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Synopsis
The most difficult multiple target tracking problem includes multiple sensors with different viewing angles,

measurement geometries, fields of view, accuracies, resolutions and scan rates. Such variations in sensor output
characteristics as well as channel delays, countermeasures, inherent target features and maneuvers have solidified
the consensus that an effective fusion system must handle several levels of “tracklets” from distributed sources
in order to produce the desired long tracks as described in Waltz and Llinas (1990). In view of the increased
attention given to hypersonics as well as the increased need for low-level signal processing, the computational
complexity of track association is a vital factor in determining an autonomous vehicles’ ability to complete its
objectives quickly. We are given a set of tracklets where the particular methods used to make the detections are
taken for granted. Following joint probability density association filters, we assume short tracklets are completed
(i.e, detections are correctly correlated with state estimates) and take a computational geometric approach to as-
sociating tracklets. If N is the number of short term tracklets, this method fuses them in O(N2). Using covariance
as a distance, this report suggests the applicability of a class of sweep-line algorithms developed in computational
geometry in data fusion.
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1 Introduction
Many classical problems in control theory such as regulation and stabilization have been solved to adequate

satisfaction using well established techniques from optimization theory. Nowadays, due to the proliferation of au-
tonomous systems, rather than optimizing an objective function, predicting relevant constraints for control systems
appears to be the million dollar question. For example, the problem of path planning involves not just reference
following routines but also intelligent processing of data from sensor networks to design the constraints too.

The multiple object tracking problem arises in situations whenever sensor data is available from one or more
wide angle of view sensors like radar. The reports from these sensors are obtained at fixed intervals and contain
noisy reflections from all the objects in their field of view. The basic tracking problem is to estimate the position
and velocity of all the objects detected in the sectors surveilled using the reports gathered over time. For single
objects the Kalman filter provides a suitable solution. Multiple object tracking poses a problem because correlating
measurements with targets is compounded as the number of detections increase. An important algorithm that
enables low-level track formation is the global nearest neighbor. This algorithm makes complete decisions for
each measurement regarding their source and validity.

In joint probability density association filtering, all measurements within a vicinity are assigned to a target
but the weights on these measurements are selected by proximity. We shall begin with a brief explanation of
this method for the sake of completeness but the objective of this note is to address a difficulty in the subsequent
track-to-track association steps.

2 Tracking Filters and Low-Level Data Association
The kinematics of a single object can be described by

xk+1 = Φkxk +Gkuk

where xk is an n×1 state vector at the kth time sample and Φk is an apprpriate n×n transition matrix derived from
Newton’s equations of motion. uk is an m×1 input vector to account for modelling errors and maneuvers which is
assumed to follow a Gaussian distribution with zero mean and covariance Qk. We take T to be the scan interval of
the sensor so that tk = kT . Each report yk contains m×1 measurements that are related to the state vector xk by

yk = Hkxk + vk

where vk ∼N (0,Rk). The extraneous sensor reports due to noise, false alarms and clutter satisfy

yk = Hx̂k|k−1 +wk
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where wk is white and uniform over a volume V of the measurement space centered around the prediction ŷk|k−1 =
Hkx̂k|k−1. If the unnormalized extraneous report density is λ then the number of such reports in V follows a Poisson
distribution with mean λV . The prediction given by the state transition matrix is

x̂k+1|k = Φkx̂k|k

Pk+1|k = ΦkPk|kΦ
T
k +GkQkGT

k .

As shown in Gelb (1974) given Rk and Hk, the tracking filter updates x̂k|k and covariance Pk|k using yk and x̂k|k−1 as

x̂k|k = x̂k|k−1 +Kk
(
yk−Hkx̂k|k−1

)
Sk = HkPk|k−1HT

k +Rk

Kk = Pk|k−1HT
k
(
HkPk|k−1HT

k +Rk
)−1

Pk|k =
(
I−KkHkPk|k−1

)
.

2.1 A Suboptimal Bayes Algorithm: JPDAF
Using the standard measurement mode (unbiased, Gaussian), the mean of the state at time k is

Xs =
mk

∑
i=0

Xsiβi

where βi is the probability that a measurement originates from the track. The estimate assuming i is correct is

Xsi = Xp + kvi, i = 1, . . . ,mk

vi = Zi− zp

and for i = 0 (no update) XS0 = Xp. Low-level data association or measurement-to-track association is performed
next.

2.2 Low Level Data Association
An assignment matrix is constructed which consists of elements proportional to the distance from each ob-

servation to each track. Munkres (1957) describes an optimal assignment algorithm to correlate observations to
tracks. To produce tracks, the tracking filter continues to perform the update and predict steps using optimal as-
signment to select measurements. In a global nearest neighbor algorithm given hit miss probabilities, tracks are
considered independently. The statistical distance of each measurement zm from track prediction zp is given by
D(V ) = [zm− zp]

′S−1 = V ′S−1V where S is the residual covariance associated with that object. The report which
minimizes the value of D(V ) is selected. This approach does not prevent two tracks from using the same measure-
ment for the update, the main advantage being immediate decision on a single hypothesis. Disadvantages are that
there is no ability to correct a bad decision and assuming the probability of detection is one, there is no mechanism
to consider false alarms.

2.2.1 Track Initiation
This step involves using sensor reports that do not correlate with existing tracks to assign a new ID to a tentative

track. The newborn track is confirmed shortly thereafter when there is reasonable degree of certainty that it is a
real track.

2.2.2 Track Elongation
For each track, measurements at a time step is validated using a gating test where the measurement is considered

valid if (
yk− ŷk|k−1

)T S−1
k

(
yk− ŷk|k−1

)
≤ g2

for a suitable g as described in Bar-Shalom and Fortman (1988).

2.2.3 Track Termination
Tracks are terminated to prevent them from interfering with real target tracks. Valid reasons to terminate a

track are either the target is outside the coverage area or it is destroyed. When tracks are terminated prematurely,
a broken set of tracklets appears for each valid measurement. The next steps suggest a way to fuse these tracklets
using a technique borrowed from computational geometry.
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2.3 Track-to-Track Association
In some situations, a single object generates several tracks due to the limitations in either the sensor or the

digital processors. It is necessary to stitch these tracklets together to obtain a single long track for each target.
There may be a total of N such tracklets for r targets where N� r. This can be challenging in situations when for
instance, several targets with unknown dynamics are moving at velocities that strain the update rate of a monostatic
radar. This is because although the tracklets within the scan are correctly associated, the distance between related
tracklets from a single target may not be close enough to make the correct association. Define a track data structure
for a track Ti with the following fields: the tentative ID, a set of associated detections (valid measurements of either
range or elevation grouped together using low-level optimal assignment), maximum timespan between detections
Li and the current estimates x̂k,i, Pk,i. For each tracklet, Ti where i ranges from 1 to N, a representative point ci is
generated using Li and x̂k,i.

For C = {c1, . . . ,cn} and W =
{

Pk,1, . . . ,Pk,n
}

, partition V into N pieces where each partition Vi is defined by

Vi =
{

x ∈C | (x− ci)
2 +Pk,i ≤ (x− c j)

2 +Pk, j ∀ j , i
}
. (1)

Imai, Iri and Murota (1985) extended the partition defined by (1) to one in Laguerre geometry for N circles in the
plane where the distance between a circle and a point is defined by the length of the tangent line. The Voronoi
diagram in the Laguerre geometry may be applied to finding the connected components of N circles and finding
the contours of the union of N circles. deBerg (2000) shows that this partition may be obtained using sweep line
algorithms. Next, we may compute the list of edges Ei for each partition Vi and construct the Delaunay triangulation
D using the elements of C. The associations for a track Ti is given by Ei ∩D. The association of two tracklets is
controlled by the length of the edge shared by their representative points. Placing weights W on the representatives
using the covariance of the tracklet enables us to fuse tracklets which are from the same track since they will have
similar covariances.

2.3.1 Selecting tracklet representatives
Given a set of measurements in a tracklet Ti, a motion model is used to best explain the dynamics of the target

within that set. For example, if the tracklet is linear with each measurement evenly spaced, a constant velocity
model can be chosen. For such models, a simple representative point c is the midpoint of the best fit line. For more
complex motion models, the mean of the first and last detection in the tracklet could be taken as a representative
point. Another way to choose the representative is to take the centroid of the polygon whose vertices are the given
by the measurements. Alternatively, the middle most measurement in the tracklet can be taken as a representative.

2.3.2 Splitting fused tracklets
Let us restrict ourselves to tracklets containing only range measurements. The outcome of E ∩D is a 2× p

matrix, say U where each column contains the association between the two range representatives that are believed
to have originated from the same target. To split U into long fused tracks, we may simply reshape U into a single
column matrix with each column of U stacked on top of the other beginning with the first column. Then taking the
derivative of that column matrix and inserting a zero at the top of the results in a 2p×1 column matrix. Reshaping
the 2p×1 column matrix back into a 2× p matrix with mostly zeros. If we find all the locations where the first row
is non-zero, we can find long tracks because the presence of a non-zero value indicates a change in track identity.
The number of locations found thus is the estimated number of targets r̂. Create r̂ new IDs which will serve as the
final IDs for the long tracks. We can then break up the 2× p matrix into r̂ smaller matrices by using those locations
where there is a non-zero value to indicate the start of the new batch. Each smaller matrix contains all the tracklets
which are associated with the same target.

3 Conclusions and Further Work
Modern sensor fusion platforms deliver long tracks through several intelligent solutions. The most common

architecture involves three components: a data processing module, a correlator and an identity manager. Fusion
centers must handle delayed measurements from ground based, shipborne and airborne platforms and also be able
to exploit overlapping sensor networks. They must provide operators with long tracks because the length of a track
provides crucial information such as range and motion patters for use in high level decision support. Detection
of anomalies, conflicts and other situations of interest can be identified more effectively if machine learning is
fed with better tracks. Rich and meaningful interaction is possible between automatic control theorists and the
air surveillance domain as path planning becomes more reliant on single or multisensor trackers and correlators.
Some of the industries most benefited from this research will be those involved in air sovereignty, surveillance,
marine vessel traffic, and commercial space vehicle re-entry services.

A sweep line algorithm produces weighted plane partitions in O(N logN). The weights are given by Wi = Pk,i

and the sweep line is the vertical line that represents the kth batch. Each tracklet representative ci is treated as
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the focus of a parabola and the sweep line is the directrix. As the sweep line moves in time, it partitions the
space V containing the track representative using rules described in deBerg (2000). Constructing the dual of these
partitions using the same vertices produces Delaunay triangulations. Intersections of the partition edges E with
the triangulations produces the associations in O(N2). In the presence of asynchronous sensor reports, it is unclear
how the weights W should be modified. Also, the selection of tracklet representatives deserves more rigorous
analysis.
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