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ABSTRACT

Modern military operations have been carried out in the littoral environment. The performance of the
radar pulse in this arena can be degraded by the effects of clutter and interference. It is possible to
design a radar wavetorm that minimizes the cffect of this unwanted interference by careful
specification of the waveforms’ ambiguity function. Recent advances in waveform design have used
genetic algorithms to find near optimum waveform parameters that produce a specified ambiguity
tunction. This paper proposes a practical FSK PSK waveform that is capable of reducing the effects of
interference and clutter in specified areas of range and Doppler in the ambiguity function. A new linear
M PSK waveform is proposed and its performance is compared with the FSK PSK waveform. The
composite ambiguity function is used to compare a set of FSK PSK waveforms with a set of linear FM
PSK waveforms. The results show that whilst the Linear FM PSK waveform gives better range and
Doppler discrimination properties, it does not offer any appreciable performance when minimizing
specified arecas within the ambiguity function. During the initial rescarch of this project, a genetic
algorithm was designed to find new 64-bit bi-phase codes. Four codes were found that offer better
performance than codes discovered in previous research.

INTRODUCTION
Background

Military operations over the last few years have been carried out predominantly in
littoral areas. Here, the radar operating environment is extremely complex and
difficult to characterize in terms of clutter and interference. Although it has been
possible to model the environment, it is often not possible to modify in-service
sensors to validate this model and subsequently improve radar performance.
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Software based sensors are being developed that allow almost real time
modifications of sensor parameters such as waveform generation. If the nature of
clutter and interference are known, the radar waveform could be designed such
that the effect of clutter and interference is minimized. The ambiguity function of
a waveform can characterize its performance in clutter but there is no
mathematical route from a desired ambiguity function to the waveforms
parameters. Traditionally, radar wavetorms have been designed by either trial and
error or using past experience. As the waveforms become more complex, it is
impractical to search exhaustively through all possible permutations to discover
which waveform gives the best performance. A genetic algorithm is a stochastic
search algorithm that can find optimized solutions in a large search space in a
fraction of the time taken to search exhaustively the same space.

Summary of recent research

Recent research has shown that radar waveforms can be designed, using genetic
algorithms, such that they reduce the effects of clutter whilst still maintaining good
Doppler and range discrimination properties. A waveform that gives the good
range and Doppler discrimination is the FSK PSK waveform. A FSK PSK
wavetorm had been designed such that sidelobes within a specified area of range
and Doppler of the waveforms ambiguity function have been reduced. This
reduction has the consequence of minimizing the effect interference or clutter
within that specified area. The design of this waveform was completed using a
genetic algorithm.

Previous research also showed that using multiple waveform sets, instead of single
waveforms, the range and Doppler discrimination of radar could be enhanced by
utilizing the composite ambiguity function. Here, the composite ambiguity
function of a set of FSK PSK waveforms was calculated and it was shown that the
sidelobes within a specified area of range and Doppler were reduced compared to
the single waveform ambiguity function. It was also shown that the range and
Doppler discrimination was improved. The FSK PSK pulses designed did not
have realistic or practical values of phase and frequency such that these
wavetorms could be used in radar systems.

Project aim

This project investigates the design of a practical FSK PSK waveform using
genetic algorithms that generates an ambiguity function that minimizes the effect
of clutter within a specified range and Doppler region. A new waveform, the
Linear FM PSK waveform is introduced in this research. This waveform is a
variation of the FSK PSK waveform. Its pertormance is compared with the FSK
PSK waveform to determine which offers the best minimisation within specified
areas or range and Doppler.

In addition, this project investigates the use of genetic algorithms to design
practical FSK PSK and Linear FM PSK waveform sets. The performance of the
composite ambiguity function of these waveform sets can be compared to the
single waveforms’ ambiguity function mentioned above.

During the initial stage of this projects research, the performance of a genetic
algorithm searching for optimum 25-bit bi-phase codes was compared to the
performance of an exhaustive search. A genetic algorithm was designed to search
for an optimum 64-bit bi-phase code. A genetic algorithm was also designed to
search for a 13-bit generalized BARKER sequence.

J.Nav.Eng 41(3). 2004



462

Summary of results

The results show that there is no appreciable performance advantage of the new
practical linear FM PSK waveform over the practical FSK PSK waveform when
comparing the minimization of sidelobes in specified areas within the ambiguity
function. The performance of the composite ambiguity function of both
waveforms sets was similar.

The composite ambiguity function of the waveform sets allowed better sidelobe
minimization when compared to the ambiguity function of the single waveform.
The Linear FM waveform gave consistently better range and Doppler
discrimination when compared with the FSK PSK waveform.

The bi-phase code investigation discovered two new 64-bit bi-phase codes that
offered a better performance than codes found using a different search method in
previous research. A new 13-bit generalised BARKER sequence was found.

LITERATURE SEARCH
Introduction

There are a number of pulse types available to the radar designer when designing a
radar system. These pulses range from the simple bi-phase radar code to the more
complex and novel FSK PSK pulse diverse waveforms which vary frequency and
phase in each chip within the pulse. In order to explore all of these options with
some detail, the literature search was divided into a number of sections.

e Bi-phase codes with minimum sidelobe levels.
¢ Polyphase codes with low autocorrelation sidelobes.
o Pulse diverse waveforms.

e Radar codes and the use of genetic algorithms to find codes with
specified ambiguity functions.

Bi-phase codes with minimum sidelobe levels

In 1953, BARKER' discovered a set of bi-phase codes that were deemed perfect
such that the autocorrelation of these codes would yield sidelobes that fluctuated
between 1 and 0. There are nine BARKER codes” in total; the longest is a 13 bit
code [t has been calculated that BARKER codes do not exist up to at least 6,084
bits." For lengths greater than 13 bits, bi-phase codes whose autocorrelation
produces the minimum peak sidelobes for a given length are deemed the best.

COHEN’ details bi-phase codes up to a length of 48 bits which, when
autocorrelated, give the minimum peak sidelobe levels. For example, Cohen
discovered that there exists two 25-bit bi-phase codes that when autocorrelated,
have a minimum peak sidelobe level of 2. COHEN did not discover a pattern to his
results and thus the search process was extremely lengthy. The search up to 48
bits was carried out using a tree structured search algorithm. This greatly reduced
the time to search compared to an exhaustive search method of taking each
possible code and computing the autocorrelation. No reference to exhaustive
searches beyond 48 bits has been found.

In 1993, a Simulated Annealing Search Algorithm was developed to search for
long bi- phase codes.” This reference outhnes two resulting 64-bit codes which
when autocorrelated give low sidelobes and have good cross correlation
properties. Work carried out during this project will show that better alternative
64-bit codes have been found using a genetic algorithm. Although this previous
research was completed in 1993 and computing power has been increased since,
no reference to follow up work has been found.
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Polyphase codes producing Generalized BARKER Sequences

In the early stages of this project, it was intended to design a genetic algorithm to
search for long polyphase radar codes with specified ambiguity functions. The
literature search revealed that this subject had been researched comprehensively
using different search methods. During this project a genetic algorithm was
designed to search for a 13-bit generalized BARKER sequence that proved the
principle that genetic algorithms could be used in this area of radar code design.
The literature search of polyphase codes is outlined below for completeness.

In the previous section, the term bi phase coding referred to the phase being
selected from either 0° or 180°. The term polyphase coding means that the phase
of each bit in the code can be chosen from some alphabet (M). They are time-
discrete complex sequences with constant magnitude and variable phase.” The
alphabet can be any length from 2 (bi-phase) to infimty (continuous phase).

As discussed above, BARKER codes were defined as perfect. It is possible, with
polyphase codes with a magnitude of unity and a suitable phase alphabet, to design
polyphase codes such that the auto correlation has sidelobe levels of unity or less.
These codes are called Generalized BARKER Sequences and they were discovered
in 1965.°

In 1989, sixty- phase Generalized BARKER Sequences were discovered up to a
length of 19 bits.” At the same time, an 1terat1ve search method was used to tind
oenerahsed BARKER sequences up to length 25.°

As the length of code increases, so to does the search space and possible
permutation of auto correlation outputs. It was not until 1994, when computing
power had improved, that polyphase Generalized BARKER Sequences up to length
31 were discovered and documented.” Here, the search method utilized was the
heuristic Great Deluge Algorithm. Instead of a limited alphabet of phases, the
alphabet tends to infinity such that the phase becomes continuous. Whilst in
theory the approach of continuous phase gives the required Generalized BARKER
Sequence in practice, continuous phase systems are not, at present, technically
feasible.”

Generalized BARKER Sequences to length 36 were reported in 1996."" The search
algorithm used was the Great Deluge Algorithm, but this time, the search was
initialized using starting vectors derived from HUFFMAN sequences. Instead of
being continuous, the phase alphabet was selected from values that were viable.

The final paper relating to Generalized Barker Sequences outlines sequences up to
length 45 using small alphabets The search strategy is a modified Great Deluge
Aloorithm w1th random starting vectors. The maximum alphabet of length (M)
used was 120 ie. in 3° steps (360/120) for sequence lengths of 40 to 44. This
maximum length of M=45 is claimed to be possible to 1mplement

Pulse diverse waveforms

In the previous sections, only phase has been altered within the relevant pulse. In
FSK PSK pulse diverse waveforms, both the frequency and the phase of chips
within a pulse can be varied from chip to chip to give a desired output from a
matched filter. A generic FSK PSK pulse diverse waveform is shown in (FIG.1)
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CHir 1 CHip 2 CHir 3 Cuir 4 CHIP 5 CHIP 6

F1 F2 F3 F4 F5 F6
PH1 | PH2 | PH3 | PH4 | PHS | PH6

SINGLE PULSE

F1G.1 - FSK PSK WAVEFORM COMPOSITION

It should be noted that the frequency and the phase values within each chip remain
constant throughout the chip duration. The issue of frequency sweep (linear FM)
within each chip is the basis for investigation later.

The technique of using FSK PSK puise diverse waveforms is relatively new and
there are few references found to this work.

Guey and BELL'' developed the theory for designing multiple pulse diverse
waveform sets that offer superior Doppler and range discrimination. They
introduced the composite ambiguity function that allows superior discrimination to
be achieved.

Two papers have been published that use a genetic algorithm and the theory
developed by GUEY and BELL to design multlple pulse diverse waveform sets that
produce tailored ambiguity functions. WONG' designed a four-signal waveform
set where the sidelobes of the ambiguity function were mlmmlzed This was
achieved using a simple genetic algorithm and using non-realistic radar
frequencies and phases in steps of 1/1024 radians.

This project investigates the effect of using realistic frequencies in pulse diverse
waveforms and addresses the issue of using practical phase increments.

Use of genetic algorithms in radar waveform design

In addition to the work completed above by WONG, two other references have
been dlscovered that use genetic algorithms for radar code design. The first
paper* details the use of genetic aloorlthms to develop an eight- phase polyphase
code that has good Doppler tolerance and low range sidelobes around the main
peak of the autocorrelation function. In practice, this clearance around the main
peak allows good range discrimination of two very close targets. It details two
codes of length 256 that, in addition to the autocorrelation criteria, have good cross
correlation properties. The paper only considers eight-phase polyphase codes and
does not investigate different phase alphabets.

It should be noted that although this reference is relatively recent, it was not
discovered in the initial literature search. Furthermore, this paper was not
discovered using the library search but during an Internet search on the subject in
week eight of the project. This paper has not been referenced in work carried out
in this area since 1997. PARISI has confirmed personally that to his knowledge,
this work has not been pursued further. The discovery of this reference was a
setback because the original thrust of the project was along similar lines.
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The second paper in this field"” examines the design of a generic spread spectrum
radar polyphase code using a genetic algorithm. It then compares the results with
other search methods such as Implicit Enumeration Techniques, Multi-level Tabu
Search, Monte Carlo method and non-linear programming. The results show that
the Multi Level Tabu Search and genetic algorithm performed comparably and
both found the generic solution. However, the genetic algorithm was deemed
superior because it was able to exploit its parallelism and perform searches for
codes of longer length.

Other forms of radar waveforms

Other forms of waveforms used in radar include:

a. Pseudo-random Binary Phase codes (M Sequence).”
Random binary phase.'®
Step frequency modulation.'
Polyphase Frank codes (P1, P2, P3 and P4).'°
HUFFMAN codes. '
Complementary codes. '’

~o a0

These codes do not offer simultancous good range and good Doppler
discrimination properties and are not part of this research.

BACKGROUND KNOWLEDGE
An overview of a simple genetic algorithm

Genetic algorithms are part a wider field of evolutionary algorithm which is based
largely on Charles DARWIN’s theory of evolution and survival of the fittest. The
parallel drawn here is that in a genetic algorithm, a solution to a problem is
evolved over a number of generations to meet a desired objective and hopefuily
tind a good solution.

The genetic algorithm is a stochastic global search method. A number of possible
solutions, known as a population, are evolved using the principle of survival of the
fittest. The values within the initial population are random and therefore, no
knowledge of the search space is required. At each generation, members of the
population are selected for breeding based on their level of fitness and how well
they solve a problem. New offspring are formed and evaluated for fitness. Fitter
members supersede weak or less fit members of the population. This method of
evolution leads to a population that is better suited to their environment.

The computer coding for the genetic algorithm was conducted in MATLAB. The
genetic algorithm utilized the Genetic Algorithm Toolbox developed by Sheffield
University.'” The objective functions, that describe the search problem, were
designed for each particular search
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The basic genetic algorithm

The basic genetic algorithm is shown in (F1G.2).

1. START - INITIAL RANDOM POPULATION
2. EVALUATE POPULATION AGAINST AN OBJECTIVE FUNCTION

3.  GENERATION LooP
ASSIGN FITNESS to each member of population
SELECTION of parents for breeding
CROSSOVER of parents to create offspring
MUTATE some of the offspring
EVALUATE OFFSPRING against an objective function

REINSERT offspring into population

4. END ON MAXIMUM NUMBER OF GENERATION

FIG.2 — BASIC GENETIC ALGORITHM

Chromosomes and population

The chromosome is the basic building block for the genetic algorithm. Each
chromosome contains a number of encoded parameters called genes. Genes are
selected from some finite alphabet that can be binary, ternary or integer value that
together can be decoded to form the parameters needed to solve the problem of
interest. A population is made up from n individual chromosomes. The initial
chromosome contains genes with random values
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Objective function, evaluation and fitness of the population

Each chromosome in the population is evaluated using an objective function. This
function takes in the chromosome, and produces an output. The individual
chromosome output is compared with the outputs produced by other members of
the population. A fitness value is then determined for each chromosome that will
describe how it compares with the other members of the population. Consider the
simple example shown in (FIG. 3).

CHROMOSOME 1 @ OBRJ FUN 1

1{of1]0 2
CHROMOSOME 2 \ /) mree
. B

010101 1| ———» OBJECTIVE FUNCTION

(MINIMIZE SUM OF
CHROMOSOME 3 CHROMOSOME) OBJ FUN 3

CHROMOSOME 2 - OBJ FUN2
MINIMUM
L\ ofoJol1 1
CHROMOSOME 1 -— OoBjFuN 1
1lo[1]o0 2
CHROMOSOME 3 -—— OBy FuN 3
MAXIMUM 1 1 1 1 4

(WORSE) @

FI1G.3 — EVALUATION OF FITNESS

Chromosomes 1,2 and 3 are initialized with random values. Together they form a
population of three. The chromosomes are then passed individually to the
objective function (Shown at point A in FIG.3). Here, the objective function is
simply adding all the genes in each chromosome together. The objective function
is defined by the user and is search space dependent. It is common practice to
design the objective function such that its output will be minimized. The objective
functions used in this project are discussed later.

The output of the objective function (point B) is now applied to the fitness
function. The fitness function used here is a simple ranking function whereby
each objective function output is ordered with the minimum (best) at the top and
the maximum (worse) at the bottom (Point C).
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Selection of chromosomes for breeding

Selection for breeding is based on the fitness of the individual chromosome. The
level of fitness determines how many times an individual is chosen for
reproduction. The better chromosomes (high fitness) are more likely to become
parents for breeding. Poor chromosomes (low fitness) are not as likely to be
selected for breeding. It is normal practice to allow worse fit individuals to breed,
albeit less likely, as they may contain some useful genetic material.

Crossover and mating operators

Any two chromosomes can breed. During breeding, the offspring are formed by
selecting genes from the parents. This selection of genes and formation of
offspring is carried out by a recombination operator. The simplest operator is the
single point crossover. This operator selects a single point within the parent
chromosome at which the genetic information is swapped. This is shown
graphically in (F1G.4).

PARENT 1: 1001!01 CHILD 1 : 100111
.
PARENT 2: 1110/ 11 CHILD 2 : 111001

[F1G.4 — SINGLE POINT CROSSOVER

The multi-point crossover operator was used during this research and this works
by dividing the chromosome up into gene segments. Each segment has a 50:50
chance of swapping with its counterpart segment in the other parent. Two new
offspring are produced. This operator is shown in (FIG.5). The grey values
indicate those genes that are to be swapped.

PARENT 1: 10 | I1 CHILD 1 : 101001
o T
PARENT 2: 1! | 1 CHILD 2 : 110111

FIG.5 - MUTI-POINT CROSSOVER

Mutation

Another genetic operator used in conjunction with crossover is called mutation.
Mutation is applied to each gene in the new offspring with a set probability.
Mutation of a binary sequence chromosome is shown in (FIG.6).

MUTATION

100 01 —— 100 01

FI1G.6 ~ MUTATION OPERATOR

Mutation rate has the effect of allowing the genetic algorithm to increase its search
space. This should prevent the genetic algorithm settling on a local minimum as
opposed to a global minimum. If the mutation rate is too high, the genetic
algorithm behaves as if it were a random search. Conversely, if too low, the
genetic algorithm may converge on a local minimum.
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After mutation has been applied, the new chromosomes are passed to the objective
function and the evolution cycle is repeated. This full cycle i1s known as one
generation. The whole genetic algorithm process can be summarized in (FIG.7).

CHROMOSOME 1 @ OB)FuN1
nnnn\\\ 2] ®

START AGAIN

CHROMOSOME 2
ONE GENERATION

OBJFuN2

;k LO ()l() 11 e OBJECTIVE FUNCTION sl

START HERE CHROMOSOME 3 (MINIMIZE $UM) OBJ FUN 3 )
—_—
nann

MUTATE CIHROMOSOME 2 OBy FUN2
MINIMUM
e [ojofof1] I
CROSS OVER

CHROMOSOME 1 <+— OpJFuUN1

SELECTION 1 r() 1 r()

CHROMOSOME 3 4— OBJFUN3

ST IHMQU©UI

(WORSE)

[F1G.7 = GENETIC ALGORITHM PROCESS, ONE GENERATION

The number of generations in the Algorithm is set at initialization. Once the

genetic algorithm has completed the required number of generations, the process is
halted.

Ambiguity Function
Introduction

The ambiguity function is utilized during this project. This section aims to
highlight the salient points of this function. There are many references to the
computation of the ambiguity function and often there is different use of
terminology and symbols to calculate essentially the same result.

Definition of the ambiguity function

The ambiguity function is a time-frequency transform of a waveform used by
radar or sonar to characterlze the response of the matched filter as a function of
delay and Doppler errors.'® The ambiguity function characterizes the waveform in
such a way that it can be used to determine the effects of Doppler at the output
from the matched filter. From the function, one can also determine the resolutions
of Doppler and range. effect of clutter and the effects of range-Doppler coupling.

The mathematical definition of the output of the matched filter is given below in
equation 1.* T, indicates a target return at a Doppler frequency F,. A positive F,
denotes an incoming target.

x(Tr, Fd)z fs(t)s *(t + Tr)ejandtdt — — FNavEng+ ({13004
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The squared magnitude of equation 1 is called the ambiguity function and when it
is plotted, it is called the ambiguity diagram. The ambiguity function has a
number of important properties that are described in detail at references 2 and 19.
The most important ones are summarized below:

(a) The maximum value of the ambiguity Function is found at the origin
and its value is (2E)* where E is the energy in the Pulse.

(h) The total volume under the Ambiguity Function is (2E) )
The ideal Ambiguity Function

The ideal ambiguity function would be a single spike with an infinitesimal smail
width as shown in (FIG. 8).”

A
Y Fd
", //
%, . /
Y P4
// x."
,// N
v .
e ~., Tr
e A

F1G.8. - IDEAL AMBIGUITY FUNCTION

The ideal ambiguity function would allow both extremely high simultaneous range
and Doppler resolution. This would mean that there would be no output from the
matched filter unless the Doppler of the echo matched that for the matched filter
and the range resolution would be accurate and targets close together could be
dlscrlrmnated However, in practice, this is an 1mp0551ble ambloulty function
because it does not fulfil the peak and volume properties of (2E).>  An
approximation of the ideal ambloulty function, which fulfils the peak and volume
properties, is represented in (FIG.9).'
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/7, P
A

Tr

FIG.9 — APPROXIMATED IDUAL AMBIGUITY FUNCTION

Here. B is the signal bandwidth and 7 is the signal pulse width. Although this
may be ideal in term of satistying the properties of the ambiguity function. the
practical limitations of the range and Doppler resolutions (1/7 and 1/B), may
mean that this 1s ambiguity function not ideal to the radar designer.

Working within the properties of peak and volume, it is possible to view the
amblomty function as a mass of clay with a volume of (2E)". The peak at the
origin must always have amplitude of (2E)”. The clay can be distributed wherever
one likes but no clay may be added or taken away. As discussed before. the ideal
ambiguity function is one with a peak at the origin of small width, this would give
good range and Doppler resolutions. This would mean that the remaining clay has
to be distributed elsewhere. It may be concentrated at a peak elsewhere, or maybe
distributed evenly across the range/Doppler floor. (FiG.10) shows the ambiguity
function having a small peak with the consequence of a higher floor around the
main peak. This ambiguity function is often referred to as the Thumbtack
ambiguity function. The tloor around the main peak should be as smooth as
possible. any spikes or peaks in this are undesirable as they may be contused with
target returns. Similarly, areas of range and Doppler in the tloor may be subject to
the effects ot external radar clutter and therefore the height of the floor at these
points may need to be minimised. The minimization of the floor in certain areas is
investigated during this article.
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SMALL WIDTH PEAK FOR
GOOD TARGET DISCRIMINATION

'CLAY' DISTRIBUTED HERE
FLOOR AS SMOOTH
AS POSSIBLE

F1G. 10 = THUMBTACK AMBIGUITY FUNCTION

Example of an ambiguity function

The ambiguity function is normally drawn as a three-dimensional plot with power
(response). time and Doppler frequency as the axes. An example of a three-
dimensional ambiguity function for a 13 bit Barker sequence is shown at (F1G.11).
All the ambiguity functions in this article have been produced using a moditied
MATLAB routine.'®

FIG 11 — AMBIGUITY FUNCTION FOR A 13 BIT BARKER CODE

Ambiguity diagrams can be plotted in two dimensions and are commonly plotted
at zero Doppler and at zero range. The zero Doppler plot is the result of
autocorrelation of the waveform. From this plot, the range discrimination and
pulse compression of the pulse can be determined. The zero range plot can be
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used to determine the compressed pulses Doppler discrimination properties. These
two plots for a 13-bit Barker code are shown in (FIGS.12A & B).

13 BIT BARKER ZERO-DELAY CUT

AMPLITUDE

A

14 -
12 -

10

0 1 ] I LI I ! 1 1 1 1

1 -08 -06 -04 02 0 02 04 0.6 08 1
DOPPLER SHIFT (HZ) x10’

FiG.12A ~ ZERO RANGE PLOT OF A 13-BIT BARKER CODE

J.Nav.Eng 41(3). 2004



474

13 BIT BARKER ZERO-DOPPLER CUT

AMPLITUDE

A

14 -
12 A

10 H

» MAAAAL INAAAN/
6

-6 -4 -2 0 2

.

DELAY (SEC) x10

FIG.12B — ZERO DOPPLER PLOTS OF A 13-BIT BARKER CODE.

Finally, another useful plot method is the contour plot that can be tailored to show
different levels from the peak of the main lobe. (FiG.13) shows the contour plot of
a 13-bit Barker code.
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13 BIT BARKER 0.5,1,3,10,15,20 AND 30DB CONTOURS

DOPPLER SHIFT HZ

200 i AN

0L A

Ot

<

-100

200H S

DELAY (SEC)

FI1G.13 — CONTOUR PLOT OF A 13-BIT BARKER CODE

Generation of a specified ambiguity function

Producing a signal waveform to meet a specified ambiguity function is very
difficult because there is no mathematical route from the desired ambiguity
function to a waveform. Methods of selecting waveforms that meet a particular
ambiguity function were discussed earlier. In practice, radar system designers use
ambiguity functions to determine the performance of a selected wavetorm.
Selection of a suitable waveform is either by trial and error or from previous
system experience. This article examines using genetic algorithms to select
practical pulse diverse waveforms to meet specified ambiguity functions.

Composite Ambiguity Function
Introduction

The composite ambiguity function was introduced by GUEY and BELL'' as a tool
to measure the delay and Doppler discrimination characteristics of pulse diverse
PSK FSK waveform sets. They proved that the composite ambiguity function
produced a better Doppler and range resolution than single ambiguity function.
The composite ambiguity function is plotted on the same axes as the ambiguity
function. WONG and CHUNG™ showed that by using a genetic algorithm as a
design tool, an area of the composite ambiguity function could be minimized as to
reduce the effect of interference such as clutter.
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Definition of the composite ambiguity function

In mathematical terms, the composite ambiguity function is defined as the
magnitude of the coherent sum of the individual signals’ output from their
matched filter. The mathematical expression is shown in equation 2.

k-1
Cnv) =D s, <1:,v)l __________ @

i=0

The individual signals’ sidelobe level output from the matched filter is such that
when they are summed coherently, the overall sidelobe level is reduced.
Simntlarly, the main peak of the output of each individual matched filter is
coherently summed. The overall effect is to enhance the main peak whilst
suppressing the unwanted sidelobes.

The project examines the use of the composite ambiguity function to design
practical waveform sets that offer enhanced Doppler and range discrimination.
Practical FSK PSK pulse diverse waveform composite ambiguity tunctions will be
compared to practical linear FM PSK composite ambiguity functions.

PRELIMINARY INVESTIGATION OF RADAR CODE DESIGN AND GENETIC
ALGORITHMS

Introduction

This section outlines the results of the preliminary investigation into using genetic
algorithms to search for basic radar codes that have low sidelobes when
autocorrelated. This investigation was carried out in the early stages of this
project and yielded some interesting results. Two types of radar codes were
mvestigated, bi-phase and continuous polyphase codes and in each case a genetic
algorithm was designed and compared to an exhaustive search of the same codes.
A genetic algorithm was designed and found new 64-bit bi-phase codes with low
sidelobes. In addition, a genetic algorithm was designed to search for a 13-bit
generalised Barker sequence continuous polyphase code.

Bi-phase code investigation

It was decided that the definition of a best code was one whose autocorrelation had
the minimum peak sidelobe level and minimum RMS level within the sidelobes.
This definition is based on the property of Barker codes, which have a minimum
peak sidelobe level of unity. A MATLAB programme was designed to
exhaustively search the autocorrelation of bi-phase codes of length 3-31bits and
record the mimmum peak sidelobe levels for each n bit code. Complementary
codes have the same autocorrelation function. For example, the autocorrelation
tunction of (1. -1, 1, -1) is the same as (-1, 1, -1, 1). This property was used in the
exhaustive search to halve the search space for a given n bit code.

Results of exhaustive search

The results of the exhaustive search are detailed in Table 1.
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TABLE.l — Results of exhaustive search

Bits | Number of | MinPeak | SSL dB Rms dB Number % total codes
Codes to SSL of ‘best’ that are
Check codes ‘hest’
3 4 1 -9.54 -12.55 2 S00E+01
4 8 1 -12.04 -13.8 4 SO00E+01
3 16 1 -13.98 -16.99 2 1.25E+01
6 32 2 -9.54 -14.1 14 4.38E+0.1
7 64 1 -16.9 -19.91 2 3.13E+00
8 128 2 -12.04 -17.48 3 6.25E+00
9 256 2 -13.06 -17.32 8 3.13E+00
10 512 2 -13.98 -18.4 20 3.91E+00
1 1024 | -20.83 -23.84 2 2.00E-01
12 2048 2 -15.56 -22 8 3.90E-01
13 4096 l -22.28 -25.29 2 5.00E-02
14 8192 2 -16.9 -21.27 36 4.40E-01
15 16384 2 -17.5 -21.37 32 2.00E-01
16 32768 2 -18.06 -21.37 12 4.00E-02
17 63536 2 -18.59 -21.6 16 2.00E-02
13 131072 2 -19.08 -23.43 8 6.10E-03
19 262144 2 -19.55 -22.45 4 1.53E-03
20 524288 2 -20 -23.01 4 7.63E-04
24 1LOSE+06 2 -20.42 -24.14 8 7.63E-04
22 2.10E+06 3 -17.31 -24.16 12 5.72E-04
23 4.19E+06 3 -17.69 -23.94 12 2.86E-04
24 8.391+06 3 -18.06 -25.66 4 4.77E-05
25 1.65E+07 2 -21.94 -25.33 4 2.38E-05
26 3.36E+07 3 -18.76 -25.75 12 3.58E-05
27 6.71E+07 3 -19.08 -27.09 2 2.98E-06
28 1.34E+08 2 -22.92 -26.27 4 2.98E-06
29 2.68E+08 3 -19.71 -25.8 4 1.49E-06
30 3.37E+08 3 -20 -26.48 4 7.50E-07
31 1.07E+09 3 -20.28 -26.34 4 3.70E-07 J

Column 2

Details the number of codes to check which is derived from the
number of bits n.

Column 3
Details the minimum peak sidelobe level of the n bit code.
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Column 4

Expresses column 3 as a ratio in decibels with respect to the main
peak of height n

Column 5
Details the RMS value of the sidelobes.

Column 6
Shows the number of best codes.

It should be noted that the number of best codes is the complementary value. The
actual number of best codes is half the value indicated in column 6. The best
codes are codes that when autocorrelated satisfy the minimum peak sidelobe
criteria and the minimum RMS criteria. The final column shows the percentage of
the best codes out of the total number of codes. As n increases, this percentage
decreases. This implies that when searching for the best codes, the genetic
algorithm will have to be very good to find these codes. This result is useful when
determining the performance of the genetic algorithm search.

It was decided that the reference for the genetic algorithm would be the 25-bit
code and therefore, the statistics of the 25-bit code will be discussed. A histogram
of the minimum peak sidelobe levels found by the exhaustive search of a 25-bit
code is shown at (FIG.14).

HISTOGRAMOF 25 BIT CODE SHOWING
MIN PEAK SSL VERSUS OCCURRENCE OF EXHAUSTIVESEARCH

FREQUENCY
35 =] XlO6 ] TOTAL NUMBER OF CODES TO SEARCH = 16777200
THERE ARE 2 CODES WITH THE MIN PEAK SLL 0k 2
30 ] W PERCENTAGE OF CODES WITHMIN PK SLI. = 1.1921 ¢-005%
2.5 — A
2.0 —1
1.5
1.0 - -
—
0.5
N 1=
0 T T | l 1
0 5 10 15 20 25 30

PEAK SLL. ———»

F1G.14 ~ HISTOGRAM OF MINIMUM PEAK SIDELOBE LEVELS FOR A 25 BITCODE
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There are only two codes from all the possible combinations of 25 bit codes that
have a peak sidelobe level of 2. This highlights the fact that the genetic algorithm
will have a difficult task in finding the best code due to the very small percentage
of best codes (1.92x10” %) of the total search space. The search space for a 25-bit
code is now known. A genetic algorithm can be designed and its performance
tested against this reference.

Genetic algorithm search for 25-bit bi-phase codes

The operation of a genetic algorithm has been discussed earlier. A gen7etic
algorithm was designed, using the Genetic Algorithm Toolbox in MATLAB' to
search for the best 25-bit code found in the exhaustive search.

Genetic Algorithm Design

The number of variables in the chromosome was set to the length of the code (n).
The value of the individual gene within the chromosome could be either +1 or -1.
The chromosome is passed to the objective function for evaluation. The objective
function simply autocorrelated the code (chromosome) and recorded the value of
the peak sidelobe level. A desired minimum peak sidelobe level was introduced as
a target for the genetic algorithm. The sidelobe levels of each code produced by
the chromosome were compared to the desired level. A difference matrix was
generated and the sum of this matrix was used as the output from the objective
function. This output had to be minimized and once the difference is zero, the
genetic algorithm had found the code that had the desired sidelobe level. This
process is shown in (FIG.15).

CHROMOSOME
11111111 1)1 GENERATED BY GA

CALCULATE ACF

RECORD PEAK
SIDELOBE LEVELS

COMPARE WITH DESIRED LEVEL
TO GET DIFFERENCE
MINIMIZE THIS DIFFERENCE

FIG.15 ~ BI-PHASE CODE GENETIC ALGORITHM REPRESENTATION

Results of Genetic Algorithm search of a 25 bit Bi-phase code

The desired sidelobe level was set at 2. The genetic algorithm was repeated 110
times and the results are shown in the histogram at (FIG.16).
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HISTOGRAM OF DIFFERENCE FOUND USING GA ON 25 BIT CODE

FREQUENCY

A TOTAL RUNS = 110
40 -] MiNMuM DIFFERENCE IS 0 FOUND 2TIMES
PERCENTAGE OF CODES FOUND BY GA WITH
35 - MINIMUM DIFFERENCE = 1.8182%
v MINIMUM PEAK SLL =2

30
25
20
15
10

2 3 4 5 6
DIFFERENCE ————»

FIG. 16 — RESULTS OF THE GENETIC ALGORITHM SEARCHING FOR THE IDEAL 25 BIT CODE

The results show that the genetic algorithm managed to find the desired sidelobe
level of 2 twice in 110 runs (1.81%). The autocorrelation of the best code found
by the genetic algorithm is shown in (FIG.17). The desired sidelobe level of 2 is

plotied for reference. The parameters used in the genetic algorithm are also
detailed on FIG.17.
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ACF OF A 25 BIT CODE FOUND BY A GA USING
MINIMUM WEIGHTED DIFFERENCE OBJ FUN

ACF

25 - BEST - WEIGHTED DIFFERENCE = ()
NUMBER IN POPULATION= 400
NUMBER OF GENERATIONS= 12()
20 PEAKSSL =2 =-21.9382 dB
ISL =-8.514 dBs
RMS SLL =-25.3dB
CROSSOVERRATE=(.9
15 S MUTATIONRATE = 2%
10
=
0 | 1 | ] ] i ] |

] ]
0 5 10 15 20 25 30 35 40 45 50
BIT VALUE—»

F1G.17 — AUTO CORRELATION OF 25-BIT B1 PHASE CODE FOUND BY GENETIC ALGORITHM

This result proved that the genetic algorithm was capable of searching and finding
a small number of optimal solutions in a very large search space. This result gave
the necessary confidence to develop the genetic algorithm to search for longer
codes (n>31) and that any result gained could be close to, if not at, the global
THINIMuMm.

Genetic algorithm search of a 64-bit bi-phase code

It was decided to extend the search to n=64bits. There are no exhaustive search
results for codes of length 64 bits. In 1990, an exhaustive search of 48 bits took 16
days.” If one assumes that this 48-bit exhaustive search could be carried out in
today in 24hrs, an exhaustive search of 64 bits would take approximately 180
years.

Results of genetic algorithm search of a 64-bit bi-phase code

The desired sidelobe level was set at an arbitrary level of 5. The genetic algorithm
was run 140 times. Various crossover rates and initial population sizes were used
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until a combination was found that would achieve the desired sidelobe level. The
histogram of the results is shown in (FIG.18).

HiSTOGRAM OF DIFFERENCE FOUND USING GA ON 64 BIT CODE

FREQUENCY
40 —*
TOTAL RUNS = 140
35 ] MINIMUM DIFFERENCE IS § FOUND 4 TIMES
PERCENTAGEOF CODES FOUND BY GA WITH
30— MINIMUM DIFFERENCE = 2.85%
- MINIMUM PEAK SLL =5
25—
20—
15 ]
—
10—
5 ]
| N D N N R B 1
0 2 4 6 8 10 12 14 16

DIFFERENCE ——»

FIG. 18 ~ HISTOGRAM OF RESULTS OF 64 BIT GENETIC ALGORITHM SEARCH

F1G.18 shows that four codes of minimum peak sidelobe level of 5 were found.
The genetic algorithm is finding the codes that produce minimum peak sidelobe
close to the desired level of 5. There were no codes found with a minimum peak
sidelobe level of less than this. This is indicated by the grouping of frequency of
occurrence towards the left in FIG.18.

Four best codes were tound. The autocorrelation of two of them, along with the
genetic algorithm parameters used is shown in (FIG.19).
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ACF OF TWO 64 BIT CODES FOUND WITH GA

ACF VALUE

A

80 -

BEST - WEIGHTEDDIFFERENCE = ()

POPULATION = 300
GENERATIONS = 150
PEAKSSL = 3 =-22.114dBs
ISL = - 5.884dBs

40

CROSSOVERRATE = 0.9

Cobg 1

0 - NN SN A

.................................................

CODE 2 (INVERTED

4

-40

- 80 LI I i 1 1 LN 1
0 40 80 120

BIT VALUE ———»

FI1G.19 — AUTO CORRELATION OF TWO 64-BIT CODES FOUND BY GENETIC ALGORITHM

The 64-bit codes are too long to display in bi-phase form and therefore they are
displayed in hexadecimal. The two codes are:

(a)y TA2242EE92714800 (hex) Code 1
(hy C491CISE6FFAQG000 (hex) Code 2

These two codes are shown because the cross-correlation of these two particular
codes gives the smallest peak cross correlation product when compared to the
cross correlation products of the other codes in turn. Code 2 has been inverted
such that both codes can be shown on the same plot.

Comparison of 64 bit code result to other search methods

Two 64 bit codes were discovered using Simulated Annealing in 1993, These
two codes had a minimum peak sidelobe level of 11 and a minimum peak cross
correlation product of 11. The cross correlation product of two codes is an
important issue when two codes are used for radar and communications
applications. Here, the cross correlation product needs to be reduced as much as
possible so that two separate codes of the same length can be used on the same
channel.
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Clearly, the codes found in this project have a better minimum peak sidelobe level
of 5 (cf. 11) however, the best cross correlation product was found to be 15, which
is poorer than 11 found by Simulated Annealing." The cross correlation product of
codes 1 and 2 are shown in (FIG.20).

CROSS CORRELATION OF TWO 64 BIT CODES FOUND WITH GA

CROSS CORRELATION
VALUE

A

10 -

10 -

, )

I I I I | ]

I
0 20 40 60 80 100 120 140
BIT VALUE ———»

F1G.20 — CROSS CORRELATION OF TWO 64 BIT CODES FOUND BY GENETIC ALGORITHM

The objective function of the genetic algorithm was not designed, in this case, to
search for two codes with minimum peak sidelobe levels and minimum cross
correlation product. In the opinion of the author a genetic algorithm could be
designed to search for this objective, however, due to limiting time, it was decided
that this would not be pursued. Furthermore, best codes of length greater than 64-
bits (128, 256. 512 etc.) could have been sought but this was not the main aim of
this project. It is left as an area of further research.

Generalized BARKER Sequences investigation

Having completed the investigation into bi-phase codes, the next logical step was
to investigate polyphase coding. This investigation was not as detailed as the bi-
phase research for a number of reasons outlined at the end of this section. To
demonstrate the applicability of the use of genetic algorithms as a search tool in
this area, a genetic algorithm was developed to search for a 13-bit continuous
phase Generalized BARKER Sequence.
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Definition of Generalised BARKER Sequences

The term polyphase coding means that the phase of each bit can be chosen from an
alphabet of size (M>2). They are time-discrete complex sequences with constant
magnitude and variable phase.” The alphabet (M) can be any length from 2 (bi-
phase) to infinity (continuous phase). It is possible, using polyphase codes with a
suitable phase alphabet (M), to design polyphase codes such that the
autocorrelation in the zero Doppler plane has sidelobe levels less than unity.
These codes are called Generalized Barker Sequences.’

Design of genetic algorithm to search for Generalised BARKER Sequences

Previous research’ using an iterative algorithm, defined the phases used to
generate a 13 bit continuous phase Generalized BARKER Sequence. A genetic
aleorithm was developed to prove its applicability in this area.

The genetic algorithm produced a population of chromosomes with individual
genes that each had a phase value (in radians). Each chromosome was passed to
the objective function where, using the phases defined in the chromosome, a
waveform was produced. The peak sidelobe level of the autocorrelation of this
waveform was computed. The genetic algorithm attempted to minimize the peak
sidelobe level to below unity to find a Generalized BARKER Sequence. The
objective function is summarised in (FiG.21).

PHASES
224 i.8 0.98 -1.65 1.54 -1.12 -0.76 2.11 0.34 1.47 GENERATED BY
GA IN RADIANS

\ 4
|CALCULATE ACF|

'

RECORD PEAK SIDELOBE LEVELS

’

MINIMIZE THIS LEVEL - (TO BELOW UNITY)

F1:.21 — GENETIC ALGORITHM REPRESENTATION FOR GENERALIZED BARKER SEQUENCE

Results of genetic algorithm search

The parameters used by the genetic algorithm are shown in Table 2

TABLE 2 — Genetic algorithm parameters for 13 bit continuous phase code

Parameter Value
Population 200
Generations 300
Crossover rate 0.85
Mutation Rate 1%
Generation Gap 0.9
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The phases (in radians) of the best code found by the genetic algorithm are:

Phase 1 2 3 4 5 6 7
Radians 5.56 542 -1.18 5.62 4.07 1.87 7.81
Phase 8 9 10 11 12 13

Radians -0.93 278 5.27 1.05 1.51 373

These are ditferent from previous recorded results.” This code gives a 13-bit
Generalized BARKER Sequence autocorrelation function shown in (FiG.22). It can
be seen that the peak sidelobe level is unity with the remaining sidelobe levels
below that value. The peak sidelobe is —=22.29dB from the main lobe peak. the
same as a 13-bit BARKER code.

ZERO-DOPPLER CUT
AMPLITUDE

A
14 1

-

12 -

-

10 1

0 1 L) T } 1 1 I I 1 1

-0.8 -0.4 0 0.4 0.8
DELAY (SEC)

F1G.22 = AUTO CORRELATION OF 13 BIT GENERALIZED BARKER SEQUENCE FOUND BY GA

The practicalities of generating the continuous phase are not examined in detail.
however, previous research’ suggest that these would be difficult to generate.
Moving to an alphabet of say 60 would be more practical. A genetic algorithm to
search for these polyphase codes could be investigated as part of future research.

Preliminary investigation conclusion

A genetic algorithm can be used to find bi-phase codes with minimum peak
sidelobes. This was proved by finding the two best 25-bit bi-phase codes. The
genetic algorithm was developed further to search for 64-bit codes and four new
codes were discovered that had a better minimum peak sidelobe level than codes
found by previous research using a different search method. Search of longer
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length codes was not pursued but the author is confident that genetic algorithms
could be applied in this area.

A genetic algorithm was designed to find a 13-bit polyphase Generalized Barker
Sequence. The principle of using genetic algorithms to search for polyphase codes
has been proved, albeit on relatively short length codes. Based on the experience
cained during the investigation of the bi-phase codes, it is the opinion of the author
that if more time were available, a genetic algorithm could be designed to search
tor codes of length 45+. This could be the subject of further research later.

PULSE DIVERSE WAVEFORM DESIGN
Introduction

Previous research" suggested that a pulse diverse PSK FSK waveform could be
designed to produce an ambiguity function that had minimal sidelobe levels in
specified areas of range and Doppler. A genetic algorithm was used to design
such a pulse but the phase increments and frequencies used were not realistic for
current radar design. This section will outline the design of a practical PSK FSK
pulse diverse waveform that can be designed to meet a specified ambiguity
tunction and composite ambiguity function.

In this project, a variation to the FSK PSK waveform is proposed. It is called a
Linear FM PSK waveform. A practical design of this new wavetorm is examined
such that it meets the same specitied ambiguity function and composite ambiguity
function as the FSK PSK case.

PSK FSK waveform design

The PSK ESK waveform' is a single pulse containing six individual chips where
each chip is capable of having a different frequency and phase from the next. This
is shown in (FIG.23).

CHiP 1

CHipP 2

CHIP 3

CHir 4

CHIP 5

CHIP 6

K1
PH 1

F2
PH 2

F3
PH 3

F4
PH 4

| )
PH 5

K6
PH 6

-

P
SINGLE PULSE

FiG.23 — GENERIC PSK FSK WAVEFORM DESIGN

The chips within the pulse diverse PSK FSK waveform in'"> were designed such
that the frequency and phase increments are not practical for radar system design.
For instance, the frequency range was between 10 Hz and 74 Hz and the phase
was incremented in 1024 steps of 360° or steps of 77 /512 radians. These values
are clearly impractical for modern radar design.

Practical pulse design

A?s(){adar operating at SGHz may typically have a bandwidth of 10 % ~500 MHz.>
P77 A typical uncompressed pulse length of 1.2us equates to a range resolution of
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180m. It was decided initially to design a pulse to approximately these
parameters. A pulse length of 1.2us would allow a chip width of 0.2us (assuming
six chips). The sampling frequency would have to be at least twice the highest
frequency (Nyquist) and therefore at least 1GHz sample frequency was requlred
for a maximum intermediate frequency of 500 MHz. It follows that each chip of
0.2us would consist of 200 samples and the whole pulse of six chips would
contain 1,200 samples. When this sampled signal was passed through the
ambiguity function MATLAB programme’' it took 2 minutes to compute an
output and used up most of the computer memory such that it became very slow to
run. To enable the FSK PSK and Linear FM PSK waveform comparison, the
ambiguity function had to be repeated 1,000 times per genetic algorithm run. It
was planned to do at least 90 good genetic algorithm runs in total for this
investigation and this would have taken approximately three weeks. This was
deemed unacceptable and a shorter pulse with a lower sampling frequency was
required.

[t was decided to reduce the size of the pulse and reduce bandwidth of the radar to
200 MHz. This in turn reduces the operating trequency to 3GHz. The practical
trequency of each chip is in the range of 20 — 200 MHz and the practical phase
was in 128 steps of 360° (2.1825°). The sampling frequency was chosen to be
500MHz and thus the sampling interval is 2ns. Each chip contained 51 samples
making 306 samples for the six-chip pulse. The new length of the pulse is reduced
from 1.2us is 612ns. The pulse is shown graphically in (FiG.24).

Ccuip 1
F]_. SAMPLE FREQUENCY = 500MHZ
PH 1 SAMPLE TIME = 2ns
L
P POSSIBLE FREQUENCY RANGE =20 10O 200 MHz

0.102 ps

CHw 1 CHip 2 CHrp 3 CHir 4 CHIp 5 CHIP 6

F1 F2 F3 F4 | O F6
PH 1 PH 2 PH 3 PH 4 PH 5 PH 6

4

v

0.612 ps = 306 SAMPLES @ 2ns per SAMPLE

F1G.24 - PRACTICAL PSK FSK PULSE DESIGN
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For a 3 GHz radar, a maximum range of 180km is assumed. The maximum
unambiguous range is set to 225km (1.25 x max range) and therefore the PRF is
set at 600Hz. The radar’s parameters can be summarized in Table 3.

TABLE.3 ~ Radar parameters for PSK FSK design

Parameter Value

Frequency 3GHz

Frequency chosen within the range within cach chip | 20-200MHz

Sampling frequency 500MHz (2ns)
Pulse width (uncompressed) 0.612us
Samples per pulse 306

Max Unambiguous Range 225km

PRF 600Hz

The sampled FSK PSK waveform shown in FIG.24 can be generated easily within
MATLAB

Linear FM PSK waveform

In the section above, the frequency and phase in each of the six chips of FSK PSK
pulse diverse waveform were constant throughout the duration of the chip. A
variation of this could be that the frequency within the chip is altered throughout
the chip duration by eftectively applying a frequency sweep in each chip. The
phase in each chip remains constant. This new pulse diverse waveform,
introduced in this research, is referred to as a Linear FM PSK pulse diverse
waveform. The ambiguity function of this new waveform is compared to that of
the FSK PSK case to see which waveform offers a better performance. The
comparison in performance is discussed later.

Practical Linear FM PSK waveform design

The radar parameters are the same as those detailed in table 3, the only difference
is that now there is a start and stop trequency of the individual chip. The start and
stop frequencies can be any frequency between 20 and 200 MHz that facilitates a
possible up or down frequency sweep.

The Linear FM PSK pulse diverse waveform used in this research is split into six

chips as shown in (Fi1G.25). This sampled waveform can be generated easily by
MATLAB.
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CHIP 1
F1 START SAMPLE FREQUENCY = 500MHZ
F1 stop SAMPLE TIME = 2ns
PH1
“—> POSSIBLE START AND STOP FREQUENCIES = 20 TO 200 MHz

0.102 us

CHiIP 1

CHIP 2

CHIP 3

CHIP4

CHIP S
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F1 START
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PH 1

F2 START
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PH 2

F3 START
F3 stop
PH 3

F4 START
F4 stop
PH 4

F5 START
F5 stop
PH 5

F6 sTART
F6 stor
PH 6

P s
<« »

0.612 usS = 306 SAMPLES @ 2NS PER SAMPLE

FI1G.25 — LINEAR FM PSK WAVIEFORM

Ambiguity function of the waveforms

A MATLAB programme”’ was used to generate the ambiguity function of the
pulse diverse waveforms. Recalling that the pulse length is 0.612us and the PRF
s 600Hz. (Table 3) the size of the axis of the ambiguity function are +0.612us
along the delay axis and £300Hz along the Doppler axis. These axes are set by the
ambiguity function programme and can not be altered.

The delay axis can be converted to a range axis of £ 92m using equation 3.

R c*c/2

Where c=3x10" nv/s. 1 is pulse width in seconds. R is range in metres

The Doppler axis can be converted from Doppler frequency of + 300Hz to a
relative velocity axis of = 15my/s using equation 4.

Where v is in /s, fy is in Hertz, A is in metres (0.1m)
It should be noted that the peak of the ambiguity function is at the origin. This is
one of the properties of the ambiguity function discussed earlier.
Composite ambiguiry function of waveform sets

The composite ambiguity function of a set of say six waveforms can be generated
by summing each individual signal’s ambiguity function. This principle was
discussed earlier. The composite ambiguity function is simple to achieve in
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MATLAB by modifying the ambiguity function programme. The range and
velocity axes will be the same as those described above.

Use of MATLAB

As stated above, all the waveforms were designed using MATLAB. This
computer language was chosen for two reasons:

(@) The Genetic Algorithm Toolbox'” had been designed for MATLAB.

(h) A MATLARB function to produce an ambiguity function of a specified
waveform had been designed.”

However, MATLAB is a slower language than, say, ‘C’ and this was a penalty
during this project.

Pulse design conclusion

The waveforms that are to be investigated during this project can be generated by
MATLAB. The sampled waveforms can be input to the ambiguity function
programme and their individual ambiguity tunctions can be calculated and
displayed in terms of velocity and range. Sidelobe levels within specified areas of
the ambiguity function can be examined. It will be shown that sidelobe levels
within specific areas of the ambiguity function can be minimized by designing the
waveforms using a genetic algorithm.

RADAR WAVEFORMS AND GENETIC ALGORITHM DESIGN
Introduction

There is no mathematical route from a specified ambiguity function to a wavetorm
that generates that particular ambiguity function. Taking the practical pulse
diverse waveforms, one possible method would be to try every possible
combination of frequency and phase in each chip and record the generated
ambiguity function. The waveform whose ambiguity function gives the best fit to
the specified shape could be selected. This is clearly impractical, as the number of
possible permutations is excessive.

It has been shown that a genetic algorithm could be designed to search for bi-
phase codes that when autocorrelated generated a minimum peak sidelobe level
that is the same as some arbitrary desired level. Taking this one stage further, it is
possible to design a genetic algorithm that would search for the phase and
frequency parameters of pulse diverse waveforms that produce an ambiguity
function that is minimized in some area. A similar argument applies when
minimizing areas within a composite ambiguity function of a set of pulse diverse
waveforms. This section outlines the selection of the masked areas and the design
of the genetic algorithm that searches for the optimum waveform parameters.

Mask design — Areas of minimization

As discussed earlier, the FSK PSK and Linear FM PSK pulse diverse waveforms
produce ambiguity functions over the range +15m/s in velocity and £92m in range.
Three masks of different sizes were designed for this research such that the peak
levels within the masks should be reduced. The choice of area is somewhat
arbitrary but if a range and velocity of clutter or interference were known then any
mask could be designed accordingly.

The masks are shown in (FiGs 26, 27 and 28). The black area of the mask is the
area where the sidelobes are to be minimized. The corresponding range and
velocity for each area can be read trom the plots.
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Mask 1.

An arbitrary ‘normal’ mask.

DOPPLER VELOCITY (m/s)
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['1G.26 - MASK 1
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Mask 2.

Based on Mask 1 but with the area in which the sidelobes are to be
reduced is biased towards the centre peak.
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F1G.27 - MASK 2
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Mask 3.

The same inner boundaries as Mask 2 but the area specitied for
sidelobe reduction is extended away from the central peak.

DOPPLER VELOCITY (m/s)

F \

10—

1 1 1 1 1 L 1 i 1
-80 -40 0 40 80
RANGE (m) ———»

F1G.28 - Mask 3

The three masks are used by the genetic algorithm to search for the parameters of
the pulse diverse waveform that will give the minimum peak sidelobe level in that
area. It should be noted that areas outside the mask are deemed not important and
thus will not be specitically minimized.

Design of genetic algorithm for FSK PSK waveforms.

Chromosome design for a FSK PSK waveform

The practical FSK PSK pulse diverse waveform above has twelve variables; six
frequencies and six phase variables. The chromosome comprises 12 genes. The
chromosome design is shown at the top of (FiG.29).
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OBJECTIVE FUNCTION

CHROMOSOME
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COMPUTE AMBIGUITY FUNCTION
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\APPLY MASK

MASKED OUTPUT

COMPUTE MAXIMUM VALUE OF MASKED OUTPUT. THIS IS THE VALUE THAT
EEDS TO BE MINIMIZED BY THE GA

F1G.29 — STEPS OF OBIECTIVE FUNCTION FOR FSK PSK WAVEFORM
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In accordance with the radar and pulse parameters outlined at Table 3, the
frequency for each chip was chosen from the range 20 - 200 MHz and fixed for the
duration of the chip. The phase in each chip is fixed and is an increment of
2.8125° (128 steps in 360°).

FSK PSK waveform objective function design.

The Objective Function is described in detail in FiG.298. The stages in the
Objective Function are:

(a) Create a pulse diverse waveform from chromosome.
(b)y Calculate ambiguity function of waveform.

¢y Apply mask to generate masked ambiguity function.
(d) Calculate the peak of masked ambiguity function.

(¢) Record this level for chromosome fitness assignment.

Chromosomes that return a lower value of peak masked ambiguity function are
desired. The frequency and phase values within the chromosomes will be those
that will generate a FSK PSK waveform that have the minimum peak sidelobe
within the masked area. The MATLAB code for the objective function is shown
at Annex B.

The genetic algorithm will attempt to minimize the objective of minimum sidelobe
level within the mask area only. The areas outside the mask are not of interest.
Instead of using the peak output of the masked ambiguity function as the objective
to minimize, a number of other objectives could have been used. These are
described below.

(a) Minimizing the ratio of masked ambiguity function to the main peak
of the ambiguity function.

(b) In addition to the masked output, the area outside the mask could
have been examined with a view to also reducing and large peaks
that may be undesirable.

(¢) The volume of the masked output may have been minimized instead
of the peak level.

All the above options are possible. Based on previous experimentation, each
objective would probably have yielded a different final waveform. All of the
above objectives could have been incorporated within the objective function with
appropriate weightings attached to each objective. However, this approach would
have needed time to design and the tuning of the individual weightings is normally
carried on a trial and error basis. Alternatively a multi-objective genetic algorithm
could have been designed and compared to a single objective genetic algorithm
used in this project. Multi-objective genetic algorithms are not addressed in this
article and this may be an area for further research.
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Selection of genetic algorithm parameters

The settings used by the genetic algorithm were used within the Genetic
Algorithm Toolbox are shown in Table 4.

TABLE.4 — FSK PSK waveform genetic algorithm parameters

Parameter Value

Population 100

Number of Generations 100

Fitness Assignment Ranking

Selection Method Stochastic Universal Sampling
Crossover rate 0.85

Recombining Method Multi-point Crossover at each gene
Mutation rate S%

Generation Gap 0.9

Composite Ambiguity Function of a FSK PSK waveform

The composite ambiguity function of the FSK PSK pulse diverse waveform is
compared to that of the Linear FM PSK pulse diverse waveform. It was decided
that only Mask 2 (central peak bias) would be used for this comparison. The
objective function that incorporates the composite ambiguity function is
essentially similar to that described in FiG.29. The differences are that instead of
one signal, the composite ambiguity function comprises six individual PSK FSK
pulses. Therefore, the chromosome comprises seventy-two genes as opposed to

twelve. The steps of the objective function are shown below and summarized in
(F16.30).

(a) Produce six individual PSK FSK waveforms from the chromosome
produced by the genetic algorithm.

(b) Compute the output from the matched filter (MF) of each of these
individual waveforms.

(¢) Sum the individual output of matched filters to produce the
composite ambiguity function.

(d) Apply the mask (Mask 2).

(e) Record the peak sidelobe level within this mask.

(/) Record this value for chromosome fitness assignment within the
genetic algorithm.

The parameters used by the composite ambiguity genetic algorithm are the same
as those outlined in Table 4.
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F1G.30 — COMPOSITE AMBIGUITY OBJECTIVE FUNCTION

Genetic algorithm execution

Three separate genetic algorithms were run each using a difterent mask. Each
genetic algorithm was run ten times, as it is known trom experience that the best
solution may not be found on the first run. The total time per genetic algorithm is
in the region of 20 hours making a total time of 60 hours.

The composite ambiguity function genetic algorithm with Mask 2 was run eight
times. This took 48 hours to complete.

Design of a genetic algorithm for a Linear FM PSK waveform

The design of this genetic algorithm is almost the same as for the PSK FSK pulse
described above. The only difference is that now there is a start and stop
frequency in each chip to allow a linear frequency sweep.

Chromosome design of Linear FM PSK waveform

The Linear FM PSK waveform described at F1G.24 has eighteen variables: 6 start
trequencies, 6 phases and 6 stop frequencies. The chromosome comprises 18
genes. The chromosome design is shown at the top of (FiG.31). The start and stop
frequency in each chip was chosen from the range 20 - 200 MHz. The phase was
chosen as an increment of 2.8125° (128 steps in 360°).
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[APPLY MASK, GENERATEMASKED OUTPUT
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VALUE THAT NEEDS TO BE MINIMIZEDBY THE GA.

F1G.31 — OBJECTIVE FUNCTION FOR LINEAR FM PSK WAVEFORM

Objection function design.
The stages in the objective function were:
(a) From chromosome obtain start and stop frequency and phase of each
chip.
(b) Create Linear FM PSK diverse waveform.
(¢) Calculate ambiguity function of waveform.
(d) Apply mask to generate masked ambiguity function.
(¢) Record the peak of masked ambiguity function.
() Record this level for chromosome fitness assignment.

Chromosomes that return a lower value of peak masked ambiguity function are
desired.

Design of composite ambiguity function for Linear FM PSK Waveform

The design of the composite ambiguity function for the Linear FM PSK waveform
is similar to the FSK PSK case except for the different chromosome design
highlighted in F1G.31.

Genetic Algorithm execution

Execution times for the Linear FM PSK waveform genetic algorithm and the
composite ambiguity function are the same as those detailed previously.

I.Nav.Eng 41(3). 2004




500

RESULTS

Comparison of waveforms ambiguity functions

Introduction

Three masks were defined and FSK PSK wavetforms and Linear PSK waveforms
were designed using a genetic algorithm to minimize the peak in the masked floor

of the resulting ambiguity function.

Results

The results are shown in Tables 5,6 and 7. The frequencies and phases that make
up the pulse diverse waveforms are shown at Annex A.

TABLE.5 — Comparison of waveforms using Mask 1

WAVEFORM TYPE
PARAMETER FSKPSK | LINEARFM PSK | DIFFERENCE
Peak mask tloor 12.5 12.01 0.49
Central peak of Ambiuity Function 149.44 152.24 -2.8
Ratio of peak masked floor to central peak (dB) -21.5 -22.06 0.56
-6dB width of range at zero Doppler (m) 18 8 10
-6db width of velocity at zero range (nvs) 0.2 0.2 0

TABLE.6 — Compuarison of waveforms using Mask 2

WAVEFORM TYPE
PARAMETER FSK PSK | LINEAR FM PSK | DIFFERENCE
Peak mask floor 18.55 15.57 2.98
Central peak of Ambiuity Function 150.6 152.2 - 1.6
Ratio of peak masked floor to central peak (dB) -18.1 -19.8 1.7
-6dB width of range at zero Doppler (m) 10 4 6
-6db width of velocity at zero range (m/s) 0.2 0.2 0

TABLE.7 — Comparison of waveforms using Mask 3

WAVEFORM TYPE
PARAMETER FSK PSK | LINEARFM PSK | DIFFERENCE
Peak mask floor 14.99 15.3 -0.31
Central peak of Ambiuity Function 152.81 151.56 1.25
Ratio of peak masked floor to central peak (dB) -20.1 -199 -0.2
-6dB width of range at zero Doppler (m) 14 8 6
-6db width of velocity at zero range (nv/s) 0.2 0.2 0

Comparison of peaked masked floor values

The peak masked floor levels achieved by the two waveforms for each mask can
be compared. The summary of the comparison is detailed below.
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(a) The peak masked floor of Mask 1(Table 5) 1s similar for both types
of waveform.

(h) The peak masked floor of Mask 2 (Table 6) is smaller when using
linear FM PSK waveform than the value achieved by the FSK PSK
waveform.

(¢) The peak masked floor of Mask 3 (Table 7) is similar for both types
of waveform.

These results suggest that the only significant differences in peaked mask floor
levels are seen using Mask 2. However, the value of the masked floor peak is
more usefully expressed as a ratio of the main peak of the ambiguity function.
The reason for this is discussed below.

Use of masked floor to main peak ratio

The values of the peak levels in Table 6 show that the peak valued varied between
149.44 to 152.81. These values should be the same, given that all the signals
contain the same number of samples. However, they do not contain the same
amount of energy due to the effect of producing a sampled signal within
MATLAB. The power in a signal is ¥2 A*. This is proportional to the amount of
energy (E) as in this case time is constant. Recalling the properties of the
ambiguity function, the peak of the ambiguity function is 2E°. Waveforms of
certain frequencies within the range 20-200MHz will not sample correctly at the
sample frequency of 500MHz to produce signals of similar amplitudes.

This is best explained by plotting the two signals that generated the ambiguity
functions with the minimum peak of 149.44 (FSK PSK pulse Table 5) and a
maximum peak of 152.81.(FSK PSK pulse Table 7). These are plotted in (FIGs 32
and 33) respectively. Due to the restrictions using sampled signals the amplitude
in some parts of the signal FiG.32 are smaller than the amplitudes shown in FiG.33.
To overcome this in practice, one could exclude the frequencies in the range 20-
200MHz that when sampled at 500MHz give lower amplitudes similar to those
seen in FIG.32. Alternatively, increasing the sampling frequency could minimize
this effect.
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Because of the fluctuations in amplitude of the main peak, 1t would be better to

compare the ratio of the masked floor with respect to the main peak.
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Masked floor level comparison

For each individual mask, there is very little difference in the value of the masked
floor ratio achieved by each waveform. A comparison can be made of all three
separate masked floor levels ratios achieved in all three masks by both waveforms.
The mean masked floor to central peak ratio on all three masks with both
wavetforms is —20.24dB and the standard deviation is 1.4dB. This implies that for
both waveforms the masked floor to central peak ratio over all three masks was
similar.

It appears that. when comparing the ratio of peak masked floor to central peak of
all three masks on both waveforms, there is little benefit in using a Linear FM
PSK pulse over a FSK PSK pulse. A practical design of a Linear FM PSK system
would be more complex than the FSK PSK system. Based on the results from this
project, the additional cost of designing a complex Linear FM PSK system will
outweigh the benefits that it gives.

More chips within the pulse may yield different results but this is beyond the
scope of this project. This is an area of further research.

Comparison of ambiguity functions

To illustrate the effect of the masked area and the clearance achieved by the
genetic algorithm, the results of the waveforms ambiguity functions using mask 3
are shown in (FiGs.34A & 34B). The contours are set at 3, 10, 15, and 20 dB down
from the main peak. The level of the masked floor is 20dB down from the main
peak. There are no contours shown below the masked floor level. The mask
shape is also shown.
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FiG. 348 — LINEAR FM PSK WAVEFORM

Comparison of Doppler and range discriminations

The objective function in the genetic algorithm was designed such that it only
minimized the peak floor level. It did not consider the discrimination properties of
the two types of pulse diverse waveforms. However, there is an observation that is
worth noting. For each mask. the -6dB width of the central peak in range and
Doppler discrimination was recorded and the following is noted:

(a) The velocity discrimination at zero range of all masks for both types
of waveforms are the same at 0.2m/s. An example of the velocity
discrimination properties for the FSK PSK waveforms for mask 2 is
shown in (Fi1G.35). The very narrow central spike indicates good
discrimination properties.
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FiG.35 — FSK PSK PULSE MASK 2 = VELOCITY DISCRIMINATION PROPRERTIES

(b) When comparing the performance of range discrimination at zero
velocity. the Linear FM PSK pulse is better in all masks. The range
discrimination properties of the FSK PSK waveform and the Linear
FM PSK waveforms for mask 1 are shown in (Figs 36 & 37)
respectively. It can be seen that the width of the main peak is smaller
for the Linear FM PSK pulse than the FSK PSK pulse. Similar
results can be shown for masks 2 and 3.
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Composite ambiguity function comparison
Introduction

The performance of the two waveforms using the composite ambiguity function
was compared using mask 2 only. The results are shown in Table 8. The
frequencies and phases used to make these waveforms are shown in Annex A.

Results
The results are shown in Table 8 below.

TABLE.8 — Composite Ambiguiry Function results Mask 2

WAVEFORM TYPE
PARAMETER FSK PSK | LINEARFM PSK | DIFFERENCE
Peak mask tloor 55.6 525 3.1
Central peak of Ambiuity Function 915.3 877 38.3
Ratio of peak masked floor to central peak (dB) -24.3 -24.4 0.1
-6dB width of range at zero Doppler {m) 3 0.5 2.5
-6db width of velocity at zero range (nvs) 0.2 0.2 0

The composite ambiguity function is the magnitude of the coherent sum of the
output at the matched filter of six individual signals. The central peak of the
composite ambiguity function is approximately six times that of the individual
ambiguity functions seen in Tables 5,6 and 7.

Comparison of masked floor to peak ratio

The masked floor to peak ratio of the two waveforms is almost identical at ~24.3
dB and -24.4dB. There does not seem to be any advantage in using the more
complex linear FM PSK waveform over the simpler FSK PSK waveform. This
non-improvement effect was witnessed with the single ambiguity function. The
contour plots of the two composite ambiguity functions are shown in (FiG.38)
(FSK PSK ) and (FiG.39) (Linear FM PSK).
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Comparison of velocitv and range discrimination

The velocity discrimination of both waveforms is at —6dB is 0.2m/s. This is
similar to the results seen in Table 5 for the single ambiguity case. The range
discrimination for the Linear FM PSK pulse at -6dB is 0.5m. This is superior to
the FSK PSK pulse at 3m. The range discrimination for both waveforms’
composite ambiguity functions are shown in (FIGS 40 and 41).
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Comparison of single ambiguity function and composite ambiguity functions

The results of Tables 6 and 8 can be displayed together (Table 9) to determine the

effect of using a composite ambiguity function over a single ambiguity function.

TABLE.9 — Comparison of composite and single ambiguity functions

AMBIGUITY FUNCTION COMPOSITE AMBIGUITY
FUNCTION
FSK PSK LINEAR FSK PSK LINEAR
FM PSK FM PSK
Ratio of peak masked floor to -18.1 -19.8 -24.3 -24.4
central peak (dB)
-6dB width of range at zero Doppler 10 4 3 0.5
(m)
-6dB width of velocity at zero range 0.2 0.2 0.2 0.2
(mys)

The following conclusions can be drawn from Table 9:

(@) The FSK PSK waveforms’ composite ambiguity function yields a
better masked floor to central peak ratio than the single FSK PSK
ambiguity function. This result for practical waveform design
reinforces the results from previous theoretical studies."

(b) The Linear FM PSK waveforms’ composite ambiguity function
yields a better masked floor to central peak ratio than the single
Linear FM PSK ambiguity function. In the absence of any
theoretical research on Linear FM PSK pulses, this result follows the
trend of the FSK PSK pulse.

(¢) The range discrimination of the composite ambiguity function of
both types of waveform is better than the single ambiguity function.

(d) The velocity discrimination is the same for all waveforms and masks
at 0.2m/s.

The practicalities of designing a radar that can incorporate the composite
ambiguity function have not been addressed in this article however, the
applicability of this method for fast moving targets has been investigated in
previous research. The conclusion of this research proposes a practical
implementation.''

Comparison with 6-bit bi-phase codes

The ratio of peak masked floor to central peak of this six-chip waveform can be
compared with the performance of an optimum 6-bit bi-phase code. For the 6-bit
bi-phase code, the best ratio is —=9.54 dB. The ratio achieved by the FSK PSK and
Linear FM PSK waveforms (Table 9) are much better than this.

Effect of noise in a practical system

Introduction

During the generation of the ambiguity function, it has been assumed that both
transmit and receive signals have been noise free. In the real world, the transmit
and receive signals would be affected by noise. This noise may be generated by:

Initial frequency and phase generation errors.
Measurement errors at the output of the matched filter.

J.Nav.Eng 41(3). 2004



513

e Internal system noise.
e External noise such as frequency interference.
e Target generated noise.

e Effect of propagation on the different frequencies used in the
waveforms.

The exact nature and effect of all this noise could be characterized by developing a
noise model or collecting real data from real systems. Both of these are not in the
scope of this article.

However, if a noise model is developed it is assumed that the noise affects
different values of phase and frequency differently. It is possible to design a
genetic algorithm to search for frequency and phase values of a waveform that are
robust to the effect noise whilst still using the objective of minimizing the peak to
masked floor ratio.

Discussion of the effect of noise

[t is hypothesized that a different sequence of frequency and phase values that give
similar ambiguity functions may be affected differently by the same type of noise.
This implies that for pulse diverse waveforms there are sequences of phase and
frequency that are more robust to noise. This hypothesis is formulated by
considering the case of the 6-bit bi-phase codes that were discovered during the
investigations earlier. There are fourteen 6-bit bi-phase codes that when
autocorrelated give a minimum peak sidelobe level of 2 and the same RMS level
in the sidelobes. These fourteen codes are shown in table 10.

TABLE. 10 - 6-bit bi-phase codes with the same autocorrelation function properties

-1-1-1-11-1 CoODE 1

Sl-1-11-11 CODE 2

-1-1-11 1-1 CODE 3

S1-111-11 CoDE4

-l 1-1-1-1-1 CODE S

L1-1-111 CODE 6

-1 1l CODE 7
11T 1-1-1-1 CODE 8
-1-1-1 1-1-1 CODE9

-1-11-1-1-1 CoDE 10
-t -t 11 CoDE 11

RS U U U N O | CODE 12
-1111-11 CODE 13
-11111-1 CODE 14

In this basic model, noise effects only one bit at a time. The effect of noise is to
reverse the sign of the bit. The effect of noise can be calculated using the
following algorithm. The results are summarized in Table 11.

(a) Start at code 1.

(b) First bit is flipped to simulate noise. The autocorrelation function of
this noisy pulse is calculated and the minimum peak sidelobe level is
recorded.
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(¢) The difference between the original minimum peak sidelobe level (2)
and the new noisy signal’s sidelobe level is recorded.

(d) The first bit is then returned to its original state and the noise ?s
applied to the second bit, again reversing its value. This process is
repeated for all the bits in the code.

(d) The differences calculated at (c) are summed and recorded. The
lower the number, the more robust this code is to noise.

(e) Repeat steps (2) to (e) on remaining codes in turn.

TABLE Y1 — Effect of noise on each bit of a 6-bit code

Min peak Min peak Min peak Min peak Min peak Min peak Measure of
SLLL of ACF | SLL of ACF | SLL of ACF | SLL of ACF | SLL of ACF | SLL of ACF | tolerenace
when Bit | when Bit 2 when Bit 3 when Bit 4 when Bit 5 when Bit 6 | (low is more
Changed Changed Changed Changed Changed Changed tolerent)
CODE 1 2 3 3 2 5 3 6
CODE 2 3 3 4 5 2 2 7
CODE 3 3 5 2 3 3 2 6
CobpE4 4 3 3 2 2 3 5
CODE 5 2 2 5 4 3 3 7
CODE 6 3 3 3 3 3 3 6
Cobe 7 3 2 2 3 3 4 5
CODE 8 2 3 3 2 5 3 6
CODE9 3 3 4 5 2 2 7
CODbE 10 3 5 2 3 3 2 6
Cope 11 4 3 3 2 2 3 5
CODE 12 2 2 5 4 3 3 7
CoDE 13 3 3 3 3 4 3 7
CopE 14 3 2 2 3 3 4 5

It can be seen from Table 11 that aithough all the 6-bit codes yield the same
minimum peak sidelobe level of 2 and the same RMS value in the sidelobes, they
are affected by noise in different extents. This experiment suggests that
highlighted codes 4, 7, 11 and 14 are more tolerant to noise than the others. Based
on these results, it is possible to hypothesise that there may be pulse diverse
waveforms that are more robust to the effects of noise. If the noise is
characterized and used by the genetic algorithm, it should be able to find robust
solutions.

Further research into effects of noise

Future research in this area should investigate the effects of practical noise on the
two types of waveform to determine which offers the more robust solution. A
noise model could be developed or alternatively, the Prototype Generic Radar
Model at Qinetiq (Formerly DERA) could be utilized. The Prototype Generic
Radar Model,” that includes a noise model, can be used to characterize the
performance of a waveform in different operating environments. The model is
written in MATLAB and therefore the FSK PSK and Linear FM PSK waveforms
designed in this project could be tested.”
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Conclusions
Bi-phase code investigation

e A genetic algorithm found the best 25-bit bi-phase codes and its
search performance was much faster than the exhaustive search
method.

s A genetic algorithm found two new 64-bit bi-phase codes that offer
better performance than codes found during previous research.

Generalized BARKER Sequence investigation

A genetic algorithm has been designed to find 13-bit Generalised BARKER
Sequences. The new sequences found were different to those found in previous
research.

FSK PSK and Linear FM waveform comparison

Practical FSK PSK and Linear FM PSK waveforms can be generated in
MATLAB. The ambiguity function and composite ambiguity function can be
calculated. The sidelobe level in specified areas can be determined and the range
and Doppler discrimination properties can be characterized.

A genetic algorithm can be designed to search for the FSK PSK and Linear FM
PSK waveform parameters that generate a specified ambiguity tunction. Three
predefined areas of the waveforms ambiguity function were minimized. The
results show that in terms of masked area minimization there is no significant
advantage gained by using the Linear FM PSK waveform over the FSK PSK
waveform.

The Doppler and range discrimination capabilities of the FSK PSK waveform and
the FSK PSK waveform were compared. In all cases the Linear FM PSK
waveform offered better range and Doppler discrimination over the FSK PSK
waveform. This feature is the only advantage of using the Linear FM PSK
waveform.

The Doppler and range discrimination of the Linear FM PSK composite ambiguity
tunction was superior to that of the FSK PSK composite ambiguity function.

The use of the composite ambiguity function improves the clutter rejection
capabilities of the waveform sets when compared to the single ambiguity function.

Areas of further research

Using genetic algorithms, the search for optimum bi-phase codes could be
extended to lengths greater than 64 bits.

The search for longer Generalized BARKER Sequences could be performed by a
genetic algorithm based on the design described in the article. Longer sequences
of length greater than 45 bits may be found using genetic algorithms.

The implementation of the genetic algorithm in ‘C’ instead of MATLAB would
significantly reduce the algorithm run time. The investigation of longer and more
complex waveforms will require a ‘C’ based algorithm.

The effect of significantly altering the parameters of the genetic algorithms used in
this research was not examined. For example, different crossover and selection
operators may have produced better results. The issue of using multi-objective
genetic algorithms could be examined to determine its merits.
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The Linear FM PSK pulse may offer improved clutter rejection capability in areas
of the ambiguity function if a longer waveform and more chips were used in the
waveform design. Longer waveforms could be designed in further research.

The waveforms designed could be incorporated into a radar model that could
determine their usefulness in a simulated radar environment. If the effect of noise
is characterized then new robust waveforms could be designed.
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Discussions with DR W. DAWBER (Naval Radar Scientist, Qinetiq ) in May 2001,

The frequencies and phases of the pulse diverse waveforms for each mask are

shown below.

TABLE. 12 - Mask 1-frequency and phase values

Linear FM PSK waveform CHIP 1 CHIP 2 CHIP 3
Start Frequency (Hz) 173176500 175294100 45411760
Phase (Degrees) 39.375 275.625 360
Stop Frequency (Hz) 179529400 89882350 80000000
Curr 4 CHip s CHIP 6
Start Frequency (Hz) 184470600 174588200 68000000
Phase (Degrees) 3234375 334.6875 58.4375
Stop Frequency (Hz) 189411800] 180235300 40470590
FSK PSK waveform CHIP 1 CHrp 2 CHIP 3
Frequency (Hz) 169647100 22117650 56000000
Phase (Degrees) 174.375 75.9375 56.25
CHIP 4 CHIP 5 CHIP 6
Frequency (Hz) 1654118001 182352900 20000000
Phase (Degrees) 278.4375 129.375 84.375
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TABLE.13 - Mask 2-frequency and phase values

Linear FM PSK waveform CHIP 1 CHIP2 CHIP3
Start Frequency (Hz) 103294100 63764710 178117600
Phase (Degrees) 289.6875 64.6875 258.75
Stop Frequency (Hz) 161882400 48235290 185176500
CHIP 4 CHIP 5 CHIP 6
Start Frequency (Hz) 101882400 23529410) 188705900
Phase (Degrees) 239.0625 312.1875 101.25
Stop Frequency (Hz) 196470600| 53882350| 157647100
FSK PSK wavetorm cupl | Cuip2 CHip 3
Frequency (Hz) 190823500| 48941180 26352940
Phase (Degrees) 2475 213.75 78.75
CHIP 4 CHIP S CHIP 6
Frequency (Hz) 139294100 181647100| 85647060
Phase (Degrees) 309.375 151.875 84.375
TABLE. 14 — Mask 3-frequency und phase values
Linear FM PSK waveform CHIP 1 CHIP 2 CHip 3
Start Frequency (Hz) 195764700| 24235290|91294120
Phase (Degrees) 354.375 250.3125 115.3125
Stop Frequency (Hz) 189411800| 20000000) 123764700
CHIP 4 CHIP 5 CHIP 6
Start Frequency (Hz) 128000000 196470600 156941200
Phase (Degrees) 67.5 95.625 331.875
Stop Frequency (Hrz) 166823500( 109647100 122352900
FSK PSK waveform CHIP 1 CHIP 2 CHIP 3
Frequency (Hz) 170352900 88470590| 132235300
Phase (Degrees) 75.9375 39.375 78.75
CHir4 CHIP 5 CHIP 6
Frequency (Hz) 156941200( 149176500; 43294120
Phase (Degrees) 281.25 326.25 151.875
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TABLE.15 ~ Mask 2-frequency and phase values for Linear FM PSK CAF

519

CHIp 1 CHIP2 CHip 3
Start Frequency (Hz) 46600110] 193647100 91294120
SIGNAL 1 |Phase (Degrees) 45 98.4375 115.3125
Stop Frequency (Hz) 771764701 1936471001 123764700
CHIr4 CHIP 5 CHIP 6
Start Frequency (Hz) 1280000001 1964706001 156941200
SIGNAL 1 {Phase (Degrees) 67.5 95.625 331.875
Stop Frequency (Hz) 166823500y 109647100] 122352900
CHIP 1 CHIpP 2 CHIP 3
Start Frequency (Hz) 49647060| 165411800] 184470600
SIGNAL 2 | Phasc (Degrees) 154.6875 337.5 300.9375
- Stop Frequency (Hz) 1491765001 159764700( 199294100
CHIP 4 CHiP 8§ CHIP 6
Start Frequency (Hz) 291764701 150588200 60941130
SIGNAL 2 |Phase (Degrees) 149.0625 53.4375 2559375
Stop Frequency (Hz) 126588200 440000001 168941200
CHIP ] CHIP 2 CHIP 3
B Start Frequency (Hz) 104000000 92000000 56000000
SIGNAL 3 |Phase (Degrees) 199.6875 87.1875 1940625
Stop Frequency (Hz) 1767059001 181647100 104705900
CHIP 4 CHIP 5 CHIP 6
Start Frequency (Hz) 171058800}  157647100] 161882400
SIGNAL 3 | Phase (Degrees) 208.0125 146.25 149.0625
Stop Frequency (Hz) 22117650 46823530 38352940
CHIP 1 CHIP2 CHIP 3
Start Frequency (Hz) 124470500 35529410 41176470
SIGNAL 4 | Phase (Degrees) 123.75 177.1875 118.125
Stop Frequency (Hz) 1541176001 101176500] 185882400
CHIP 4 CHIP § CHIP 6
Start Frequency (Hz) 76470550] 1823529001 163411800
SIGNAL 4 |Phase (Degrees) 151.875 357.1875 39.375
Stop Frequency (Hz) 1625882001 1647059001 152000000
CHIP | CHIP 2 CHip 3
Start Frequency (Hz) 123764700 355294101 155529400
SIGNAL 5 | Phase (Degrees) 47.8125 264.375 286.875
Stop Frequency (Hz) 112470600] 1011765001 116705900
CHIP 4 CHIP § CHIP 6
Start Frequency (Hz) 1957647001 197882400 42588240
SIGNAL § |Phase (Degrees) 45 340.3125 312.1875
Stop Frequency (Hz) 425882401 1061176001 195058800
CHIP 1 CHIP 2 CHIP 3
Start Frequency (Hz) 166823500 46117650 46823530
SIGNAL 6 |Phase (Degrees) 241.875 300.9375 64.6875
Stop Frequency (Hz) 116705900] 135764700 29882350
CHIP 4 CHIP § CHIP 6
Start Frequency (Hz) 256470601 158352900 20000000
SIGNAL 6 |Phase (Degrees) 3459375 230.625 255.9375
Stop Frequency (Hz) 149882400 42588240 24235290
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TABLE.16 — Mask 2-frequency and phase values for FSK PSK CAF

CHIP 1 CHIP 2 CHip 3
. Frequency (Hz) 42840770 49647060 96941180
Signal 1 o se (Desrees) 64.6875]  137.8125 270
Cuir4 CHIP S CHIP 6
Sienal 1 Frequency (Hz) 56705880 148470600 60941130
= Phase (Degrees) 216.5625 270 146.25
CHIP 1 CHIP 2 CHIP 3
Sienal 2 TFrequencL(Hz) 185882400 34823530 165411800
e Phase (Degrees) 81.5625 70.3125 101.25]
L CHirp 4 CHIP 5 CHIP 6
Sienal 2 Start Frequency (Hz) 1883705900 95529410 78588240
- Phase (Degrees) 149.0625 188.4375 2559375
CHrp 1 CHipr2 CHIP 3
Sional 3 Frequency (Hz) 178823500 397647101189411800
= Phase (Degrees) 180 160.3125 123,75
CHIP 4 CHIP § CHIP 6
Sienal 3 Frequency (Hz) 161882400 38470590 137882400
s Phase (Degrees) 315 185.625 315
Cyip 1 CHIP 2 CHIP 3
. Frequency (Hz) 72235290129176470163 90588240
SIGNAL 4 ]
Phase (Degrees) 106.875 163.125 104.0625
CHipP 4 CHIP § CHIP 6
SIGNAL 4 Frequency (Hz) 195058800 37764710 154823500
Phuase (Degrees) 75.9375 270 208.125
CHrip 1 CHIP2 CHIP 3
SIGNAL 5 Frequency (Hz) 76470590 122352900 34823530
Phase (Degrees) 247.5 171.5625 132.1875
CHIP 4 CHIP 5 CHIP 6
. Frequency (Hz) 186588200 82823530 53882350
SIGNAL § -
Phase (Degrees) 331.875 81,5625 143.4375
CHIr 1 CHIP2 CHIP 3
SIGNAL 6 Frequency (Hz) 89882350 39058820 157647100
Phase (Degrees) 244.6875 253.125 106.875
CHipr 4 CHIP 5 CHIP 6
Frequency (Hz) 90588240 145647100 161882400
SIGNAL 6
Phase (Degrees) 360 81.5625 247.5
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