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Synopsis

While autonomy offers a solution to many issues facing the maritime and naval industry, assessing the safety
and reliability of autonomous shipping is one of the key challenges. Established methods and standards for
conventional ships are still relevant but do not account for the challenges that come with the application of
Artificial Intelligence (AI) and cyber-physical systems for Maritime Autonomous Surface Ships (MASS). Such
systems require specialised safety assessment techniques. Scenario-based safety assessment for autonomous
systems is one of the potential approaches and represents the state of the art. In this research, we conduct
a feasibility study on identification and classification of seafaring scenarios, as described in COLREG, from
Automatic Identification System (AIS) data. Furthermore, the statistical distributions for the parameters of these
scenarios are empirically determined. We illustrate the utility of our methods using real-life AIS data from the
Strait of Dover. Results indicate that AIS data can be a rich data source for identifying real-life scenarios that can
be used for safety assessment of MASS.

Keywords: Autonomous Shipping; Automatic Identification System; Scenario Identification and Classification; Sce-
nario Based Safety Assessment

1 Introduction
The introduction of more (semi-) unmanned Maritime Autonomous Surface Ships (MASS) in the future has

several potential benefits. Compared to conventional manned ships, they may become more sustainable (Rødseth
and Burmeister, 2012), cost-effective (Kretschmann et al., 2017) and safer (Burmeister et al., 2014).

These autonomous ships should operate and interact safely in complex situations, and at the same time should
also adhere to the International Regulations for Preventing Collision at Sea (COLREG) (IMO, 1972). However,
these regulations do not provide detailed guidance to specific (multi-ship) encounters, nor do they specify how ma-
chines should be endowed with “good seamanship”. Discussions on the regulation of these unmanned autonomous
ships are still ongoing at the International Maritime Organization (IMO) (Ringbom, 2019). What is clear, is that
these autonomous surface ships should at least be as safe as current conventional manned ships (Veritas, 2017),
this is often referred to as being Equivalent Safe (ES). Therefore, the development of efficient safety assessment
methods/techniques is essential to pave the way for autonomous shipping to become widespread and accepted by
the maritime sector.

Scenario-based safety assessment for autonomous systems is one of the potential approaches and represents
the state of the art. This approach proposes to create a scenario database from real-life data and utilise it in the
assessment of the autonomous system. Extensive development efforts in this approach is being carried out by
automotive companies and research institutions (Elrofai et al., 2018; Pütz et al., 2017; Enable-S3 et al., 2016). In
addition, it is broadly supported by the automotive community (ISO, 2019; Staplin et al., 2018). This experience
from the field of autonomous driving can be of great benefit for autonomous shipping.

Following the scenario-based approach, and to identify relevant scenarios for safety evaluation, we need to
understand and find out, the real-life “complex” situations in which autonomous ships must deal with in daily
seafaring traffic. These scenarios may include surrounding ships that might be in interaction of its course, sea
status and weather conditions.

In this paper we conduct a feasibility study on the extraction and classification of seafaring scenarios from
Automatic Identication System (AIS) data. The extracted scenarios include the encounters as defined in COLREG,
namely crossing stand-on, crossing give-way, head-on and overtaking.

Analysis of AIS data has been done extensively in the past (Tu et al., 2017). For example, for the purpose
of detecting anomalous behaviour in traffic patterns using machine learning (Coleman et al., 2020) or statistical
analysis (Ristic et al., 2008; Rong et al., 2020). AIS data has also been used for the purpose of collision risk
assessment (Mou et al., 2010; Qu et al., 2011; Silveira et al., 2013) and detecting near miss ship collisions (Zhang
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et al., 2015b). Similar methods have also been used to evaluate and compare ship behaviour at different restricted
waterways (Xiao et al., 2015). However, only a limited number of studies look at the actual detection and evaluation
of specific COLREG encounters using AIS data (Iperen, 2015; Lei et al., 2018, 2019). However, to the best of our
knowledge, AIS data has not been used yet for comprehensive scenario identification and classification nor for the
purpose of scenario-based safety assessment.

In section 2, we explain the methodology developed for scenario extraction using AIS data, including the
assumptions used, the identification of the scenarios and the calculation of the scenario parameter distributions.
In section 3, we show a case study in which we extract give-way crossing scenarios in the Strait of Dover and
calculate their parameter distributions. The conclusions and future work are discussed in section 4.

2 Identification of Seafaring Scenarios using AIS Data
A scenario can be designed by test engineers to assess the safety of autonomous ships both during design and

prototype phases. In our framework, we aim to extract scenarios from AIS data for the same purpose. These
scenarios are then called real-life scenarios. A scenario is generally defined as a sequence of events. In our
framework a scenario for testing an autonomous shipping system is defined as the sum of all relevant events and
conditions, under which this system is examined during the test. Main elements of the scenario include: the Own
Ship (OS), surrounding Target Ships (TSs), navigational information, sea status, sea depth and weather conditions.

In this section we describe our methodology using AIS data to automatically detect COLREG encounters (e.g.,
give-way crossing, head-on) and identify specific scenarios. Thus we focus on the interaction between the own
ship and the target ships. Other scenario elements such as sea status are not addressed in this study. Furthermore,
we generate the statistical distributions for the parameters of these scenarios (e.g., angle and speed of approach).

2.1 COLREG Encounters and Assumptions
All encounters specified in the COLREG regulations are illustrated in Fig. 1, namely crossing stand-on, cross-

ing give-way, head-on and overtaking. The angles used for each region are similar to those used in existing
literature (Zhang et al., 2015a; He et al., 2017) and correspond to the visible white sternlight and green and red
sidelights as defined in the COLREG. Some automated collision avoidance methods use different regions in which
for instance the angle of the head-on region and crossing regions are wider (Campbell and Naeem, 2012).

Although we use discrete encounter regions here in our research, one should note that in practice the interpre-
tation of the encounter is subjective and depends on many other factors (such as environmental conditions and the
types of ships involved). Furthermore, it often relies on what in the COLREG is referred to as “good seamanship”.
The latter is especially hard to evaluate for autonomous ships (Porathe, 2019a), which may encounter both manned
and unmanned ships along its route (Porathe, 2019b). This motivates our approach for using empirical AIS data in
order to synthesise realistic scenarios for safety assessment.

Similar to existing work (Zhang et al., 2015a), we use different assumptions for the Ship Domain, Action Range
and Visible Range relevant for the interpretation of an encounter (see Fig. 1):

1. Ship Domain:
The ship domain is defined as the free space around a ship in which no other ship or object should enter.
Many definitions of this ship domain exist (from circular, elliptical to polygonal shapes) and often depend
on characteristics of the ship and the situation at hand (He et al., 2017). AIS data has been used in the past
to derive an empirical ship domain from the behaviour of surrounding ships (Hansen et al., 2013). For sake
of simplicity, we use the same ship domain as defined in (Zhang et al., 2015a), namely a circle around the
ship with radius of 1500m (approx. 0.8NM).

2. Action Range:
The action range is the range between the own ship and other ship targets at which it is believed that the ship
will most likely take action according the COLREG rules. Experiments show that in most cases the officer
on watch typically take actions around 5NM (Lin, 2006). As such, we use the same action range as used in
(Zhang et al., 2015a), namely a range of 6NM (approx. 11.11km).

3. Visible Range:
The visible range is the range at which other ships are visible, but no action is taken. Although in real
life situations this range is typically larger (depending on the available information from AIS, radar and
eyesight), we limit the visible range to 13.5km (approx. 7.3NM) which corresponds to the upper limit of the
action range as empirically found in (Lin, 2006). This range is limited in order to reduce the scope of the
scenario.
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Figure 1: Encounter diagram illustrating the different regions relevant for the COLREG encounters (stand-on,
give-way, head-on and overtaking). The inner circle represents the Ship Domain, the outer circle represents the
Action Range of the Own Ship (OS). See text for more details.

2.2 Trajectory Generation using AIS Data
Many AIS data mining methods are roughly divided into two approaches, point-based approach and trajectory-

based approach (Cazzanti and Pallotta, 2015). Our method presented here is a trajectory-based approach since it
first determines the trajectories of all vessels before mining scenarios from them. The fact that AIS data can be
very noisy and is it sent asynchronously and irregularly, makes it very challenging to get smooth synchronised
trajectories from different vessels. To generate smooth synchronised trajectories from AIS data we apply the
following steps.

1. AIS Data Loading and Filtering:
At first, raw AIS messages that are previously collected from AISHub (AISHub, 2020) are loaded and
filtered. Data filtering is based on the region of interest both in terms of the specific area (defined as a
longitudinal and lateral range) and specific period in time (defined as a period between two dates). From
each ship (identified by its unique Maritime Mobile Service Identity (MMSI)) relevant information such as
its GPS location, Speed over Ground (SoG) and Course over Ground (CoG) are collected.

2. Extracting Trajectories:
For each ship, trajectories are extracted based on continuous sequences of position updates as received by
the AIS messages. A position datapoint is assumed to be part of the trajectory if its time interval between
itself and the last datapoint is no longer than 5 minutes. Trajectories with less than 20 datapoints are ignored.

3. Coordinate Projection:
The longitudinal and lateral positions of the trajectory are projected on x and y coordinates of the specified
area. Our method uses the EPSG:3857 Web Mercator projected coordinate system (Battersby et al., 2014).

4. Interpolation to Fixed Timeframe:
The x, y, SoG and CoG values of the valid trajectories are interpolated in fixed time intervals of 10 seconds.
This compensates for small gaps in the data and synchronises the time of AIS message updates between
different ships. The method uses cubic spline interpolation which has shown to perform better over other
AIS interpolation methods such as piecewise cubic Hermit interpolation (Zhang et al., 2017).
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Figure 2: Class diagram of all scenario components extracted from the AIS data. A statistical distribution for
each scenario parameter is calculated from multiple mined scenarios. Each scenario consists of multiple encounter
situations. Each situation represents a single moment in time in which all relative positions and speeds of each
target are known.

5. Finding Overlapping Trajectories:
Once interpolation is complete, overlapping trajectories between a given ship and all other target ships, are
found with the use of the same timeframe. Trajectories outside the visible range of the ship are ignored.

6. Local Polar Coordinate Projection:
Each trajectory is converted to the local polar coordinate system (as shown in Fig. 1) of the corresponding
ship. The relative positions of the target ships within the visible range of the ship are also projected in this
space. This results in a series of situations (in which all relative positions of all targets are known) with a
time interval of 10 seconds from which the COLREG encounters can be detected.

The above mentioned steps decompose the data into the components as illustrated by the class diagram in
Fig. 2.

2.3 Scenario Detection
Fig. 3 illustrates the procedure for detecting different COLREG encounters using the same polar coordinate

system as shown in Fig. 1. A COLREG encounter (give-way, stand-on, head-on and overtaking), for a specific
target ship, is detected from a series of situations the moment it enters the visible range (position 1) and continue
to the enter encounter zone (position 2, see the different colours in Fig. 1). The scenario corresponding to these sit-
uations ends the moment the target ship exits the encounter zone (position 3). Encounter detection is not triggered
if the target ships enters a zone from another zone within its action range.

2.3.1 Scenario Parameters
For each scenario different parameters are calculated for the Own Ship (OS) and and the Target Ship (TS) as

described in Table 1. These parameters describe the interaction between the OS and TS inside the encounter zone
during the entire period of the scenario. In particular we are interested in certain moments during a scenario, this
includes:

1. Start of a scenario: The moment the TS enter the OS encounter zone, i.e. position 2 in Fig. 1.

2. End of a scenario: The moment the TS exits the OS encounter zone.

3. Closest Point of Approach (CPA): The moment in which the distance between the OS and TS is minimal.

The CPA is closely related to the Distance at Closest Point of Approach (DCPA) and the time remaining to
reach this point (TCPA) as often used in existing collision avoidance systems (Vujičić et al., 2017; Szlapczynski,
2006).
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Figure 3: Examples of different encounters being detected. The numbers indicate the order of relative positions in
which a target ship should be present in order to trigger a specific encounter detection. A valid scenario ends only
if all 3 positions are present. See text and Fig. 1 for more details.

Category Name Description Unit
Generic Duration The duration of the scenario. seconds

Own Ship (OS)
(min, max, mean, std)

CoG Course over Ground degrees
SoG Speed over Ground knots

Target Ship
(min, max, mean, std)

SoG Speed over Ground knots
rCoG Course over Ground relative to OS radians
AP Angular position relative to OS radians
x X location relative to OS meters
y Y location relative to OS meters
Distance Distance relative to OS meters
RV Velocity relative to OS m/s

At Approach
(position 2 in Fig. 1)

rCoG Course over Ground relative to OS radians
AP Angular position relative to OS radians
SoG Speed over Ground knots

Closest Point
(between position 2

and 3 in Fig. 1)

rCoG Course over Ground relative to OS radians
AP Angular position relative to OS radians
RV Velocity relative to OS m/s

Table 1: The calculated parameters extracted for each mined scenario.

2.4 Statistical Distributions
Once multiple scenarios are detected, statistical distributions in the form of Probability Density Functions

(PDF) of their parameters can be calculated. The PDF provides for each random value of the parameter the
corresponding likelihood of this value. In our method we use Kernel Density Estimation (KDE) to estimate the
PDF. For the kernel we have used the Gaussian function and its bandwidth, which influences the width of the
Gaussian for each contributing datapoint to the PDF, is calculated using the Scott method (Scott, 2015).

3 Case Study
3.1 Dataset and Region of Interest

In our case study we have used data already collected by AISHub. The dataset consist of one month period
of AIS data at the Strait of Dover for two different ships (OS), including all target ships that these two ships
encountered. The region of interest (at the Strait of Dover) included in the dataset is shown in Fig. 4.
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Figure 4: The region of interest (marked with the dashed red line) at the Strait of Dover from which AIS data
was collected using AISHub. Only data from one ship (a ferry) for one month is shown here. The green dotted
lines indicate the interpolated trajectories of the Own Ship (OS). For sake of clarity the positions/trajectories of
the relevant target ships are not shown in this figure. Trajectories were ignored at harbours (in this case Dover,
Calais and Dunkirk). Maps from OpenStreetMap (Haklay and Weber, 2008) and OpenSeaMap (OpenSeaMap,
2009) were used for visualisation.

As an example a snapshot of a single frame for a give-way crossing scenario is shown in Fig. 5. This scenario
represents the interaction between a single target ship (indicated in red) and the own ship (indicated in black).
Considering the other target ships in blue (see Fig. 5), multiple scenarios can be detected from this scene. This is
a scenario representing multi-ship encounters.

Figure 5: Example snapshot of a single frame for a given give-way crossing scenario between the own ship (indi-
cated as the black ship in the centre) and the target ship (the red ship located in the green area).
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3.2 Results
In this section we show the results of give-way crossing scenarios (the green area as indicated in Fig. 3). In

total 1498 incidents of this scenario were detected. In Fig. 6 we show as an example six probability distributions
(out of a total of 43). The generated distributions show real-life situations and how ships interact in daily traffic.
They also show the realistic ranges of these parameter values. This represents a great source of information that
can be used to generate realistic scenarios for safety assessment of autonomous shipping.

Figure 6: Examples of probability distributions of give-way crossing scenario parameters: scenario duration, mean
relative velocity of TS towards OS, relative velocity of TS towards OS at CPA, mean speed over ground of OS,
TS speed over ground at approach (position 2 in Fig. 3) and minimum distance between OS and TS. For each
distribution, a total of 1498 datapoints were used to generate the histogram (indicated by the blue bars) and to
estimate the PDF (indicated by the red line).

Conference Proceedings of INEC

15th International Naval Engineering Conference & Exhibition https://doi.org/10.24868/issn.2515-818X.2020.055



4 Discussion and Conclusions
In this research we investigated the feasibility of using AIS data for the identification and classification of

real-life scenarios. Furthermore, we have discussed how these real-life scenarios can be used for assessing safety
of MASS, which represent an efficient approach, in addition to the field (physical) testing. The concept of a
“scenario” and a “real-life scenario” were discussed in detail.

Results indicated that AIS data can be a rich data source for the detection of individual COLREG encounters.
These encounters allow us to empirically estimate the probability density function of the relevant key parameters
of these encounters. Beside the observed scenarios, the estimated PDFs can be used to sample new parameter
variations and synthesise unseen, yet realistic, scenarios. These scenarios can be of great value to assess the safety
of MASS in simulation.

For this research we collected AIS from a small region (the Strait of Dover) for a limited amount of time (see
Fig. 4). Given the readily available AIS data over the whole world, our method can easily be scaled up and provide
more reliable estimations for probability density functions for various locations and ship types. However this can
be limited by the coverage of the AIS source being used (in our case AISHub (AISHub, 2020)) and the quality of
the AIS data (Harati-Mokhtari et al., 2007; Eriksen et al., 2014). For instance, the coverage of the network in the
middle of the North Sea was limited, which motivated our choice for using AIS data at the Strait of Dover instead.

Besides scenario based safety assessment, the identified scenarios could be applied in the field of maritime
situational awareness and threat detection. These real-life scenarios can be used to train machine learning models
and detect anomalous ship behavior. Which in turn can be of great use to detect illicit activities (Lane et al., 2010;
Pallotta et al., 2013). Here, validation of the proper use of AIS data should also be investigated, for instance by
detecting spoofing (Katsilieris et al., 2013) or hiding AIS signals (Mazzarella et al., 2016) by potential anomalous
vessels.

In the future we aim to extend our work to include the analysis of more COLREG encounters with the use of
a larger AIS dataset from different locations. Also, we would like to extend our scenario database with weather
information, ship types and additional information from nautical charts. Beside COLREG encounters, we are
planning to investigate multi-encounter situations and include the relevant identified scenarios to the database. Our
final aim is to extend our framework with the actual synthesis and simulation of relevant scenarios. This framework
would allow for the improved safety assessment of MASS.
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Vujičić, S., Mohović, D., Mohović, R., 2017. A model of determining the closest point of approach between ships

on the open sea. Promet-Traffic&Transportation 29 (2), 225–232.
Xiao, F., Ligteringen, H., Van Gulijk, C., Ale, B., 2015. Comparison study on AIS data of ship traffic behavior.

Ocean Engineering 95, 84–93.
Zhang, D., Li, J., Wu, Q., Liu, X., Chu, X., He, W., 2017. Enhance the AIS data availability by screening and

interpolation. In: 2017 4th International Conference on Transportation Information and Safety (ICTIS). IEEE,
pp. 981–986.

Zhang, J., Zhang, D., Yan, X., Haugen, S., Soares, C. G., 2015a. A distributed anti-collision decision support
formulation in multi-ship encounter situations under COLREGs. Ocean Engineering 105, 336–348.

Zhang, W., Goerlandt, F., Montewka, J., Kujala, P., 2015b. A method for detecting possible near miss ship colli-
sions from AIS data. Ocean Engineering 107, 60–69.

Conference Proceedings of INEC

15th International Naval Engineering Conference & Exhibition https://doi.org/10.24868/issn.2515-818X.2020.055


	Introduction
	Identification of Seafaring Scenarios using AIS Data
	COLREG Encounters and Assumptions
	Trajectory Generation using AIS Data
	Scenario Detection
	Scenario Parameters

	Statistical Distributions

	Case Study
	Dataset and Region of Interest
	Results

	Discussion and Conclusions



