N A ~ ~ I O N  (MASK 1 I 

- 
l00 - 

- 
- 

l 
l 
l 

50 - 
- 
- 

- 
0 

- 6dh IANE - - - - - - - - - - - - - - - - - - 

4 ' q 
.A ht.xi\~Ii :,h 

I 1  I l I 1 l 1 1 1 1 1 1 1 1 1 1 1 1 1  - 100 - 50 0 50 100 



Composite ambiguity function comparison 

The performance of the two waveforms using the composite ambiguity function 
was compared using mask 2 only. The results are shown in Table 8. The 
frequencies and phases used to make these waveforms are shown in Annex A. 

The results are shown in Table 8 below 

71'.4n~~:.X - Cornposire A~nhiguir\. Function resulrs Mask 2 

The composite ambiguity function is the magnitude of the coherent sum of the 
output at the matched filter of six individual signals. The central peak of the 
composite ambiguity function is approximately six times that of the individual 
ambiguity functions seen in Tables 5,6 and 7. 

PARAMETER 

Peak mask floor 

Central peak of Amb~uity Function 

Ratio of peak masked tloor to central peak (dB) 

-6ciB width of range at Lero Doppler (m) 

-6db width of velocity at zi'rtr range ( d s j  

Conzyarison ojnzu.rkedf1oor to peak ratio 

The masked floor to peak ratio of the two waveforms is almost identical at -24.3 
dB and -24.4dB. There does not seem to be any advantage in using the more 
complex linear FM PSK waveform over the simpler FSK PSK waveform. This 
non-improvement effect was witnessed with the single ambiguity function. The 
contour plots of the two composite ambiguity functions are shown in (F~i .38)  
(FSK PSK ) and (Frc.39) (Linear FM PSK). 

DIFFERENCE 

3.1 

38.3 

0 . 1  

2.5 

0 

WAVEFORM TYPE 

FSK PSK 

55.6 

915.3 

-24.3 

3 

0.2 

LINEAR FM PSK 

52.5 

877 

-24.4 

0.5 

0.2 
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FSK PSK PUI,SE CAF - RIIASK 2 3, 10, 1 5 ,  ( kIASI( FI,OOR) DR CONTOURS 



LINEAR FM PSK PULSE CAF - MASK 2 3 ,10 ,15,  (MASK FLOOR) DB CONTOURS 

I-lG 39 - [.INEAR FM PSK PlJLSE COMPOSIF hMHIGUI1Y FUNC'TION CON71'OIJK PLOT 

Conzpurison c~f'velocih~ und range discrimination 

The velocity discrimination of both waveforms is at -6dB is 0.2mls. This is 
similar to the results seen in Table 5 for the single ambiguity case. The range 
discrimination for the Linear FM PSK pulse at -6dB is 0.5m. This is superior to 
the FSK PSK pulse at 3m. The range discrimination for both waveforms' 
composite ambiguity functions are shown in (FIGS 40 and 41). 



FSK PSK PUI,SE CAF (NIASK 2) ZERO-DOPPLER CUT 

I T l c . l 0  - t:SK PSK prlr.sl: Cohl l 'osrn:  Ahfnlc;rll iv kr ~ ~ c - n o ~  RANGE DISCRIMIN;\ TION 

LINEAR FM PSK PULSE CAF - MASK 2 ZERO-DOPPLER CUT 



Comparison ofsingle arnhig~iit?.$inction and conzpo.site a m h i g u i ~  f~~nctions 

The results of Tables 6 and 8 can be displayed together (Table 9) to determine the 
effect of using a composite ambiguity function over a single ambiguity function. 

T.4131~E.9 - Cornpari.ron of compo.rife and .single r~rnh ig~ i i~~ , f inc t io t~ , \  

The following conclusions can be drawn from Table 9: 

Rdtio 01  peak ma\ked floor to 
central pedk (dB)  

-6dI3 wldth ot range at zero Doppler 
( m )  

-6dB mldth 01 cclocity at zero range 
(m/!) 

( U )  The FSK PSK waveforms' composite ambiguity function yields a 
better masked floor to central peak ratio than the single FSK PSK 
ambiguity function. This result for practical waveform design 
reinforces the results from previous theoretical studies." 

( h )  The Linear FM PSIS waveforms' composite ambiguity function 
yields a better masked floor to central peak ratio than the single 
Linear FM PSK ambiguity function. In the absence of any 
theoretical research on Linear FM PSK pulses, this result follows the 
trend of the FSK PSK pulse. 

(C) The range discrimination of the composite ambipity function of 
both types of waveform is better than the single amb~guity function. 

A~IBIGUITY F~JNCTION 

(d) The velocity discrimination is the same for all waveforms and masks 
at 0.2rnIs. 

FSK PSK 

-18 1 

10 

0 2 

COMPOSITE AMBIGUITY 
FUNCTION 

The practicalities of designing a radar that can incorporate the composite 
ambiguity function have not been addressed in this article however. the 
applicability of this method for fast moving targets has been investigated in 
previous research. The conclusion of thls research proposes a practical 
implementation. 

LINEAR 
FM PSK 

-19 X 

1 

0 2 

FSK PSK 

-24 1 

3 

0 2 

Comparison with 6-hit bi-phase codes 

LINEAR 
FM PSK 

-24 4 

0 5 

0 2 

The ratio of peak masked floor to central peak of this six-chip waveform can be 
compared with the performance of m optimum 6-bit bi-phase code. For the 6-bit 
bi-phase code, the best ratio is -9.54 dB. The ratio achieved by the FSK PSK and 
Linear FM PSK waveforms (Table 9) are much better than this. 

Effect of noise in a practical system 

Introduction 

During the generation of the ambiguity function, it has been assumed that both 
transmt and receive signals have been noise free. In the real world, the transmit 
and receive signals would be affected by noise. This noise may be generated by: 

Initial frequency and phase generation errors. 
Measurement errors at the output of the matched filter. 



Internal system noise. 
External noise such as frequency interference. 
Target generated noise. 
Effect of propagation on the different frequencies used in the 
waveforms. 

The exact nature and effect of all this noise could be characterized by developing a 
noise model or collecting real data from real systems. Both of these are not in the 
scope of this article. 

However, if a noise model is developed it is assumed that the noise affects 
different values of phase and frequency differently. It is possible to design a 
genetic algorithm to search for frequency and phase values of a waveform that are 
robust to the effect noise whilst still using the objective of minimizing the peak to 
masked floor ratio. 

Di.scussion ofthe eflict of noise 

It is hypothesized that a different sequence of frequency and phase values that $ve 
similar ambiguity functions may be affected differently by the same type of nolse. 
This implies that for pulse diverse waveforms there are sequences of phase and 
frequency that are more robust to noise. This hypothesis is formulated by 
considering the case of the 6-bit bi-phase codes that were discovered during the 
investigations earlier. There are fourteen 6-bit bi-phase codes that when 
autocorrelated give a minimum peak sidelobe level of 2 and the same RMS level 
in the sidelobes. These fourteen codes are shown in table 10. 

.1'~13r.E. 10 - 6-hit hi-phu.ve  code.^ with rke .ran?? autocorrel~zrion,filnction properrie.~ 

In this basic model, noise effects only one bit at a time. The effect of noise is to 
reverse the sign of the bit. The effect of noise can be calculated using the 
following algorithm. The results are summarized in Table l l .  

( a )  Start at code I .  
( h )  First bit is flipped to simulate noise. The autocorrelation function of 

this noisy pulse is calculated and the minimum peak sidelobe level is 
recorded. 



(C) The difference between the original minimum peak sidelobe level (2) 
and the new noisy signal's sidelobe level is recorded. 

(c!) The first bit is then returned to its original state and the noise is 
applied to the second bit, again reversing its value. This process is 
repeated for all the bits in the code. 

(ii) The differences calculated at (c) are summed and recorded. The 
lower the number, the more robust this code is to noise. 

( e )  Repeat steps (a) to (e) on remaining codes in turn. 

TABLE l l - cf?rr qf noise on rr~ch hi! of n 6-hit cod? 

It can be seen from Table 11  that although all the 6-bit codes yield the same 
minimum peak sidelobe level of 2 and the same RMS value in the sidelobes, they 
are affected by noise in different extents. This experiment suggests that 
highlighted codes 4. 7, 11 and 14 are more tolerant to noise than the others. Based 
on these results, it is possible to hypothesise that there may be pulse diverse 
waveforms that are more robust to the effects of noise. If the noise is 
characterized and used by the genetic algorithm, it should be able to find robust 
solutions. 

Further research into effects ($noise 

Measure of 
tolerenace 

(low is more 
Lolerent) 
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6 

7 

6 

5 

7 

7 

Future research in this area should investigate the effects of practical noise on the 
two types of waveform to determine which offers the more robust solution. A 
noise model could be developed or alternatively. the Prototype Generic Radar 
Model at Qinqiiq (Formerly DERA) could be utilized. The Prototype Generic 
Radar Model,-- that includes a noise model, can be used to characterize the 
performance of a waveform in different operating environments. The model is 
written in MATLAB and therefore the FSK PSK and Linear FM PSK waveforms 
designed in this project could be tested.13 
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Conclusions 

Bi-phase code investigation 

A genetic algorithm found the best 25-bit bi-phase codes and its 
search performance was much faster than the exhaustive search 
method. 

A genetic algorithm found two new 64-bit bi-phase codes that offer 
better performance than codes found during previous research. 

Generalized BARKER Sequence investigation 

A genetic algorithm has been designed to find 13-bit Generalised BARKER 
Sequences. The new sequences found were different to those found in previous 
research. 

FSK PSK ant1 Linear FM wat'efi~rnz coinpari,son 

Practical FSK PSK and Linear FM PSK waveforms can be generated in 
MATLAB. The ambiguity function and composite ambiguity function can be 
calculated. The sidelobe level in specified areas can be determined and the range 
and Doppler discrimination properties can be characterized. 

A genetic algorithm can be designed to search for the FSK PSK and Linear FM 
PSK waveform parameters that generate a specified ambiguity function. Three 
predefined areas of the waveforms ambiguity function were minimized. The 
results show that in terms of masked area minimization there is no significant 
advantage gained by using the Linear FM PSK waveform over the FSK PSK 
waveform. 

The Doppler and range discrimination capabilities of the FSK PSK waveform and 
the FSK PSK waveform were compared. In all cases the Linear FM PSK 
waveform offered better range and Doppler discrimination over the FSK PSK 
waveform. This feature is the only advantage of using the Linear FM PSK 
waveform. 

The Doppler and range discrimination of the Linear FM PSK composite ambiguity 
function was superior to that of the FSK PSK composite ambiguity function. 

The use of the composite ambiguity function improves the clutter rejection 
capabilities of the waveform sets when compared to the single ambiguity function. 

Areas offiirther research 

Using genetic algorithms, the search for optimum bi-phase codes could be 
extended to lengths greater than 64 bits. 

The search for longer Generalized BARKER Sequences could be performed by a 
genetic algorithm based on the design described in the article. Longer sequences 
of length greater than 45 bits may be found using genetic algorithms. 

The implementation of the genetic algorithm in 'C' instead of MATLAB would 
significantly reduce the algorithm run time. The investigation of longer and more 
complex waveforms will require a 'C' based algorithm. 

The effect of significantly altering the parameters of the genetic algorithms used in 
this research was not examined. For example, different crossover and selection 
operators may have produced better results. The issue of using multi-objective 
genetic algorithms could be examined to determine its merits. 



The Linear FM PSK pulse may offer improved clutter rejection capability in areas 
of the ambiguity function if a longer waveform and more chips were used in the 
waveform design. Longer waveforms could be designed in further research. 

The waveforms designed could be incorporated into a radar model that could 
determine their usefulness in a simulated radar environment. If the effect of noise 
is characterized then new robust waveforms could be designed. 
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Annex A 

The frequencies and phases of the pulse diverse waveforms for each mask are 
shown below. 

Frequency ( Hz ) 

Phase (Degrees) 

Frequcnc y (Ht ) 

Phase (Degrees) 

l69647 100 

174.375 

CHIP 4 

1654 1 1 X 0 0  

278.4375 

22 1 17650 

75.9375 

CHIP 5 

182352900 

129.375 

56000000 

56.25 

CHIP 6 

20000000 

84.375 



TABLE. 13 - Mnsk 2-,freq~(ency and phase vliluec 

Frequency (HI) 

PI~ase (Degrees) 

Frequency (Hr ) 

Phase (Degrees ) 

Frequency (Hz) 

Phase (Degrees) 

Frequenc y (Hz) 

Phase (Degrees) 

190823500 

247.5 

CHIP 4 

1392941 00 

309.375 

170352900 

75.9375 

CHIP 4 

156941200 

281.25 

48941180 

21 3.75 

CHIP 5 

181 6471 00 

151.875 

26352940 

78.75 

CHIP 6 

85647060 

84.375 

88470590 

39.375 

CHIP 5 

149176500 

326.25 

132235300 

78.75 

CHIP 6 

43294120 

151.875 



r4BI E 15 - Murk 2-frequency undphnre v u l u e ~  for Llneur FM PSK CAF 

Stop Frequency ( H L )  1 166823500 1 109647 100 1 122352900 

SlGNaI, l 

SIGNAL 1 

CHIP 1 
466001 10 

45 
77 176470 

Start Frequency (Hz) 
Phase (Degrees) 
Stop Frequency (Hi.) 

Start Frequency (Hz) 
Phase (Dezreesi 

1 CHIP 1 I CHIP2 1 CHIP3 
/Start Frequency (HL) 1 104000000 1 92000000 1 56000000 

CHIP 2 
193647 100 

98.4375 
193647 100 

SIGNAI, 2 

SIC:NAI, 2 

CHIP 3 
91 294120 
115.3 125 

123764700 
CHIP 4 
128000000 

67.5 

Start Frequency (HI) 
Phase (Degrees) 
Stop Frequency (Hz) 

CHIP 3 
184470600 

300.9375 
l99294100 
CHIP 6 

CHIP I 
49647060 
154.6875 

149176500 
CHIP 4 

Starr Frequency (Hz) 
Phase (Degrees) 
Stop Frequency (Hz) 

SI(:N.iL 3 

I CHIP 1 I CHIP2 1 CHIP3 
(Start Frequency (Hz) 1 1244705001 3552C)4101 41176470 

CHIP 5 
196470600 

95.625 

CHIP 2 
16541 1800 

337.5 
159764700 
CHIP 5 

SIGNM, 3 

CHIP 6 
15694 1200 

331.875 

29 176470 
149 0625 

126588200 

Phase (Degees)  

1 1 I CHIP4 1 CHIP 5 1  CHIP^ 1 

199.6875 1 87.1 875 1 194.0625 

Start Frequency (HT) 
Phase (Degrees) 
S t o ~  Freouencv ( H r )  

SIGNAL 4 

l S tart Frequency (Hz) 764705901 1~2352900) 16341 1 800 

150588200 
53 4375 

1.1000000 

Stoo Freuuencv (Hz)  1 176705900 1 181 647 100 1 104705900 

I SI(:NAI, 4 LPhase (Degrees) 151.875 ( 357.18751 39.375 1 

60941 180 
255.9375 

16Xc)4 1200 

17 1058800 
208.0125 
221 17650 

Phase (Degrees) 

l I Stop Frequency (H7 ) 1 I62588200 ( 164705900 ( 152000000 I 

123.75) 177 1x751 118.125 

157(67 100 
146.25 

46823530 

Stop Frequency (Hz , I 1541 17600) 101 1765001 185882400 

161 882400 
149.0625 

38352940 

SICNAI, 6 

S tart Frequency (Hz) 
Phase (Degrees) 
S too Freauencv (Hz) 

Start Frequency (Hz) 
Phase (Degrees) 
Stop Frequency (H/) 

CHIP 1 CHIP 2 CHIP 3 
166823500 

241.875 
116705900 
CHIP 4 
25647060 
345.9375 

149882400 

46117650 
300.9375 

135764700 
CHIP 5 
158352900 

230.625 
42588240 

46823530 
64.6875 

29882350 
CHIP 6 
20000000 
255 9375 
24235290 



T A B L ~  16 - Mllrk 2- freyuenc~ r t n d p h ~ l ~ e  vnluer for FSK PSK CAF 

Signal I 

Signal 1 

CHIP 1 
42840770 

(2.6875 
CHIP 4 
56705880 
216.5625 

Frequency (Hz) 
Phase (Decrees) 

Frequency (HL) 
Phase (Ilecrees) 

Signal 2 

Sig i~al2  

CHIP 1 
185882400 

81.5625 
CHIP 4 
188705900 

149.0625 

Frequency (HL ) - 
Phase (Decrees) 

Start Frequency (Hz) ' 

Phase (Decrees) 

Slgnal 3 

Signal 3 

CHIP 2 
49647060 
137.8125 

CHIP 5 
148470600 

270 

Frequency ( H L )  
Phase (Decrees) 

Frequency (Hz) 
Phase (Degrees) 

SIGNAL 4 

SIGNAL 4 

CHIP 3 
96941 180 

270 

CHIP 6 
60941 180 

146 25 

CHIP 2 
34823530 

70.3125 
CHIP 5 
955294 10 

188.4375 

CHIP 3 
18941 1 800 

l23 7 5  
CHIP 6 
3 37882400. 

315- 

CHIP 1 
178823500 

180 
CHIP 4 
161882400 

315 

CHIP 1 
72235290 

106.875 
CHIP 4 

195058800 
75.9375 

Frequencv (Hx) 
Phase (Dezrees) 

Frequency (Hz) 
Phase (Decrees) 

'IGNAL 

SIGNAL 5 

CHIP 3 
1654 1 1800 

101.25 
CHIP 6 
78588240 
255.9375. 

CHIP 2 
397611710 
1603125 

CHIP 5 
88470590 

185.625 

CHIP 1 
76470590 

247.5 
CHIP 4 
186588200 

331.875 

Frequency (Hz! 
Phase ( r ) e r e f i )  

Frequencv (Hz) 
Phase (Decrees) 

SIGNAL 6 

SI(:N.AL 6 

CHIP 2 
29 1764701 53 

163.125 
CHIP 5 
877647 l0  

270 

CHIP 1 

X9882350 

244.6875 
CHIP 4 
90588240 

3 60 

Frequency (Hz) . 

Phase (Decrees) 

Frequency (Hz) 
Phase (Decrees) 

 CHIP^ - 

90588240 
104.0625 

CHIP 6 
154823500 

208.125 

CHIP 2 
122352900 

171.5625 
CHIP 5 
82823530 

81.5625 

CHIP 3 
34823530 
132.1875 

CHIP 6 
53882350. 
143.4375 

CHIP 2 
39058820 

253.125 
CHIP S 
145647 100 

8 1.5625 

CHIP 3 
157647 l00 

106.875, 
CHIP6 . 

161882400- 
247.5 
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