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Synopsis
Condition Based Maintenance on diesel engines can help to reduce maintenance load and better plan mainte-

nance activities in order to support ships with reduced or no crew. Diesel engine performance models are required
to predict engine performance parameters in order to identify emerging failures early on and to establish trends
in performance reduction. In this paper, a novel approach is proposed to accurately predict engine temperatures
during operational dynamic manoeuvring. In this hybrid modelling approach, the authors combine the mech-
anistic knowledge from physical diesel engine models with the statistic knowledge from engine measurements
on a sound engine. This simulation study, using data collected from a Holland class patrol vessel, demonstrates
that existing models cannot accurately predict measured temperatures during dynamic manoeuvring, and that the
hybrid modelling approach outperforms a purely data driven approach by reducing the prediction error during a
typical day of operation from 10% to 2%.

Keywords: Data-Drive methods; Condition Based Maintenance; Gray-Box Models; Exhaust gas temperature predic-
tion; Machine Learning

1 Introduction
The Royal Netherlands Navy (RNLN) in 2012 introduced the Oceangoing Patrol Vessels (OPVs), shown in

Figure 1, to perform worldwide operations at the lower end of the warfare spectrum, such as counter drugs, counter
piracy, coastguard and disaster relief operations, with a crew of only 50. This could be achieved due to a high degree
of innovation (Horenberg and Melaet, 2013), advanced firefighting and damage control automation (Geertsma
et al., 2013a) and Combat and Platform Management System (PMS) integration (Geertsma et al., 2013b). However,
Horenberg and Melaet (2013) demonstrate that the maintenance load for the OPV is too high for its crew and shore
support organisation and propose Condition Based Maintenance (CBM) as a measure to reduce maintenance load.

The increased level of automation has led to an increase in available sensor information to be used for CBM,
particularly for diesel engines. Moreover, diesel engines require a significant amount of maintenance on the OPV
class (Horenberg and Melaet, 2013). Recent advances in Machine Learning techniques allow the use of sensor data
to indicate the degradation in performance of naval gas turbine engines (Coraddu et al., 2016). Moreover, Coraddu
et al. (2017) have demonstrated the potential of using a combination of Machine Learning algorithms and physical
models in predicting vessel fuel consumption and determining optimal trim. However, this combined approach has
not yet been applied to improve diesel engine models, so they can be used for CBM.
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Figure 1: RNLN Holland class Oceangoing Patrol Vessel, case study in this paper.

Currently, most diesel engine models focus on the prediction of fuel consumption, CO2, NOx and PM emissions
and smoke production (Theotokatos and Tzelepis, 2015; Nielsen et al., 2017; Kökkülünk et al., 2016). However,
temperatures of the exhaust valve, exhaust receiver gas flow and turbine entry gas flow are important indicators
for thermal loading of an engine (Sapra et al., 2017; Geertsma et al., 2017; Grimmelius and Stapersma, 2000),
and to indicate intercooler failure (Hountalas, 2000). The current state of the art models still have a large error of
up to 6% in predicting temperatures in static conditions (Geertsma et al., 2017; Theotokatos and Tzelepis, 2015),
while dynamic predictions are worse, as shown in this paper. The necessity for accurate dynamic temperature
predictions, somehow bypassing the thermal inertia of the sensors themselves, is demonstrated by Korczewski
(2016). Deviation of measured temperatures from temperatures predicted by a model that takes engine operating
conditions into account can provide important diagnostic information to detect deterioration of exhaust valves and
turbocharger stator and rotor blades before failure (Korczewski, 2015).

With the rapid growth of ship monitoring systems within the shipping industry, the use of Data-Driven Models
is obtaining substantial interest. Models based on the mechanical understanding of the physics of the problem are
well-established, although they could fail in the accurate forecast of the effect of various distinct and heterogeneous
phenomena. On the other hand, Data-Driven Models can be applied by employing a large amount of data with few,
if no physical knowledge of the system. Lately, Machine Learning techniques have been successfully employed
for the evaluation of ship performance (Coraddu et al., 2015; Petersen et al., 2012). Artificial Neural Network and
Gaussian process methods were applied to estimate the ship’s fuel efficiency in Pedersen and Larsen (2009) and
Petersen et al. (2012), and in Radonjic and Vukadinovic (2015) an Ensemble Neural Network was applied to predict
a towboat shaft power demand. In Petersen et al. (2012) a statistical model for the fuel consumption prediction,
adopting Artificial Neural Networks and Gaussian Processes is proposed, and finally, in Coraddu et al. (2017) the
authors showed how Data-Driven Models outperform physical models in the prediction of ship performance. In
this paper, an existing diesel engine model is improved using data-driven techniques adding a black-box component
to the model output (Leifsson et al., 2008; Coraddu et al., 2017). The proposed gray-box modelling approach allows
exploiting both the mechanistic knowledge of the physical principles and available measurements. As reported in
Coraddu et al. (2017) this approach provides more accurate outcomes when compared with the first principle
physical model, and requires a smaller amount of data when compared to the Data-Driven Models. Therefore,
this work aims to investigate how Data-Driven Models and a combination of data-driven and physical models can
improve prediction of engine temperatures, using extensive PMS measurement data from the OPV class.

The novelties of this paper are: first, the authors use data analysis on an extensive dataset to establish whether
Data-Driven Models can be used to predict engine temperatures; secondly, the authors present a novel gray-
box modelling approach to predict diesel temperatures using the physical models from Geertsma et al. (2017) in
combination with Machine Learning algorithms from Coraddu et al. (2016, 2017). The resulting Gray-Box Model
should yield a more accurate representation of the engine, which will then be suitable for use in various aspects of
off-line and real-time operational optimisation.

The paper is organised as follows: Section 2 gives a brief description of the system, the used physical model
and the dataset used for this work, Section 4 describes the Data-Driven Model and associated theory, Section 5
describes the combined physical and data learning gray-box approach. Finally, Section 6 describes the results of
the three modelling approaches and Section 7 summarises the conclusions and proposes future work.
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Figure 2: Propulsion system layout for the considered naval vessel, from Geertsma et al. (2017).

Variable name Unit Variable name Unit
Drive shaft torque [Nm] HT cooling water temperature after cooler [°C]
Engine speed [rpm] HT cooling water temperature before cooler [°C]
Main bearing #1 temperature [°C] Relative charge air pressure [bar]
Main bearing #2 temperature [°C] Charge air temperature after Turbocharger A bank [°C]
Main bearing #3 temperature [°C] Charge air temperature after Turbocharger B bank [°C]
Main bearing #4 temperature [°C] Charge air temperature before Turbocharger A bank [°C]
Main bearing #5 temperature [°C] Charge air temperature before Turbocharger B bank [°C]
Main bearing #6 temperature [°C] Temperature charge air [°C]
Main bearing #7 temperature [°C] Turbocharger speed TC A bank [rpm]
Splash oil compartment #1 temperature [°C] Turbocharger speed TC B bank [rpm]
Splash oil compartment #2 temperature [°C] Exhaust temperature after TC A bank [°C]
Splash oil compartment #3 temperature [°C] Exhaust temperature after TC B bank [°C]
Splash oil compartment #4 temperature [°C] Fuel temperature [°C]
Splash oil compartment #5 temperature [°C] LT cooling water temperature after cooler [°C]
Splash oil compartment #6 temperature [°C] LT cooling water temperature before cooler [°C]
Fuel rack position [%] Power margin relative to maximum [%]
Lube oil temperature before engine [°C] Average exhaust gas temperature A bank [°C]
Lube oil temperature after engine [°C] Average exhaust gas temperature b bank [°C]
Fuel flow [kg/s]

Table 1: System’s main features.

2 System physical model description and available data
The propulsion system of the Holland class Patrol Vessels consists of two shafts with controllable pitch pro-

pellers (CPP), a gearbox, and one diesel engine per shaft, as shown in Figure 2. In this study, the authors consider
the performance of the engine without taking into account the interaction with gearbox, propeller and ship, because
this interaction influences engine behaviour primarily through engine load, a measured output.

For the Engine Physical Model, Engine Data-Driven Model and the combined Engine Hybrid Model, the
authors use the dataset of one four-stroke, medium speed diesel engine on board a Holland class Oceangoing
Patrol Vessel, which is shown in Figure 1. The vessel is equipped with a data logging system which is used by
the Royal Netherlands Navy both for on board monitoring and for land-based performance control. The dataset
consists of 114 signals with a sample rate of 3 s that cover a time of 35 hours, totalling 42,000 data points. In brief,
these points consist of several control and monitoring parameters of the engine, from engine speed and torque, to
various operational pressures and temperatures of engine components such as the crankshaft, cylinder and turbo-
charger and systems, such as water cooling, lubricating oil, exhaust-gas, and fuel systems. Table 1 summarises the
subset of the available measurements, from the continuous monitoring system, that have been used in the Machine
Learning modelling phase.

3 Engine Physical Model
The Engine Physical Model is a mean value first principle diesel engine model, illustrated in Figure 3, and

described in detail in Geertsma et al. (2017). The model consists of three state variables: fuel injection per cylinder
per cycle m f , charge pressure p1 and exhaust receiver pressure pd . The inputs of the model are engine speed ne
and fuel pump setpoint Xset , which typically originates from the speed governor, and the output is engine torque
Me.
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Figure 3: Schematic representation of the diesel engine model and the interaction of its subsystems, from Geertsma
et al. (2017).

The temperatures of the gas flow in the exhaust receiver and at the turbocharger exit, subjects of this study, are
represented by a system of Algebraic Equations (AE) and Differential and Algebraic Equations (DAE) featuring the
input variables, state variables and the following mathematically related parameters: trapped mass in the cylinder
m1, air excess ratio λa, isobaric, isochoric and isothermal heat release q23, q34 and q45, temperature and pressure
after expansion of the Seiliger cycle T6 and p6 and induced work during the Seiliger cycle wi. The original
aspect of this model is that the turbocharger dynamics are represented by the Büchi power and flow balance
between compressor and turbine and do not require compressor or turbine maps for calibration. As fast dynamics
are neglected in this model, the model runs up to 2500 times real time, much faster than mean value engine
models using compressor and turbine maps, such as Nielsen et al. (2017), Theotokatos and Tzelepis (2015), Sapra
et al. (2017) and Kökkülünk et al. (2016). Moreover, Machine Learning methods can be used to improve the
mathematical relationships in the models, improving it’s accuracy, while maintaining the run-time during the feed-
forward phase, after an initial learning phase, which also benefits from fast physical models.

The Engine Physical Model predicts gas flow temperatures, in particular the temperatures after the turbine exit
Te and the exhaust receiver temperature Td , and neglects the effect of the location of the thermocouples, which
measure the temperature at the outside of the piping. Therefore, to account for the location of the sensors, the
authors have included thermal inertia and heat losses with a first order response with a constant time constant of
the thermocouple τtc and a constant bias btc, as follows:

Ttc,d(t)
dt

=
(Td(t)−btc,d)−Ttc,d(t)

τtc,d
(1)

Ttc,e(t)
dt

=
(Te(t)−btc,e)−Ttc,e(t)

τtc,e
, (2)

in an effort to better align the physical prediction with the actual temperature measurement at turbocharger entry,
Ttc,d and turbocharger exit Ttc,e from the dataset.

4 Engine Data-Driven Model
Machine Learning approaches play a central role in extracting non-trivial information from amounts of raw

data, collected from sensors and heterogeneous inputs and concerning the monitored asset. The learning process
for Machine Learning approaches usually consists of two phases: during the training phase, a set of data is used
to induce a model that best fits them, according to some criteria; then, the trained model is set in motion into the
real application during the feed-forward phase.

In this paper, the authors focus on the problem of ship diesel engine performance modelling, developing the so
called Engine Data-Driven Model. For this model development, a regression problem must be solved, where the
key temperatures must be estimated based on data, collected from the vessel’s monitoring system. In particular, in
the conventional regression framework in Machine Learning (Vapnik, 1998; Cristianini and Shawe-Taylor, 2000;
Zou and Hastie, 2005), a set of training data D = {(x1,y1), · · · ,(xn,yn)}, where x ∈ Rd and yi ∈ R, is considered.
As the authors are targeting a regression problem, the purpose is to find the best approximating function in a set
of possible ones h ∈H , where h : Rd → R, which should be close (in some sense) to the unknown target function
f (x).

During the training phase, the quality of the learned regressor h(x) is usually measured according to a loss
function `(h(x),y) (Rosasco et al., 2004), which calculates the discrepancy between the true output y and the
estimated one. The empirical error then computes the average discrepancy per sample, reported by a model on the
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training patterns:

L̂(h) =
1
n

n

∑
i=1

`(h(xi),yi). (3)

A simple criterion for selecting the final model during the training phase could then consist in simply choosing
the approximating function that minimises the empirical error L̂(h). This approach, known as Empirical Risk
Minimization (Vapnik, 1998), is usually avoided in Machine Learning as it leads to severe overfitting of the model
on the training dataset.

A more effective approach is represented by minimising a cost function where the tradeoff between accuracy on
the training data and a measure of the complexity of the selected approximating function is implemented (Tikhonov
and Arsenin, 1979):

h∗ : min
h∈H

L̂(h)+λ C(h). (4)

In other words, the best approximating function h∗ is chosen as the one that is complicated enough to learn from
data without overfitting them. In particular, C(·) is a complexity measure: depending on the exploited Machine
Learning approach, different measures are exploited since no optimal choice exists (Wolpert and Macready, 1997).
Instead, λ is a hyperparameter, that must be aprioristically set and is not obtained as an output of the optimisation
procedure: it regulates the trade-off between the overfitting tendency, related to the minimisation of the empirical
error, and the underfitting tendency, related to the minimisation of C(·). The optimal value for λ is problem-
dependent, and tuning this hyperparameter is a non-trivial task that must be solved during the Model Selection
phase (Oneto, 2018). Obviously, the error that h commits over Dn is optimistically biased since Dn has been
used for building h itself. For this reason, another set of fresh data, composed of m samples and called test set
Tm = {(xt

1,y
t
1), · · · ,(xt

m,y
t
m)}, needs to be exploited.

Among the several loss-function available to estimate the performances of the learned regressor h(x) in ap-
proximating the target function f (x), the squared loss `2( f (x),y) = ( f (x)− y)2 is one of the mostly adopted. The
squared loss can be adopted to create different indexes of performance, which differently weight the distance
between yt

i and f (xt
i), such as the Root Mean Square Error (RMSE) and Relative Error Percentage (REP), where:

RMSE =

√
1
m

m

∑
i=1

`2( f (xt
i),y

t
i). (5)

REP = 100
√

m

∑
i=1

`2( f (xt
i),y

t
i)
/

m

∑
i=1

(yt
i)

2. (6)

In order to solve the problem, the authors have to first define the functional structure of h. It is possible to
define h as a nonlinear function (Vapnik, 1998) h(x) = w · φ(x) + b where φ : Rd → RD with usually D� d,
w ∈ RD, and b ∈ R. Since the authors are dealing with regression problems, the most suited loss function is
the square loss function `(h(x),y) = (y− h(x))2 (Rosasco et al., 2004). Finally, as a complexity measure, the
combination of the L1 and the L2 regularization schemes (Zou and Hastie, 2005) has been exploited. L1L2
regularization schema, also called Elastic Net regularization (Zou and Hastie, 2005), is both a regularization and
variable selection method. L1L2 often outperforms the L1, while providing a similar sparsity of representation.
In addition, the L1L2 encourages a grouping effect, where strongly correlated features tend to be in or out of the
model together. Consequently, Problem (4) can be reformulated as follows:

(w,b)∗ : arg min
w∈RD,b∈R

n

∑
i=1

(w ·φ(xi)+b− yi)
2 +λ

(
ρ‖w‖2

2 +(1−ρ)‖w‖1
)
, (7)

where ρ ∈ [0,1] is a constant that balances sparsity characteristics with feature selection ability (Zou and Hastie,
2005) and φ is the feature mapping. ρ and φ , together with λ , must be tuned during the Model Selection phase.
Note that Problem (7) is convex and can be solved with any solver, in our case CPLEX (IBM, 2018).

The Bootstrap technique (Oneto, 2018) has been exploited as Model Selection algorithm , since it is the most
effective one in cases like the one described in the paper, when the cardinality of the sample is reasonable (Oneto,
2018). The Bootstrap relies on a simple idea: the original dataset Dn is resampled many (r) times with replacement,
to build two independent datasets called learning and validation sets, respectively L j

l and V j
v , with j ∈ {1, · · · ,r}.

Note that L j
l ∩V j

v = �. Then, to select the best set of hyperparameters (φ ,ρ,λ )∗ in the set of possible ones
{(φ1,ρ1,λ1),(φ2,ρ2,λ2), · · ·} for Problem (7) or, in other words, to perform the Model Selection phase, the fol-
lowing procedure needs to be applied:

(φ ,ρ,λ )∗ : arg min
{(φ1,ρ1,λ1),(φ2,ρ2,λ2),···}

1
r

r

∑
j=1

L̂V j
v (hL j

l ), (8)

Proceedings of the International Ship Control Systems Symposium (iSCSS) 2 – 4 October 2018

5 http://doi.org/10.24868/issn.2631-8741.2018.011 



Time [h] Mode Rate of revolution [rpm] Engine Load [%]
3 Manoeuvre mostly 500 to 700 rpm idling and low load
3 Transit constant near 1000 rpm speed near maximum load
1 Transit low speed between 500 and 600 rpm intermediate loads from 10% to 50%
3 Transit constant near 1000 rpm speed near maximum load
4 Manoeuvre various changing speeds from 500 to 950 rpm various changing load from 10% to 80%

Table 2: Dn - Training dataset operational description.

Time [h] Mode Rate of revolution Engine Load
12 Transit 760 rpm 50% to 55%
2 Manoeuvre various speeds up to 850 rpm various load from idle to 50%
2 Transit 780 rpm 55% to 60%

1 3⁄4 Manoeuvre low 500 to 600 rpm speed up to 20% load
1 1⁄2 Transit 400 to 550 rpm low Load

1⁄4 Transit gradually increasing speed from 400 to 780 rpm gradually increasing load from 10% to 60%
2 1⁄2 Transit 780 rpm 55% to 60%

Table 3: Tm - Testing dataset operational description.

where L̂V j
v (hL j

l ) is the error on the validation set V j
v of the function h∗ trained with L j

l via Algorithm (7). Note
that, in Bootstrap, l = n and L o

l must be sampled with replacement from Dn, while V o
v = Dn \L o

l . The idea
behind the Bootstrap is simple: (φ ,ρ,λ )∗ should be the set of hyperparameters which allows the function to work
fine on data that has not been used to train the model.

5 Engine Hybrid Model
The proposed Engine Hybrid Model is a combination of an Engine Physical Model and the Engine Data-

Driven Model. This requires to modify the Engine Data-Driven Model as defined in the previous section in a way
to include the mechanistic knowledge of the system. The approach of this paper is a naive one, as the output of the
Engine Physical Model is used as a new feature that the Engine Data-Driven Model can use for training the model.

In the Engine Hybrid Model case, the Engine Physical Model can be seen as a function of the input x. The
Engine Physical Model, that we will call hEPM, allows the creation of a new training and testing dataset:

Dn=

{([
x1

hEPM(x1)

]
,y1

)
, · · · ,

([
xn

hEPM(xn)

]
,yn

)}
, Tm=

{([
xt

1
hEPM(xt

1)

]
,yt

1

)
, · · · ,

([
xt

m
hEPM(xt

m)

]
,yt

m

)}
Based on these new datasets an Engine Hybrid Model can be generated hEHM

([
xT |hEPM(x)

]T) and tested. Accord-
ing to this approach, every run of the Engine Hybrid Model requires an initial run of the Engine Physical Model
in order to compute its output hEPM(x), which allows evaluating hEHM

([
xT |hEPM(x)

]T). This is the simplest
approach for including new information into the learning process.

6 Results and Discussions
In this section, the results obtained by the Engine Physical Model, Engine Data-Driven Model and Engine

Hybrid Model, for the diesel engine temperature prediction, based on the data described in Section 2, are shown
and discussed. During the experiments, in the training phase the authors exploited one set of training data Dn,
while in the feed-forward phase a completely different run of test data Tm has been used.

During the Model Selection the hyperparameter r was set equal to 1000 and the hyperparameter was searched
for ρ ∈ {0, 2−15, 2−14, . . . , 2−1, 1−2−2, . . . , 1−2−15, 1} and λ ∈ {10−6.0, 10−5.5, · · · , 10+6.0}. Finally, for φ the
following feature mappings φ(x) = {x, [x,x2], [x,x2,x3], · · · , [x,x2,x3, · · · ,x10]} have been tested.

The two data sets consist of various different manoeuvres using the two control modes described in Geertsma
et al. (2017):

• manoeuvre mode: combinator curve with relative low pitch, high engine speed and fast acceleration rates;

• transit mode: combinator curve with higher pitch lower engine speed and slow acceleration rates.

The used training dataset consists of 14 hours of data covering the manoeuvring periods and characteristics
reported in Table 2. In Table 3 the description of the used testing dataset, consisting of 21 3⁄4 hours of data, is
reported. The test run was performed utilising the three different modelling approaches to predict the engine
temperatures. The results for the turbine exit (Te) and exhaust receiver temperatures (Td) are reported from Figure
4 to Figure 9 for the three different numerical models.
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Model Te - REP [%] Td - REP [%] Te - RMSE [°C] Td - RMSE [°C]

Physical 7.36 10.20 29.7 46.7
Data Driven 2.58 2.67 10.5 12.2

Hybrid Model 2.02 2.14 8.2 9.3

Table 4: Indexes of performances (REP and RMSE) of the models.
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Figure 4: Physical Model results - Exhaust receiver temperature results (Te).

Finally, Table 4 reports the indexes of performances in terms of REP and the RMSE for the three different
models. From the results it is possible to observe that, as expected, the Hybrid Model mostly outperform the
Physical Model and the Data Driven Model.

6.1 Physical Model results
The Engine Physical Model has been validated using the training data Tm described in Section 2. The results of

the validation are presented in Figure 4 and Figure 5. The thermocouple heat losses and inertia, (1) and (2), were
included to better reflect the measured temperatures. The temperature prediction of the Physical Model roughly
follows the trend of measured values, as shown in Figure 4 and 5. However, the use of one bias and time constant
does not accurately represent the dynamic behaviour of the physical heating up and cooling down of the temper-
ature sensor, as the large errors in the scatter plot in Figure 4 and 5 indicate. The work of Jaremkiewicz (2011)
and Majdak and Jaremkiewicz (2016) demonstrates an inverse square root relation between the time constant of
the thermocouple and the speed of the air flowing past it. Similarly Roberts et al. (2011) describes the heat transfer
mechanism that drives the temperature losses; the dependency on flow speed through the Re-number, temperature
dependent gas properties through the Pr-number, the main driving temperature differences, and the radiation heat
losses that play an increasingly dominant role as the exhaust gas temperature increases (q ∝ T 4). While includ-
ing these effects could further improve the temperature prediction, future work could also focus on establishing
these relations with Machine Learning techniques as the naive data driven and hybrid approaches already achieve
significantly improved results.
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Figure 5: Physical Model results - Turbine exit temperature results (Td).
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Figure 6: Data Driven Model results - Turbine exit temperature results (Te).
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Figure 7: Data Driven Model results - Exhaust receiver temperature results (Td).

6.2 Data Driven Model results
The data driven approach reduces the relative error percentage from 7.36 to 2.58 for the turbine exit temperature

and from 10.2 to 2.67 for the exhaust receiver temperature. However, in the constant speed runs the prediction of
the exhaust receiver temperature still has a constant error of 10 to 15 ◦C. This constant error could be caused by
the fact that the constant speed runs in the training phase and test phase take place at different engine speeds. The
scatter plot reveals that the error increases up to 75 ◦C during dynamic manoeuvres. While this is a significant
improvement compared to the physical model with simple thermal delay, the accuracy might be insufficient for
CBM purposes.

6.3 Hybrid Model results
The hybrid model which uses the physical model results in a naı̈ve approach, further reduces the relative error

percentage from 2.58 to 2.02 for the turbine exit temperature, and from 2.67 to 2.14 for the exhaust receiver tem-
perature. Moreover, the error in the constant speed runs also reduced further, although the noise on the predicted
values increases slightly. The noise is caused by the influence of the fuel pump setpoint which is disturbed by
external disturbances such as waves, wind and rudder action. These disturbances do not directly impact temper-
atures due to the thermal inertia. These inertia effects are not fully addressed in the data driven or hybrid model
because the model only uses features at the current time step. Future work could include considering past values of
features as well. In addiction, a thorough analysis of the data driven and hybrid model could lead to more directed
application of data learning techniques, for example by establishing the relationship of the temperature bias and
thermal inertia time constant using Machine Learning techniques.

6.4 Condition based monitoring framework
The model results presented in this section demonstrate that the hybrid model can be used to predict the engine

temperatures during operation in dynamic conditions more accurately. The authors propose to develop a hybrid
model further to predict multiple engine parameters and train the hybrid model during operation, to establish trends
in the model parameters over time. In particular, the proposed hybrid model can be built during a suitable period
when the engine can be considered in healthy condition for a period long enough to observe the system in different
operational conditions. Subsequently, the model can be applied and the temperatures computed. The drift in the
average behaviour between the predicted and measured parameters can be used as an estimator of the diesel engine
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Figure 8: Hybrid Model results - Turbine exit temperature results (Te).
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Figure 9: Hybrid Model results - Exhaust receiver temperature results (Td).

health status, and provide insight about degradation or imminent failures of the engine. For example, increased
exhaust receiver temperatures can be used as an indication for exhaust valve or turbine blade degradation or failure
the actual temperatures compared to the measured ones. Moreover, the trends in model parameters can also be used
as an indication for the deterioration of the engine over time, in particular after collecting and analysing data over
a large set of engines and relating them to inspection results of top or complete overhauls. These two methods can
then be used to perform condition based maintenance as an alternative for current standard periodic maintenance
of diesel engines.

7 Conclusions and further work
Predicting engine temperatures is important to determine wear and failure mechanisms that depend on thermal

loading or cause changes in engine operating temperatures. In this paper, the authors have shown that naı̈ve
application of data driven models and a hybrid combination of data driven and physical models can improve
the accuracy of temperature prediction both during static and dynamic conditions, while existing models do not
accurately predict temperatures measured with thermocouples installed on engines in an operational environment
under dynamic conditions. A limited amount of operational data was already sufficient to produce reasonably
accurate results. Nevertheless, further use of data from the extensive dataset could provide further improvements.
Including past measurements or filtering of the results over time could potentially reduce the observed noise on the
predicted temperature. Moreover, Machine Learning techniques can be used to establish algebraic and differential
equations for complex phenomena such as the heating up and cooling down of a temperature sensor in an engine.
Subsequently, the hybrid data driven and physical model can be run real-time in parallel with an operational engine
to indicate emerging failures early and identify trends that can be used to perform condition based maintenance.
These techniques need to be further developed to support future manning reduction for naval vessels.
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