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Synopsis
Less personnel and the introduction of more complex systems on board of future navy vessels requires in-

novative systems to support the crew in making optimal command decisions. These decisions should result in
an allocation of available resources that maximizes the probability to achieve the set of mission goals, provided
the external and internal picture. The process of planning tasks and resources across subsystems is challenging,
partly due to the heterogeneous nature of these, often proprietary, subsystems and the inter-dependencies between
tasks and resource requirements. Currently, the coordination of systems-of-systems on board of navy vessels is
predominantly performed by the human crew.

This article presents the use of the multi-agent paradigm for supporting the crew by automatically allocating
the set of resources that are available on board a vessel to the vessel’s systems. The presented solution leaves the
crew in the loop as the ultimate decision maker but facilitates their decisions by providing pre-processed options
void of unnecessary details. The solution works as follows: multiple goal-driven software agents cooperate to
plan tasks and allocate resources. A single agent can be responsible for vessel functionalities such as sensor–,
engagement–, and mobility–management. These agents collaborate autonomously with each other and under
dynamically changing external and internal conditions, changing tactics, mission goals and resource availability.
Agent decisions are driven by the set of mission goals expressed in a mathematical formulation. This ensures that
system resources and assets are allocated in accordance with the mission without increasing the workload of the
crew. Conflict resolution resulting from resource usage by agents is handled using a negotiation protocol.

The feasibility of the taken approach is demonstrated within an example scenario, where a vessel escorts a
high-value asset in enemy territory. This article shows that with the multi-agent paradigm, the described condi-
tions, and in the face of conflicting preferences, the most effective combination of actions is selected and planned.
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1 Introduction
In the next decade the Royal Netherlands Navy (RNLN) will introduce four new classes of ships to replace

existing classes. This is an opportunity to get new solutions and innovations on board. The Manning & Automation
program aims to maintain and enhance the operational capability of naval systems, given the challenges of reduced
manning and the opportunities of automation. It is established with a vision and an ambition to bring the Royal
Netherlands Navy into the next era of modern warfighting.

The challenge addressed in this paper is formulated as follows: research and develop new ways of cooperation
between humans and systems and between systems themselves to achieve the mission goals of future ships with
reduced complements. The focus of this paper is on the interaction between a subset of systems within a navy
vessel. It is not centered around physical– / data– / information–integration but on a decomposition of tasks on a
conceptual level, as is standard practice when these tasks are performed by the human crew. For example, engaging
an incoming threat is decomposed in detecting / tracking / aiming / shooting.
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1.1 Contributions of this article
In this article, the authors address challenges in the field of naval engineering by combining established engi-

neering approaches and computer science paradigms (Benaskeur et al., 2007; Arazy and Woo, 2002). Specifically,
distributed task and resource-allocation are investigated, using a goal-driven multi-agent systems paradigm. The
former is realised using negotiation between agents, the latter places emphasis on the autonomous operation of the
individual software components. Using results obtained from simulations on an implemented and tested software
demonstrator (cf. Figure 1), the authors provide critical reflections on the design choices made and offer advice
for future work / projects addressing similar challenges.

Figure 1: Visual output of the implemented demonstrator: on the right the courses of our vessel, a High-Value Unit
(HVU) (blue), and three hostile contacts (red) are plotted. On the left (upper section) the distances of all vessels
(dotted lines) relative to our vessel are displayed (HVU in blue, the hostiles in red). In the same window, the
vessels’ respective effective firing ranges are shown as the colored areas. In the shown simulation, the attacking
vessels are disabled before coming within their own weapons ranges. The dotted blue line is our distance to the
HVU, which first increases as our vessel engages the targets and then approaches zero as the blue vessels reunite.
The corresponding plan (the interaction between the relevant vessel’s subsystems) is shown as a Gantt chart on the
lower left section. For comparison, see Figures 5 and 8 where other outcomes are shown.

1.2 Overview and outline of this article
The flow of this paper is as follows: in Section 2 three challenges are formulated (§2.2) and related to the

a practical example scenario (§2.3). This paper then (Section 3) focuses on five design choices (§3.1 – §3.5)
addressing these challenges, with each subsection providing motivation for as well as critical reflections on these
choices. The validity of the provided insights is motivated in Section 4 by a brief presentation of the realised
demonstrator, which simulates operations aboard a vessel of the RNLN in the example scenario. The article closes
with a conclusion (Section 5) and bibliography.

2 Main Challenges and our Use-case
A navy vessel is a system of proprietary, highly specialized and distributed subsystems (cf. §3.1). Often these

subsystems are commercial products using specific, and system-dependent interfaces and data representations
(Janssen, 2019). When specifics of internal operations are confidential the system may not share all engineering
information to the system integrator.

Due to this, any integration effort is bound to treat this population of systems as individuals with their own
properties and internal states that are hidden from the integrating engineer. In computing science, this view can
be represented by the Multi-Agent Systems (MAS) paradigm (cf. §3.2). However, when these subsystems are
required to cooperate towards a greater goal, sharing of information is crucial.
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2.1 Brief overview of the application domain
For a complex system-of-systems such as a naval vessel, the process of planning tasks and resources is chal-

lenging (cf. §3.4). Vessels consist of interacting subsystems, with many interdependent tasks. In such systems,
humans and intelligent machines are required to work together and to be able to adapt their behaviour under chang-
ing conditions and situations to reach their shared goals (Kester, 2010). Currently, this coordination is mostly a
human task relying heavily on the operator’s experience and inside knowledge of the subsystems. Timely con-
sideration by the operator of all parameters and constraints is stressful and as the number of threats increases,
impossible. The ultimate goal of the approach presented in this paper is to appropriately allocate system resources
to achieve equal or even better operational effectiveness with less personnel in a shorter amount of time.

2.2 Description of challenges
Creating a MAS that allows agents to obtain their own world views and endows them with individual goals

and preferences, can translate to opposing priorities and demands. Therefore, when designing such a system, the
following challenges emerge.

2.2.1 Challenge 1: Common knowledge and shared beliefs
Software agents often operate on locally stored information (the agent’s knowledge and beliefs). When multiple

agents are expected to cooperate, the sharing of information and the updating of each other’s believes is a non-trivial
exercise. Since the agents share mission goals on vessel level, synchronising the representation and interpretation
of the world is necessary to enable contributions to those goals.

2.2.2 Challenge 2: Goal driven reasoning
Intelligent agents need an objective function or goal function to evaluate and decide on their behaviour. In

dynamic environments and with operator defined goals, this function can be subject to change during run-time.
When multiple agents must cooperate towards shared higher goals (the mission goals), it is important that the agents
share these goals. However, interpreting a high level mission goal, such as “escort and protect another vessel” to
actions for specific software agents poses a number of challenges such as: how to evaluate the agent’s actions in the
greater context, how to resolve conflicting actions on agent-level and how to address inter-dependencies between
agent domains (for example, when one agent depends on another for a resource critical to its performance). In
accordance with the literature (De Groot, 2015), we propose to use a utility function (De Gier et al., 2019b; Kester
and Ditzel, 2014) to evaluate which tasks to plan and resources to allocate.

2.2.3 Challenge 3: Resource management
The management of resources, which takes place while planning tasks, is traditionally considered under the

assumption that there is a shortage, i.e. that not every demand can be fulfilled at all times. In the scenario at hand,
this is potentially the case whenever operational resources such as power, chilled water, sensor bandwidth or the
vessel’s course are required by multiple agents at the same time (De Gier et al., 2019b). Furthermore, the output
of the system is a plan of tasks over time meaning that the allocation of resources has to coincide with specific
moments in time as well as states of the world.

2.3 Representative example scenario
The example scenario used to demonstrate the MAS involves a vessel escorting a High-Value Unit (HVU), e.g.

an oil tanker, through a narrow strait. In this area multiple small surface threats emerge. In this asymmetric warfare
situation, the vessel is tasked with protecting the HVU (e.g., see Figures 1, 5 and 8).

2.3.1 Example systems
In our use case, the vessel is discretized to a number of subsystems relevant to the scenario (De Gier et al.,

2019b). Analogous to the real world, subsystems are controlled by individual software components. Specifically,
the vessel’s sensor suite is used for situational awareness, and for providing high fidelity tracks of contacts with an
hostile intent. Weapon systems are used for engagements, and tactical navigation may impact the performance of
both these agents (see Figure 4).
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2.3.2 Challenges revisited
The challenges identified in §2.2 are represented in the use case as follows:

Common knowledge and shared beliefs The software agents governing different subsystems have access to,
and control over, different information and resources. The radar system, e.g., has information on targets needed
by the agent in charge of the weaponry, but is at the same time dependent on the agent controlling the course and
speed of the vessel to perform its own operations successfully. Furthermore, the operational readiness of the agent
that reasons about the radar is dependent on the agents controlling resources such as energy or chilled water.

Goal driven reasoning Intelligent agents need an objective function to evaluate and decide on their behaviour. A
mission goal such as escorting and protecting an HVU is not easy to interpret directly in terms of actions or resource
allocations for most systems. For instance, the position of the vessel can be considered a separate resource to which
different agents may lay claim, as both the sensing and the engagement agent rely on the vessel’s position to track
or engage opponents, respectively. As these agents’ services are both required to achieve the overall objective, the
agents must include not only their own goals into their reasoning process.

Resource management Ultimately, the complexity of naval operations arises from uncertainties regarding the
state of the real world as well as the fact that resources are constrained. The latter refers to ammunition, fuel,
electrical power or chilled water as well as to the services of specific agents, controlling e.g. the course and
speed of the vessel, the operation of weaponry or the delivery of targeting information from the radar system.
Orchestrating the usage of these resources across agents and over time is a fundamental challenge (§2.2.3).

Figure 2: The weapon coverage (indicative
values). Gun: bearing −100◦ to 100◦, op-
timal range 8 km; Marlin: bearing −75◦

to 75◦, range 300 m to 2400 m; Hitrole 1:
bearing 0◦ to 150◦; Hitrole 2: bearing 105◦

to −10◦, range 50 m to 1200 m.

Figure 3: Illustrating agent interdependencies using position
(mobility) and weapons orientation (engagement). Weapons
have an effective range and operate only within a specific angle
relative to the vessel’s orientation. This implies required coop-
eration between the engagement and the mobility agent (as well
as (not shown) the sensor agent for updates on target locations.

3 Design Choices and Lessons Learned
3.1 Design choice 1: the developed system is fundamentally distributed
3.1.1 Motivation

The distributed approach facilitates a scalable, extensible, modular setup. This also makes it easier for system
providers to interact with other (sub)systems without having to share all internal knowledge.

3.1.2 Critical reflection / lessons learned
A distributed approach results in smaller coherent sets of variables, which reduces the computational cost to

determine good solutions. For overlapping (i.e., shared) variables (due to, e.g. simultaneous usage of a resource)
inter-agent planning is required to ensure the feasibility of resulting solutions. This can be computationally expen-
sive and not all approaches are guaranteed to converge on acceptable solutions. With regard to the work referenced
in this paper, the number of overlapping variables were small providing a judicious distribution of variables, which
improved the probability for convergence. Extending the approach to modularise more individual subsystems will
certainly lead to increased communication overhead. The literature suggests hierarchical compartmentalizing as a
solution to this (Ephrati and Rosenschein, 1994).
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3.2 Design choice 2: adopting the Multi-Agent Systems paradigm
3.2.1 Motivation

Since the 1980s multi-agent systems have been studied as a field on their own and have since then gained popu-
larity, partly due to the possibility of adding agents to distributed systems (Wooldridge, 2001). In addition to being
inherently distributed and extensible, using a MAS allows autonomy of the heterogenous agents by separating
beliefs, intentions and capabilities.

3.2.2 Approach / Realisation
The subsystems, represented individual agents, have jurisdiction over, and are dependent on, different capabil-

ities and resources. As all agents share the vessel’s mission goal, they need to cooperate and provide resources and
capabilities to one another. They determine to do so individually and based on their local information, assuming
only changes to that local knowledge during the planning process (cf. Figure 6).

Figure 4: Dependencies between the agents involved in the planning process shown in Figure 6.

3.2.3 Critical reflection / lessons learned
Enabling agents to share local / partial plans to enable their counterparts to account for their needs increases

performance and decreases planning time. It does, however, require the timely exchange of this information (which
is potentially problematic under real world conditions) and hinges on providing the right level of detail (which
cannot always be determined by the individual). Providing not enough information can lead to non-converging
behaviour as the agents are unable to identify inter-dependencies and resource bottlenecks.

Practically speaking, the engineer should be weary of overusing the MAS approach as e.g. creating separate
agents for safe navigation and tactical navigation (two aspects closely related and operating almost entirely on
shared resources) might result in excessive negotiations with a detrimental impact on overall performance.

3.3 Design choice 3: utility based reasoning
3.3.1 Motivation

Simon (1955)’s model of rational choice, subjective expected utility theory is based on the assumption that
reasoning entities are perfect rational decision makers (Ai and Deng, 2017). While this may not be the case for
humans (Dörner, 1996), machines can be expected to be consistent in their reasoning approaches (Hildmann, 2018).
Given the dynamic and unpredictable domain, an objective function guiding rational, mission-driven resource
allocation is needed (De Groot et al., 2014). Utility based reasoning has been proposed as an approach to relate
operator defined mission objectives to a changing and hostile environment (Kester and Ditzel, 2014).

Conference Proceedings of INEC

15th International Naval Engineering Conference & Exhibition https://doi.org/10.24868/issn.2515-818X.2020.016



3.3.2 Approach / Realisation
The information provided by the Commanding Officer on the mission goals and mission constraints maps onto

a goal function or utility function. This is a mathematical function that weighs the outcomes of (mathematical) sub-
utility functions, each of which assign a sub-utility value to a more conceptual feature of the world. An example of
such a concept is the expected future damage to assets, which is derived from, e.g., the positions and capabilities
of the assets in the current and predicted future situations.

3.3.3 Critical reflection / lessons learned
A conceptual world description, based on the aggregation of lower level information, facilitates behaviour eval-

uation in terms of the mission goals. However, this hinges on the assumption of unbiased and mutually orthogonal
aggregated information. Furthermore, using a utility value as a linear combination of sub-utility values per aggre-
gated concept greatly limits expressibility. While well-defined components – treated in isolation – enable experts
to contribute their knowledge and assists operators to interpret decisions made by the system, this does come at a
cost: if aggregated information is not orthogonal or when their aggregation is too subjective, the assigned utility
value may not constitute a adequate quantification of the goals.

Practically speaking, the authors recommend preparing multiple aggregation functions and sub-utility functions
in advance, in order to facilitate operators adapting the utility function in real-time to account for changes in the
environment, the mission or the available resources. Realistically, only the weighting between different functions
can be adapted in real time, implying the need for preparatory work in advance.

Figure 5: Visual output of the demonstrator. When compared to Figure 1 the warning signs (right margin) draw
attention: both the main gun (top, red) as well as the radar (middle, orange) are unavailable (red) or limited available
(orange). As before, the right window shows the courses of the two blue vessels and three hostile contacts (red).
Since the main gun is unavailable, the Marlin with its shorter range (similar to the modelled enemies’ weapon
range) is used. This allows the hostile contacts to almost come withing their weapon range of the HVU.

3.4 Design choice 4: planning the execution of tasks and allocation of resources
3.4.1 Motivation

With dynamically changing goals, automated and goal-driven resource management is needed (De Groot et al.,
2018). De Gier et al. (2019b) discuss multi-agent planning in the maritime domain, while De Gier et al. (2019a)
report specifically on utility-based resource management between software agents aboard a navy vessel. Due to the
complexity of interdependencies of the functionalities of a navy vessel, supporting the operators in their decision
making is crucial. The system provides insight in tasks and resulting resource demands, by presenting feasible
plans that help meet the mission goals.
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3.4.2 Approach / Realisation
Agents use their local view on the world and shared mission goals (expressed as a utility function) to construct

a plan, consisting of tasks to execute and resources to allocate. The agent level plans are local, with actions and
resources that are under the agent’s direct control. By negotiating (cf. §3.5) with other agents, all local plans will
be compatible and together they form a globally feasible plan. Each agent provides an interface that indicates the
type of requests that are interpretable by this agent during negotiation.

3.4.3 Critical reflection / lessons learned
Since each agent has the ability to propose multiple plans to meet the mission goals, one could expect an

explosion of plans. In the current setup, most agents use local rules – such as preferences on resource usage – to
avoid sending requests for multiple plans. Only if a plan turns out to be infeasible or undesirable, another plan
option is considered. This somewhat interferes with the idea of globally maximising the utility function. However,
the agents should strive to avoid an explosion of plans because this translates to unacceptable calculation times.
Currently, if an agent is not granting a request for a task or resource from another agent, it will provide a moment
in the future at which time that request will be granted. A refusal can be due to infeasibility (e.g., a resource is
not available due to damage, a vessel has navigational limits) or a more utile alternative (for the overall objective).
To help an agent choose what alternative requests to send, it is useful to extend the feedback of the denial with a
reason why the request is denied.

Figure 6: Visualisation of the evolution of a possible plan with local (agent specific) plans being adapted in several
negotiation steps (from top to bottom) resulting in a complete and feasible plan for the scenario shown in Figure 1.

3.5 Design choice 5: conflict resolution using inter-agent negotiation
3.5.1 Motivation

The planning decisions of one agent can interfere with decisions of other agents due to interdependencies
between tasks and resources. Resolving these conflicts is a core aspect of the application domain.

3.5.2 Approach / Realisation
To allow the alignment of the local plans of the agents, a negotiation protocol was devised. This protocol

is loosely based on the generalised partial global planning (GPGP) approaches, as described in e.g. (Decker and
Lesser, 1995), and consists of requests for actions and responses to these requests (cf. example in Figure 7). Agents
are synchronised using a separate coordinating agent, the coordinator, to ensure that requests and responses arrive
at the proper agent at the right moment during the process of planning.
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3.5.3 Critical reflection / lessons learned
The coordinator does not interpret the messages between agents and is therefore not able to have substantive

interaction with the agents. This limits its capabilities to ensure convergence towards a feasible plan. It can,
however, detect loops in the communication and hence determine if the planning process is diverging, in which
case it can signal to the agents that a different approach should be taken.

Many conflicts between agents arise from the lack of knowledge on the partial plans that emerge during the
planning process of other agents. Extending the capabilities of the coordinator so that it can indicate (utility based)
preferences of not (yet) globally feasible agent plans to other agents can speed up the process and reduce the
number of conflicts. This approach is investigated in a follow-up research program (Janssen, 2020).

Figure 7: An example of the negotiation protocol for two agents (De Gier et al., 2019b) for inter-agent planning.

4 The Demonstrator
To showcase the approach a demonstrator was built, in which a number of separate agents were implemented,

each with its own local knowledge (e.g. about the agent’s capabilities) as well as information shared between the
agents. The shared knowledge of agents involves the utility function and models on the evolution of the world,
such as the behaviour model of the hostile contacts, which e.g., assumes a worst case interception course with the
HVU. The implementation of the demonstrator was done in Python and for the interface PyQt was used.

4.1 Agent based implementation
Three agents were implemented, each with a different functionality: the sensor agent, the mobility agent and

the engagement agent.
The sensor agent provides situational awareness through horizon search and the tracking of contacts. It delivers

high fidelity tracks to the engagement agent. To perform optimally, this agent requires assistance from the mobility
agent, for example, when a certain radar face is not available (cf. Figure 5) a repositioning of the vessel is required
to ensure that the area in question is in view (of the radar system). The mobility agent in turn is responsible for
the navigation of the vessel. It can perform tactical navigation, e.g. escorting a HVU, and - on a smaller timescale
- navigate such that requests from other agents can be granted at the required times (cf. Figure 3). Finally, the
engagement agent handles the engagement of hostile contacts. To achieve this, its internal knowledge consists
mainly of the effects of its weapons (cf. Figure 2) but to effectively use these cooperation of the two other agents
is required. Its decisions cover which weapon to use and in which order to engage the targets.

4.2 Performance evaluation
The demonstrator was developed to showcase the ability of the system design to handle detailed specific mission

goals, and to evaluate its performance for such goals under different circumstances, such as (1) resource abundance
(cf. Figure 1), (2) resource scarcity (cf. Figure 5) and (3) the changing to a new mission goal (cf. Figure 8). All of
these scenarios feature extensive interaction between the different agents and required decisions such as whether
(and when) to engage the enemy or break contact. These decisions commonly required collaboration with other
agents, for example, high fidelity track information as well as access to the ship’s movement are required for
successful engagement, while the radar system delivering these tracks also depends on vessel orientation. The
system was tested in the presence of (former) RNLN sailors / officers and performed well for the tested scenarios.
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Figure 8: Visual output of the implemented demonstrator. When compared to Figures 1, 5 the most striking
difference in the scenario is the difference in mission objective: the vessel is not tasked with protecting the HVU,
it must preserve itself. Consequently, the courses sailed differ (right window), the vessel only engages the first two
hostile vessels (red) before breaking off contact. The last red contact is left chasing the HVU. This can also be
seen in the left window where both the red contact as well as the HVU gradually disappear in the distance.

5 Summary, Conclusion and the Road Ahead
This paper presents and discusses a multi-agent system for distributed task and resource allocation on RNLN

vessels. The system, which was implemented as a demonstrator, assists a reduced crew in their task to allocate
limited resources in a timely fashion. The goal of this paper is to inform the community of the lessons learned
during this process and to offer recommendations.

The developed knowledge, concepts, techniques, and partial solutions enable follow-on initiatives to develop
an Integrated Mission Management System to optimally support the crews on-board future RNLN vessels.

5.1 Summary
One fundamental decision was to follow the distributed MAS paradigm. For the presented work, this was

motivated by the desire to create a scalable approach. Its inherently modular character allows for the adding of
additional agents, resources and inter-dependencies without having to re-design the underlying architecture. It
furthermore enabled the solving of the overall problem as a combination of smaller tasks.

Another important choice was to use a utility function to assess the profitability of a solution. This decision
was taken based on the fact that such a function can be seen as a unified mathematical formulation of a goal. The
difficulty herein lies in how to obtain unbiased aggregated information to which a utility value can be assigned.

Planning was solved by first planning locally for each agent individually and then merging plans between agents
using negotiation on emerging dependencies. This can, at least in theory, lead to an explosion of possible options.
It is hard to determine how the proposed options would ensure convergence towards the global plan. To investigate
ways to reduce the impact of this, work in later projects used agents designed to guide the search by prioritizing
approaches based in their utility value (see the section on ongoing and future work).

5.2 Recommendations and concluding remarks
The main recommendation for designing a distributed system like ours is to impose hierarchies on the MAS

(Muñoz et al. (2018)) to avoid, or solve, conflicts. MAS are extremely powerful and versatile, but they can (as
it did for us) come at the cost of a potentially large communication overhead as well as uncertainties regarding
the timeliness or relevance of exchanged information. As a recommendation for future work in this domain, we
suggest investigating ways to limit agent autonomy without affecting performance. One possible way to achieve
this would be through a separate coordination agent which could embody the high-level planning aspect and guide
(but not entirely control) the other agents with regard to their preferences for or against certain shared actions
(thereby reducing the overhead as well as the complexity of the inter-agent decision making process).
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We furthermore recommend supporting non-orthogonal aggregation of information for the futility functions.
To explain what is meant by this, consider that there is some correlation between the risk posed by an enemy
and their capabilities. In the presented approach, we assume the (simplified) case where these two are orthogonal
(unrelated). Such interrelations between aggregation components could be described by, for instance, so-called
Choquet integrals (Grabisch and Labreuche, 2010).

Finally, the negotiation process bears the significant risk of losing sight of the overall objective. Ensuring that
a sequence of choices ultimately (and within a feasible amount of time) results in a global plan is a challenge.
Ensuring convergence of the negotiation could be achieved by expanding the functionality of the coordinator agent
to include additional input from the individual agents to gain more insight on agent decisions. In addition, we
suggest to search for a local optima as this will speed up the negotiation process.

5.3 Ongoing and future work
As for our own work, the experiences gained are already used to guide the design of systems in ongoing research

projects, such as Smartship (Janssen, 2020), and to inform future projects of the Manning and Automation program.
For example, for a project following the one discussed in this paper, we designed the agents in such a way that

the most utile approach was always evaluated first. Time permitting / in future projects, we plan to analyse and
prioritise alternatives this way. Using the coordinator agent’s insights and preferences as a guiding mechanism, an
informed choice can be made with regard to which agents are asked to provide alternatives, potentially reducing
the complexity of the search significantly. As recommended above, we plan to limit / reduce agent autonomy. One
way of doing this is the mentioned coordinator agent which decides what plan / course of action to take based on
the mission and situational information. Managers can then indicate that requests are undesirable for them because
of the current actions that are relevant according to the coordinator, however, requests are only allowed to be denied
when they are impossible.

The authors look to the community for fruitful discussions and collaborations for future projects. Therefore,
and to drive this, we would like to conclude the paper by asking questions, meant to guide our own future work as
well as to illicit feedback from the community. In the interest of brevity, our questions then are:

• How can we express the utility function such that it captures the mission goals (defined through elicitation
from the user) while at the same time being concise and intuitively understandable to the user?

• If there is a distinction between local and global knowledge, how - and when - should this information be
synchronized? Additional information can be used to understand the reasoning behind a proposed plan but
it is not immediately clear which information has the most potential to that end. The question therefore is:
how to approach the trade-off between the cost of sharing the information and the benefit that the sharing of
some specific information can bring.

• What insights can be used to improve the functionality and performance of a MAS in dynamic environments?
If replanning is required, when should this be triggered and what is the time limit the system has for coming
up with an answer? For example, improvements could come from a deeper understanding of the specific
environment and domain or from mathematical analysis of the solution space and the negotiation algorithms.
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