J. B. MAIN (Member)

The paper discusses the choice of steam condition and the provision of the major auxiliary drives, etc., in the 22,000 s.h.p. machinery plants now being installed in three 65,000-ton d.w. oil tankers.
The terms used in ass

IMTRODUCTION

The intent of this paper is to outline an approach

which has been made to the design and layout of the steam

turbine machinery in a 65,000-ton deadweight tanker.

The treatment is necessarily brief. Those

-
-
- sea.

Solutional charges representing amortization, insurance

and service of finance are of the order of 14 per cent

of the initial investment. In other words, the expenditure of £1,000 on any machinery item saddles the

CHOICE OF STEAM CONDITION
There is no completely certain approach to the determina-
tion of the optimum steam condition. One might say that
for an engine of this power the choice of pressure lay between
of the choice of th

years. The upper limits are extremely difficult to assess. In considering the use of steam at say 1,100 deg. F., the sharp rise in capital cost due to the introduction of austentic steels for pressure parts subject to the

obtaining, is ensured.

Steam temperature was decided at 900 deg. F., principally

because it was felt that beyond this figure the onset of corrosive

attack on the superheater elements and their supports by

vanadium ash,

So much, then, for the reduction in fuel rate which could
have been won by the adoption of more advanced initial steam
conditions. 600lb./sq. in. gauge/950 deg. F. would have
improved the fuel rate by about 2 per cent or

* Deputy Head of New Construction, Shell Tankers Ltd.

The Design and Layout of a 22,000 s.h.p. Tanker Machinery Installation

-
-
-
-
-
-
-
-
-
-
-
-
-

of steam conditions than by moving prematurely into advanced pressure and temperature cycles.

BASIC FEED AND STEAM SYSTEMS
The decisions to adopt non-condensing turbogenerators
and a steam turbine drive for the single main circulating pump
have fundamental influence upon the final shape of the system,
and justifica

interest.

The steam and feed flow quantities for normal sea service

operation without cargo heating and without air conditioning

are shown in Fig. 2 which has been reduced to the simplest

possible form whilst retaining

-
-
-
-
-
-
- 10 Nain feed pump

12) Main throtle 28) Nain circulating pump

12) Main throtle 28) Main circulating pump

13) De-aerator 29) A.C. generator 45) Bunker heaters

14) Level controls 30) Distilled water tanks 46) Atmospheric
	-
	-
	-
	-
- 14) Level controls

15) H.P. Turbine 31) Surplus exhaust controller 47) Cargo stripping pumps

16) Bleed controller 32) Exhaust makeup controller 48) Fuel transfer pump
	-
-
-
-
-
-
-
-
-
-
-
-
-

deg. F. The changes consequent to operation in the tropics

-
-
-
-
-

are:

a) Increase in turbogenerator loading of about 80 kW

due to the onset of accommodation air conductioning

ant:

a) Increase in circulating pump load in maintaining

c) Increase in circulating pump load in maintainin

Fig . 2*— Heat balance— cycle as fitted*

21,280 s.h.p. (20,580)

Propulsion turbine non bleed steam rate 5:85lb./s.h.p./hr. (6:17)

Boiler efficiency 87 per cent

Vacuum 28:5in. H_g (27:6)

Turbogenerator load 450 kW (530)

Fuel consumption:

11,120lb./hr. = 0:

is higher than for Fig. 2. Little improvement in plant per-
formance therefore results from the addition of a low pressure
formance therefore results from the didition of a low pressure
that the evaporator in Fig. 3 would

temperature is maintained at all times. Where maintenance of
the feed temperature in harbour depends upon substituting a
live steam heating source for the bleed steam drawn from the
propulsion turbines at sea, the feed tem

MAIN BOILER PLANT
A twin main boiler installation has become virtually
standard practice in tankers up to the largest sizes now building
and experience has indicated that such an arrangement pro-
vides adequate security a

Fig. 3*— Heat balance— with L.P. feed heater added*

21,280 s.h.p. (20,463)

Propulsion turbine non-bleed steam rate 5.85lb./s.h.p./hr. (6.17)

Boiler efficiency 87 per cent

Vacuum 28.5in. H_g (27.6)

Turbogenerator load 450 kW (530)

Fuel consumption:

11,070lb./hr. = 0.

FIG. 4-Welded superheater

at the pumps. It was desirable also that in the event of one
boiler being shut down, the remaining boiler should be able
to maintain a cargo discharge rate very close to the 6,000 tons/
hr. figure. The total desuperheated

to be aimed at involves balance of the cost of the flue gas heat recuperation equipment and its weight, bulk and probable maintenance difficulties on one hand and the expected reduction in fuel rate on the other.

The decision to use non-condensing type turbogenerators
in this case directed the boiler design toward the adoption
of steam air heaters and, in consequence, toward flue gas heat
recuperation plant in the form of economize

Fig. 5*— Gas exit temperature/operating cost relationship*

operating cost for this particular plant. The economizer capital charges are added to the cost of the fuel heat discarded to the funnel and the lower curve indicates that the gas exit temperature at which the sum of these

Forced Draught Fans
The preliminary study indicated that the fan motor
power on each boiler would be about 140 b.h.p. The choice
open in a.c. motor speeds for flexibility of control was con-
sidered at some length. A.C. mo

r.p.m. series for 60 c.p.s. power supply. In some cases the motors are wound for two adjacent speeds with the intention and the higher speed for that in the intention and the higher speed provides for maximum evaporation

The minimum requirement of fan capacity to meet maxi-
mum evaporation rate on the boilers "as new" and with 13
per cent CO_2 combustion would be 27,800 cu. ft./min. against
15in. W.G. It can be argued that fan margin is

Oil Fuel Burners
Considerable advance has been made in the last decade
in the field of oil fuel burning equipment for marine use.
From past experience of the author's company it seemed that
two aspects of the boiler firing

conditions. It had long been known that be
inter fouling could respect to reverse in the operator occur very rapidly under han
bout conditions where wide load fluctuations and the operator of mechanical atomizing type
bou

PROPULSION TURBINES

The Pametrada double casing H.P. turbine was accepted

on the ground that it offered a design having an efficiency

comparable if not marginally better than any other marine

turbine design available.

FIG. 6–Sectioned view of the H.P. turbine

- 1

Fig. 7*— Sectioned view of the L.P. turbine*

F. at the H.P. turbine inlet, with a main condenser vacuum of 29im. Hg and when no steam is bled from the H.P. exhaust to supplement the auxiliary exhaust range. To show sectioned views of the H.P. and L.P. turbines. Spri

phated to ensure against binding due to the accumulation of corrosion debris, regarding the philosophy of providing separate groupings of providing separate in the initial balding stages for maximum power running efficien

F ig . 8*—Sterntube and lubricating arrangement*

high part load performance. The basic hull form unfortunately
cannot be filled out to take maximum advantage of the slow
steaming period. If, on the other hand, a speed increase above
basic design of at least 10 per cent i

Gearing The reduction gearing is designed for K values of 90 in
The primaries and 80 in the secondaries. $60/40$ teeth with
16 deg. flank angle, $6/10$ in. pitch for primaries and $8/10$ in.
for secondaries were adopted.

MAJOR AUXILIARIES
The turbogenerators, boiler feed pumps, main circulating
pump and the boiler F.D. fans represent a substantial com-
ponent of the auxiliary plant cost and it is obvious that their
matching to the cycle re

Turbogenerators
The cycle adopted was conceived around the use of non-condensing generator turbines because it appeared evident from
a study of the relative costs of condensing type and non-

FIG. 9—Heat balance—condensing type generator turbines
and L.P. heater
21,280 s.h.p. (20,580)
Propulsion turbine non-bleed steam rate 5°85lb./s.h.p./hr. (6°17)
Boiler efficiency 87 per cent
Vacuum 28°5in. H_g (27°6)
Tubg

$$
11,0751b./hr. = 0.5201b./s.h.p./hr. = 118.6 \text{ ton}/24 \text{ hr.}
$$

(11,210) (0.546) (120.1)

condensing type sets and their respective impacts on the cycle
performance, that the better investment return would be ob-
tained by using non-condensing, or back pressure type sets.
If condensing sets of equal kW rating h

FIG. 10—Heat balance—condensing type generator turbines
21,280 s.h.p.
Propulsion turbine non-bleed steam rate 5:85lb./s.h.p./hr.
Boiler efficiency 87 per cent Vacuum 28:5in. Hg
Turbogenerator load 450 kW
Fuel consumption:

capital expenditure would have been about £16,500 and a direct
increase in machinery weight of some 26 tons would also have
resulted. Fig. 9 shows the heat balance with 60 deg. F. and
85 deg. F. sea temperature conditions

-
-
-

Feed Pumps

The main boiler feed pump drive can be arranged, in

descending order of efficiency.

a) From the gearbox of the turbogenerator.

b) By independent electric motor.

c) By independent steam turbine.

a) Suffers

case is inevitably lost to the extent where the loss all but com-
plfetely cancels out the original gain derived from the more efficient prime mover. Even so, the scheme remains a
tractive provided the cost is not signifi

The independent turbine driven pump (i.e. scheme (c))
eventually decided upon has a steam rate of 5,300lb./hr. at
the service feed rate of 147,200lb /hr. The pump inverse
power at this load is 260. The effect of employing

Main Circulating Pump
The estimated maximum steam load on the main con-
denser was 126,000lb. of exhaust steam per hour or about
115 × 10⁶ B.t.u./ hr. Designing for 10 deg. F. temperature
rise in the cooling water means

FIG. 11-Arrangement of sea inlet

exceptional to average practice continuing today in many mover should be required to re-create this head.

Movies providing that is obviously undestimable that pump power should be required to re-create this head.

Welope

-
-

2) A.C. electric motor 3) Independent steam nurbine

a) The scheme studied for the first concept involved a low

speed fluid coupling and a clutched steam turbine and was

speed fluid coupling and a clutched steam turbine

complete shut-down.
Fig. 2 indicates the circulating pump turbine running at
about 80 per cent and 100 per cent of its full power. It is prob-
able that these figures are pessimistic in that adequate condenser
circulation

whose lower speed is selected to match 50 per cent power (i.e. 70 b.h.p.), the additional generator turbine steam requirement would be about 1,260lb./hr.
The nett saving in total superheated steam generation

would be about 1901b./hr., equivalent to a £275 per annum saving in fuel cost.
The conclusion is that the superior efficiency of the

The conclusion is that the superior efficiency of the
multi-stage generator turbine over that of the single stage
circulator pump turbine is of little relevance when the
average load factor on the installed capacity of the

Layout—Machinery Space Length
A successful machinery layout obviously requires that
adequate space be available. At the same time space grossly
in excess of adequacy will not lead to the best overall ship
design.
A feature

loaded with cargo and which can be ballasted concurrent with cargo discharge through a pump and pipeins system. Chipelitely divorced from the cargo pump and pipei system. This allows the ship to come alongside the loading

space length and elevate the driving turbines and their reduction
gear units to a more accessible level in the engine room. The
bulkhead seal on the drive shaft is less exposed to flooding
bulkhead seal on the event of a s

Piping
For every item of main and auxiliary equipment, con-
sideration of its function, its particular supervision require-
ments and the consequences of its eventual location upon
piping and wiring runs, should be assesse

Fig. 12*— Machinery layout— lower level*

-
- 1) Main gearcase seat

2) Forward turbine seat (incorporating

drain tank)

3) Condenser

4) Thrust block

5) Main circulating pump

6) Auxiliary circulating pump

7) Extraction pumps

8) Drain pump

9) Oil fuel transfer p
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- 10) Oil fuel transfer pump (steam)
11) General service pump
12) Lubricating oil pumps
13) Lubricating oil coolers
14) Lubricating oil filter
15) Lubricating oil purifier
16) Sea water service pumps
17) Bilge/air conditioni
-
-

Fig. 13*— Machinery layout-—intermediate level*

-
-
-
-
-
-
-
- 1) H.P. Turbine

2) L.P. Turbine

3) Primary gearcase

4) Secondary gearcase

6) Mancuvering valves

6) Main feed pumps

7) Evaporator

8) Evaporator brine/fresh water pumps

9) Auxiliary condenser

11) Ballast pumps

12)
-
-
-

Important pipe ranges and reducing valve stations frequently present tiresome problems of access and maintenance to operating staff. This is inevitable if such fittings are clipped closely to bulkheads in a manner suggesti

Access
If ease of movement throughout the machinery space and
in way of each unit and all important pipe and valve ranges
is properly provided for at the design stage, the installation
work in the shipyards will correspond

-
-
-
- 13) Sea water heater

14) Diesel generator

15) Desuperheater

16) Lubricating oil storage tanks

17) Lathe

18) Driil

20) Work bench

21) Spare gear storage

22) Storage bins

23) Air ejector
-
-
-
-
-
-
-

is given in an appendix to the paper. The main boiler plant is located aft and the wide beam
has allowed transposition of the boilers from the conventional
handing. This brings both fuel burner groups toward the
centre of

FIG. 14-*Machinery layout-control level*

-
-
- 1) Log desk telephones

2) Manœuvring console

3) Combustion control panel

4) Turbo alternator

5) Main switchboard

6) Sub switchboard

7) Lift shaft

8) Oil fuel heaters
-
-
-
-
-
- -
- 9) Oil fuel pumps
10) Lubricating oil gravity tank
11) Combustion control compressor
12) Steam/steam generator feed tank
13) Steam/steam generator feed pumps
15) Evaporator
15) Evaporator
16) Boilers
17) Boiler chemical te
	-
	-
	-
	-

steam is piped from the distribution range separately to each
turbogenerator and feed pump, to the circulating pump and
air ejector and to the desuperheater.
The intermediate flat surrounds the propulsion turbine
set. The

Habitability
Alert and cfficient watchkeeping cannot be expected in an
engine room which is too hot, too noisy or inadequately lighted
and there is need to re-appraise present standards of habitability
in machinery space

critical attitude on the part of engine room crews toward the
environment in which they spend their duty hours is in-
evitable and in many instances justified.
Some radiant heat into working spaces is unavoidable in
high t

Fig . 15—*Machinery layout— looking aft on boilers*

of mechanical cooling with a minimum of fresh air supply,
and it may even prove that the reduction in fan power in so
doing will largely offset the additional power required by the
cooling units.
Among the machinery units

FUTURE POSSIBILITIES
It may be of interest finally to consider some possible
changes, consisting mainly of further pruning, to the design
which has been described in the paper.

Propulsion Unit An argument can be made for the provision of one astern turbine element only, say on the L.P. rotor. The resulting simplification of the H.P. rotor and the elimination of part of the power loss would be i

described should enable superior manœuvring performance of
the ship at the slow speeds obtaining under docking conditions.
Here the propeller can operate astern more efficiently and
higher astern power should result in bet

Propeller R.P.M.
The improvement in propulsion efficiency resulting from
a reduction in r.p.m. from 108 to say 100 would be perhaps
a little better than one per cent. The increased cost of the
gearing and the propeller w

Generating Sets
The provision of an auxiliary or emergency Diesel set in
addition to the two 600 kW turbo sets in the present scheme
follows existing convention and the Diesel generator un-
doubtedly is of value in facilit

Evaporator Plant
Provided any of the vital parts such as the heating
elements, the brine and distillate pumps and the salinometer
control can be quickly replaced by spares in the event of
failure or overhaul necessity on

Steam for Cargo Heating Coils
The steam/steam generator plant fitted in this design,
and in many present day tankers, is a heavy and costly aggre-
gate of heat exchangers, piping and control devices, calling
for its full s

Air Conditioning Coolant Source
It has been shown that a shortcoming of the back pressure
turbo generator cycle is the tendency for the build-up in
tropical operating conditions of exhaust steam surplus to the
offtake by t

that only one evaporator plant be installed. A capital cost from the energy available in the auxiliary exhaust steam can
be found, the benefits would be:

-
-
-
-
- from the energy available in the auxiliary exhaust steam can
be found, the benefits would be:
a) No requirement for additional kW rating on gener-
ators to power refrigerant compressors.
b) Smoothing out of exhaust steam
	-

ACKNOWLEDGEMENT
The author wishes to thank the Management of Shell
Tankers Limited for permission to publish this paper, and to
thank his colleagues in the Technical Division for their help
in its preparation.

REFERENCE

1) DUDLEY, S. A. "Flow Characteristics of Main Condenser Scoop Injection System Based on Ship Board Tests". Read at New England Section, S.N.A.M.E., 16th May 1958.

APPENDIX

Air Conditioning Equipment

Amidships unit capacity 250,000 B.t.u./hr. one 20 h.p.

motor driven "Freon 12" compressor running at 860 r.p.m.

After unit capacity 725,000 B.t.u./hr. one 60 h.p. motor driven

"Freon 12" comp

Air Conditioning "Freon 12" Condenser Circulating and Bilge
Pump
One horizontal centrifugal pump, bilge duty 174 tons/hr.
at 50ft. head, circulating duty 90 tons/hr. at 90ft. head. Speed
1,750 r.p.m. Priming by steam eject

Generator— Diesel One 6 cylinder four stroke Diesel running at 1,200 r.p.m. direct coupled to a 125 kW 440 volt a.c. generator. Radiator cooling, 24 volt battery start.

Generator— T urbine Two back pressure multi-stage turbines driving 600 kW 440 volt a.c. generators through single reduction gearing.

Atmospheric Drain Tank Extraction Pump

One vertical centrifugal pump, capacity 35,000lb./hr.

against 80lb./sq. in. gauge at 1,750 r.p.m.

Air Ejector— Main One single-element, two-stage ejector, capacity 701b./hr. of air from 28-5in. Hg vacuum to atmospheric pressure.

Air Ejector— Emergency One single stage ejector, capacity 661b./hr. of air from 27-5in. Hg vacuum to atmospheric pressure.

Ballast Pumps Two steam turbine driven vertical centrifugal pumps, capacity 2,000 tons/hr. against 92ft. total head at 1,000 r.p.m.

Bilge Pump— Auxiliary

One horizontal screw displacement pump, capacity 90 gal./min. against a total head of 60ft. at 1,160 r.p.m.

Capstan—Cable

One steam turbine driven anchor cable capstan rated 62

tons at 40ft./min. Emergency drive from port warping capstan

gives pull of 62 tons at 19ft./min.

Capstans—Warping
Four steam turbine driven warping capstans, rated 16 tons at 100ft./min.

Cargo Pumps Four steam turbine driven vertical centrifugal pumps,

output 1,900 tons sea water per hour against 345ft. total head running at 1,200 r.p.m.

Circulating Pum p— Auxiliary

One vertical centrifugal pump, capacity 4,000 gal./min.

against 25ft. head at 1,150 r.p.m.

Circulating Pum p— Main

One turbine driven horizontal axial flow pump, capacity

22,000 gal./min. against 15ft. head.

Combustion Control Simplified control including master controller fuel oil control and forced draught fan control. Variation of air/fuel ratio is by manual bias of the forced draught control signal.

Compressor—Combustion Control
Two compressors, twin cylinder air cooled Vee, capacity
30 cu. ft./min. at 1,160 r.p.m. reservoir pressure 55lb./sq. in. gauge.

Compressor—Deck

One 2-cylinder air cooled vertical compressor, capacity 115

cu. ft./min. reservoir pressure 100lb./sq. in. gauge driven by

1,800 r.p.m. four-cylinder air cooled Diesel engine.

Compressor—General Service
Two compressors twin cylinder air cooled Vee, capacity
25 cu. ft./min. at 1,160 r.p.m. reservoir pressure 100lb./sq. in. gauge.

Condenser— Auxiliary One "U" tube atmospheric condenser. Cooling surface 2,560 sq. ft. lin. O.D. x 14 S.W.G. cupro-nickel tubes welded into cupro-nickel tube plate.

De-aerator One de-aerating contact feed heater rated 190,0001b./hr. of feed from 100 deg. F. to 240 deg. F. and reduce oxygen content to 0 01 c.c. litre.

Desuperheater One spray type rated 80,0001b./hr. from 900 deg. F. to 600 deg. F., spray supply from feed pump 7501b./sq. in. gauge at 240 deg. F.

Emergency Fire Pump

One pump, capacity 37¹/₂ tons/hr. against 150ft. head driven

by hydraulic motor at 2,750 r.p.m. Motive power from

hydraulic pump driven by deck compressor Diesel.

Engine Room Lift
Lift boiler flat level to upper poop and boat decks rated one ton capacity.

Evaporators

One single effect plant with sea water circulated distiller

and air ejector, capacity 60 tons a day.

One single effect plant with condensate circulated distiller

and air ejector, capacity 40 tons a day.

Evaporator Sea Water Supply Pump

One horizontal centrifugal pump, capacity 400 gal./min.

against 50ft. head at 1,750 r.p.m.

Extraction Pumps— Main Two, two-stage free suction head pumps, capacity 160,0001b./hr. against 651b./sq. in. gauge from vacuum of 28.5 in. Hg.

Foam Fire Fighting Installation Foam system installed to protect boiler room, cargo pump

room, or main deck and cargo spaces. Capacity 16,000 gallons of foam. Bottled CO₂ gas pressure source.

Forced Draught Fans
Two single speed fans with inlet vane control, capacity 32,000 cu. ft./min. of air at 100 deg. F. against 20in. W.G. at 1,750 r.p.m.

Feed Pumps—Main
Two steam turbine driven horizontal three stage centrifugal
pumps, capacity 240,000lb./hr. against 740lb./sq. in. gauge at
4,750 r.p.m.

Feed Pum p—*Steam /Steam Generator* (*Electric)* One horizontal centrigugal pump, capacity 6,0001b./hr. against 1801b./sq. in. gauge at 3,500 r.p.m.

Feed Pump—Steam/Steam Generator (Steam)
One direct acting reciprocating pump, capacity 45,000lb./
hr. against 180lb./sq. in. gauge.

Domestic Fresh Water Pumps
Two positive displacement pumps. Capacity 4.75 tons/
hr. each against 451b./sq. in. gauge. Controlled by pressure
switch, speed 1,750 r.p.m.

Fuel Transfer Pump—Forward
Two vertical rotary displacement pumps, capacity 40
tons/hr. against 110lb./sq. in. gauge at 274 r.p.m.

Fuel Transfer Pump—Aft (*Electric*)

One vertical triple screw pump capacity 36 tons/hr. against 50lb./sq. in. gauge at 1,140 r.p.m.

Fuel Transfer Pump—Aft (Steam)
One vertical duplex reciprocating pump, capacity 100 tons/
hr. against 50lb./sq. in. gauge.

Fuel Burning Installation Two rotary screw type pumps, capacity 15,0001b./hr. of fuel against 4501b./sq. in. gauge at 1,150 r.p.m. feeding four pressure jet burners per boiler. Three 50 per cent capacity fuel heaters.

General Service Pump

One steam turbine driven horizontal centrifugal pump,

capacity 1,170 gal./min. against 2001b./sq. in. gauge at 3,550 r.p.m.

Lubricating Oil Coolers Two coolers arranged for single or parallel operation, capacity of each (working in parallel) to reduce 15,000 gal./hr. of oil from 135 deg. F. to 110 deg. F. with sea water at 90 deg. F.

Lubricating Service Pumps Two vertical screw displacement pumps each rated 548 gal./min. against 451b./sq. in. gauge at 1,150 r.p.m.

Lubricating Oil Purifier
One centrifugal purifier, capacity 500-800 gal./hr.

Propeller One "Nikalium" five-bladed propeller, mean pitch 17'33ft., 23 0ft. diameter, blade area 267 sq. ft.

Refrigerating Machinery
Two vertical twin cylinder "Freon 12" compressors each
operating on one space but capable of maintaining the tempera-
ture in both spaces. Coolers are fan blown battery type. Electric
defrosting fi

Steam /Steam Generator One generator and drain cooler capacity of 45,0001b./hr. of steam at 1501b./sq. in. gauge.

Steering Gear Four ram electro-hydraulic with two variable delivery pumps driven by 100 b.h.p. motors.

Stripping Pumps
Three vertical duplex, capacity each 200 tons/hr. against 140lb./sq. in. gauge

Sea Water and Fire Service Pumps Two vertical centrifugal pumps, capacity 200 gal./min.

against 115ft. head at 1,750 r.p.m. Maximum head available 128 feet.

Tank Cleaning Sea Water Heater

One heater rated 1,000 gal./min. from 50 deg. F. to 180

deg. F.

Tensioning Winches Five two-cylinder, horizontal, totally enclosed steam winches with pull of 80,0001b. from seventh layer of rope on drum.

Discussion

Cone, E. Tyzasti., R.M. (Member), mappein de discussion, cai opering the discussion), said, that Lloyd's List had recently stated, that British sinpowers considered that Shell Tankers had done more to what in the matter o

280 deg. F. fred, satisfactory results were obtained with steel
comomizers, which were cheaper and lighter than cast iron. More Maxim had also boxsevel, on page 279, that in this substituting a line steel maintenance of t

during the design of any turbine machinery installation, satisfy
himself that the indicated fuel rate would be met, as this was
usually guaranteed under financial penalty. It would be
interesting to know in this case whet

DR. R. S. SILVER, D.Sc., M.A., B.Sc. (Member) said that
Mr. Main had produced a paper of very great interest and
comptence on a very important subject. The clear statement,
that capital charges must be assessed at 14 per c

TABLE II.— PARTIAL HEAT REQUIREMENT COEFFICIENTS FOR CONDITIONS GIVEN BY MR. MAIN

(Evaluated from Formulæ in Ref. 1)						
	1) L.P. Bleed at 10 lb./sq. in. abs.	\overline{C} H ab10				$-$ 149 B.t.u./lb.
	2) Back pressure generator	ĉH cTe				$=$ +14,400 B.t.u./hr. kW.
	3) Condensing generator	\hat{c} H \hat{U} \mathbf{T}				$=$ +16,300 B.t.u./hr. kW.
	4) System electric pumps on back pressure generator	∂H ∂T_R				$=$ +13,210 B.t.u./hr. kW.
	5) System electric pumps on condensing generator	ϵ H c ^t g				$=$ +15,230 B.t.u./hr. kW.
	6) Turbo-feed pump	ϵ H \bar{t}_D				$=$ +14,820 B.t.u./hr. kW.
	7) Circulating pump turbine	∂H ∂T_{p}				$+16,650$ B.t.u./hr. kW.
	$-$ (2) (3)		$=$ $\overline{ }$			$+1,900$ B.t.u./hr. kW.
	$(4) - (6)$		$=$			$-1,610$ B.t.u./hr. kW.
	(2) $-$ (7)		$=$		$-2,250$	$B.t.u./hr.$ kW.

Table II gave the values of the relevant partial heat coefficients, calculated from the data given by Mr. Main. One could assume that the system shown in Fig. 2 had already * Proc.I.Mech.E., 1959, Vol. 173, p. 297.

been calculated and balanced. Then from Table II, without calculating in detail any of the other systems, one could deduce as follows, slide rule accuracy being quite sufficient for the deductions:

1. Mr. Main's Fig. 3:

Inclusion of an L.P. Heater bleeding at 10lb./sq. in.

The heat requirements would be reduced by 149 B.t.u. for

every pound of steam bled to the heater. Thus, if one took

5,000lb./hr. the heat req

2. Mr. Main's Fig. 10:

Condensing Turbo-generator.

From Table II it was seen immediately that the condensing

turbogenerator was less economic than the back pressure set.

Its partial heat requirements exceeded those of

3. Mr. M ain's Fig. 9: *Condensing Turbo-generator with L.P. Heater.*

Since $\frac{\partial H}{\partial b_{10}}$ was negative, one could offset the increased

requirement of the condensing set by increasing the L.P. bled
steam. In Fig. 9 Mr. Main had used 8,990lb./hr. of L.P.
steam, which would therefore reduce the system requirement
of Fig. 10 by 149 \times 8,990 = 1,340,000 B.t

4. *Feed Pumps*
Table II showed that electric feed pumps on the back
pressure generators had a partial heat requirement of 13,210
B.t.u./hr. kW. as against 14,820 B.t.u./hr. kW. for the inde-
pendent turbine pumps, i.e. a

back pressure
$$
\frac{\partial H}{\partial Tg}
$$
 = 2,080 + $\frac{7,240}{\eta_b}$ B.t.u./hr. kW. 1)

condensing
$$
\frac{\partial H}{\partial Tg}
$$
 = $\frac{10,550}{\eta_o}$ B.t.u./hr. kW.

In these equations η_b and η_c were the adiabatic efficiencies
of the respective turbines, i.e. actual heat drop divided by
adiabatic heat drop. From the data given by Mr. Main it
appeared that he had assumed the same

doubt justified. One saw that to have the condensing set give better results than the back pressure set. it would require an adiabatic efficiency η_o' such that

$$
\frac{10,550}{\eta_0} < 2,080 + \frac{7,240}{\eta_b}
$$

With $\eta_b = 58$ per cent, η_c' would need to be greater than 73 per cent. Thus to offset the benefits of feed heating by the back pressure set, a very much higher efficiency was required for a condensing set. Turning nex

$$
\frac{\partial H}{\partial t_p} = 210 + \frac{7,200}{\eta_p}
$$
 3)

$$
\frac{\partial H}{\partial t_g} = 300 + \frac{7,590}{\eta_b} \tag{4}
$$

where again η_p is the adiabatic efficiency of the feed pump
turbine.
Thus, the slight benefit of the electric pump was due
to the higher adiabatic efficiency of about 58 per cent for the
generating turbine, as compared

$$
40{,}700 \ + \ \frac{1{,}395{,}000}{\eta_{\rm p}} \ \ B{.}t.u./hr.
$$

40,700 + $\frac{1.593,0000}{\eta}$ B.t.u./hr.
With η_p = 50 per cent this was 2,830,000 B.t.u./hr. In order
turbine adiabatic efficiency had to be 52 per cent, i.e. a re-
duction of four per cent in steam consumption. The rol

Piecesson, H. Lowiest (Member) congratulated Mr. International Mr. Here the internet internet internet and which hand the behavior and which hand the behavior shell consider report about all the viscopletic particles and

most efficient level; (2) as the astern turbine became redundant,
higher steam temperatures could be employed and the ahead
turbine would remain at a more constant temperature during
manœuvring; (3) intermediate reheat cou

His company had at present on the design board con-
trollable pitch propellers up to 20,000 s.h.p. while, of course,
it had in the course of the years already supplied several
propellers of this type, though to lower outpu

the maximum boiler load, the main circulating pump 15 per
cent and the forced draught fan also 15 per cent. These
figures were not uncommon, but maximum boiler load was
already about 25 per cent higher than was needed for

was necessary.
It was very interesting to learn that for the future only one turbo alternator would be considered. What was the author's opinion about substituting for the rather heavy and noisy Diesel mentioned, an emergency gas-turbo alternator?

Did not the author think that the oxygen content reduced in the de-aerator to only 0 01 cc/1. e.g. 14μ gr./1., was a rather high figure for a high pressure boiler?

MR. E. G. HUTCHINGS, B.Sc. (London) (Member) said
that the overall design of a marine steam plant was always a
compromise and, given identical data, it was unlikely that
two independent persons would come to the same concl

He would suggest that the whole feed cycle and boiler
plant were affected, not so much by the decision to use non-
condensing turbogenerators, but more by the use of a design
of double casing turbine, which incurred a hea

years and it would be interesting to hear the author's views
on this point.
The author had stated that, with a feed temperature as
low as 240 deg. F., care must be taken to ensure that this
figure was maintained at all tim

the optimum shown in Fig. 5, was sound for the reasons stated and also because the extra fuel cost, when operating at part loads, would be an even smaller proportion of the fuel bill at that load.
The author's approach to

The author's approach to forced draught fan margins
was a new one to him, but it was quite realistic and had a
lot to recommend it, when the resistance of the oil burners
represented a large proportion of the rotal draught

He had reached now the point of disagreement with the
author. He would not agree that considerable advance had
been made in oil burning for marine installations in recent
years. It was cretainly true that there was a much

in a much cleaner boiler.

He would add that the adoption of a well-designed and

proved steam atomizer would permit the fan to be designed

confidently on a basis of 14 per cent $CO₂₉$ thus reducing the

design pres

His company had frequently advocated steam atomizers
for marine boilers, but until recently, these had usually been
rejected due to the water consumption. It was interesting
to note that some owners had used this type of b

pursuant collect and fourthe maintenance carried
out at sea.
He wondered whether the suggestion to use a smaller
quantity of colder air for ventilation was wise, from a health
point of view. Despite regulations and any mec

MR. M. L. RYALL, B.Sc. (Associate Member) said that he
had read Mr. Main's paper with particular interest, as he had
shown himself a lucid exponent of, what might be called, the
"simplicity school" of tanker machinery oper

- i) Will it become more and more difficult to get engineers to go to sea? ii) Will the standard of these engineers decline?
	-
- iii) What is going to be the cost of unreliability in ten or fifteen years' time?
-

iv) What is likely to happen to fuel costs in the fore-
seeable future?
An electronic computer, useful tool though it was, could pro-
vide no answers to these problems. At least, it could be said
that Mr. Main's arguments

opinion.
While there was much food for discussion in the paper,
he proposed to confine his remarks to three items, namely,
main turbines, circulating pumps, and turbo-alternators.
It was gratifying, in view of the brickbat

had at least one satisfied customer, and the wide experience of Mr. Main's company made his remarks worthy of respect in this direction.

Several technical points in connexion with the turbine
design were raised in the paper and in the discussion by
Commander Tyrell, which were misleading. Firstly, it was
not true that a double flow L.P. design was necessar

the shipowner's choice of L.P. turbine was a reasonable one.
Commander Tyrrell drew attention to the fact that the
turbines, shown in the paper, did not have welded diaphragms,
which he claimed would have shortened the tur

the effect of the windage of the astern wheel, running ahead,
on the overall turbine efficiency. The author's estimate of a
possible 650 s.h.p., loss due to the astern turbines was not
backed up by experimental evidence.

Turning now to the subject of circulating pumps, it would
appear, from the author's remarks, that there was a strong
case for the steam driven pump, providing it was fitted with
nozzle control and the type of inlet and ov

ability to vary the speed of the pump in the case of the steam
drivity was not an important consideration. It almost always not
always not an important consideration. It almost always and it was only when, by so
doing, the

* McAlpine, T. and Paterson, I. S. 1960. "Recent Developments in Pump Auxiliaries for Ships", Trans.I.Mar.E., Vol. 72, p. 229.

denser. In harbour, the alternator would exhaust to the auxiliary condenser. Control should not prove any more difficult than with the old, much more complex, mixed pressure condensing sets. The idea of this simple type o

MR. G. VON FEILITZEN said that being makers of main propulsion steam turbines, as well as several types of marine auxiliaries, the De Laval Ljungstrom Company had had reasons

Fig. 16—*Heat balance for De Laval 22,000 s.h.p. propulsion machinery*

-
-
-
-

to make studies similar to the one presented by Mr. Main. On many essential points their practical experience and theoretical studies agreed with the results found the more in They wished to support his aim for simplicity

condensing types about 135 for cent lower. The same
equelering types about 135 for cent lower had applied to the DE Laval boiet feed pumps for which they had
main circulating pump. No difficulties, of the kind mentioned b

Fig . 17*— Longitudinal section through H.P. turbine in De Laval 20,000 s.h.p. main propulsion unit*

Fig. 18—*Longitudinal section through L.P. turbine in Dc Laval 20,000 s.h.p. main propulsion unit*

by throttling only and 3 per cent by having a nozzle sub-group
designed for 75 per cent load. On De Laval standard turbines,
which normally were designed for operation with peak efficiency
in the range of 85-95 per cent lo

MR. A. T. MACKENZIE said that they had heard a great
deal about condensing and back pressure turbo-alternators,
but practically everyone had agreed that the back pressure
turbine was the winner. Much of this depended, of c

made over the first seven or eight years of the ship's life. If
the assessment was made over a longer period covering, say,
four special surveys, a figure of 300 days per annum might
be more realistic.
It should be borne

condensing turbo-aliternators and a split economizer free
hearty and split expansing any eno all split expansions and split expansions practical ressons suggested by the author. In the case of the practical ressons sugges

MR. A. C. HUTCHINSON, B.Sc.(Eng.) (Member) said that
he proposed to confine his remarks to a single detail of the
paper. This was the choice of pressure. Everyone looking
for higher efficiency took it for granted that temp

* Bonny, A. D. 1958. "An Investigation into the Optimum Machinery Installation for a Large Steam Turbine Tanker" , Trans. I.M ar.E., Vol. 70, p. 361.

t Norton, E. 1958. "The Use of High Pressure Steam in Marine Installations", Trans.I.M ar.E., Vol. 70, p. 261.

printed in the TRANSACTIONS and he would not waste time
by going over it again.
Since then, in thinking about the case against increasing
pressure, he had come to the conclusion that there were two
kinds of argument. There

FIG. 19-Steam pipe flanges from Table T, B.S.10, drawn with a common bore diameter to show their dissimilarity of design

Fig. 19 showed three flange designs taken from Table T
of that specification, all re-drawn to have a common bore
diameter. Table T covered steam pressures up to 1,400lb./sq.
in. In central station machinery with very larg

Another example of the conspiracy to deprive the engineering world of benefit from high steam pressure was shown in Fig. 20. This was a picture of himself sitting on top of his employer's new 1,500lb./sq. in. test boiler.

FIG. 20-An example to illustrate the large size of conventional steam fittings

on the wheel of a 2in. stop valve. The casting was the high
and low water-level alarm fitted to the boiler drum. Its func-
tion was to blow two whistles. Together with the two stop
valves and the connecting pipes, the tota

MR. J. NEUMANN, B.Sc.(Eng.) (Associate Member) complimented the author upon advocating a properly designed circularing water (C.W.) inlet, which could be used to provide some of the head, necessary for overcoming the resis

* Hewins, E. F. and Reilly, J. R. 1940. "Condenser Scoop Design", Trans.S.N.A.M .E., Vol. 48, p. 277.

He noted that a bututrfly sea value was shown in the most way as a value was shown in the time pare it was implied that the time pare times in this time that the time state of the interested to learn the author's resson f

if any, had been taken in the design to avoid contamination of the exhaust steam and of the feed system by pump lubricant.

Ms. A. Noratas (Member) said that after a quick permeatista dath after a quick permeatista dath the parameter and as a result of the gas exit temperature being 50 £880 per annumn, but a save a result of the gas exit tempe

possibilities, to the provision of one full duty Diesel generating
set and one full duty turbo set as an alternative to the present
installation. With this arrangement, an adequate amount of
this Diesel fuel would have to

MR. C. R. KIRSCHBAUM said that he had enjoyed the paper greatly. Such papers were very useful in helping to decide the choice and shape of machinery installations for the future. Upon studying the preprint he had found th

of a turbo circulator.
Secondly, he would agree with the author in his choice
of a one-speed motor for the boiler fan. However, much
attention had to be spent on the tightness of the vanes, as
sometimes these leaked as muc

that the auxiliary Diesel generator had to take this higher
electric load at starting up condition, or when cases of black-
out occurred. As long as the Diesel generator could take this
higher load, he could not see much a

larger investment, the loss in efficiency, and the complication
that it would certainly produce. He believed that an astern
turbine in the L.P. casing would give the normal amount of
astern power, necessary for this type o

author on the necessity for more automation and simplification
of machinery installation, in ships that would be built in the
near future. It was the duty of the designer to have his
designs ready for the day, when the qua

elimination of the cleaning of burners and evaporators; simplification of the water washing of the boiler; a 100 per cent automatic boiler control and a simplification at the main switch board which made it fully "foolproo

Correspondence

MR. A. BELL, B.Sc.(Mech. Eng.) (Associate Member) in
a written contribution, said that to utilize the exhaust from
the back pressure turbogenerators Mr. Main had adopted
steam air heaters. This had led him to assume that t

clude the use of gas air heaters. Even with the high outlet
temperature from the steam air heater of 230 deg. F., a
suitable gas air heater could be designed, to operate in series
with the steam air heater and a small econ

^Fig . 21*— Comparison of annual charges: economizer only (from Fig.* 5) *and econo mizer and gas air heater (with steam air pre heat to 230 deg. F.)*

temperature to the gas air heater of 230 deg. F. and a feed
temperature of 240 deg. F. These charges included the appro-
priate allowance for the increased fan capital and running
costs due to the higher draught loss.
A l

MR. G. B. HALLEY, M.B.E., B.Sc. (Member) wrote to say that with such a large proportion of time spent under * Bonny, A. D. "Modem Marine Steam Turbine Feed Systems", Trans.N.E.C.Inst.E.S., Vol. 73, Part 5.

/

way at sea it was evident from Table I that the back pressure
generator was more economical than the self-condensing set,
despite the fuel saving with the latter. Incidentally did the
fuel saving, when the advantage lay he

It would be interesting to see what the result would be
of increasing the auxiliary exhaust pressure, to give a feed
temperature of 280 deg. F. instead of 240 deg. F. It was
considered likely that this would increase the c

The S.S. generator load under normal steaming had been
practically eliminated, but would it not be more reliable to
use this for supplying steam for oil fuel heating and recipro-
cating auxiliaries, in view of the risks ot

M.D. pump was selected for the standby fuel transfer pump.
This was a most interesting and informative paper and
the author was to be congratulated on the way he had covered
his subject so concisely and yet so fully.

Author's Reply

Mr. Main, replying, said that in the interests of brevity
be be would confine his termates to an attempt to answer the
sialent points related at this stage. These appeared to centre
on the choice of feed temperature selec

back pressure on the auxiliary turbines. Fig. 16 used the same L.P. feed heater duty rating as Fig. 3 in the paper. The specific steam rate of the generator turbine had been increased by 16 per cent and the steam rates of

Fig. 22—Heat *balance with L.P. feed heater added and with feed temperature of 280 deg. F.*

21,280 s.h.p. (20,590)

Propulsion turbine non-bleed steam rate 5:85lb./s.h.p./hr. (6:17)

Boiler efficiency 87 per cent

Vacuum 28:5in. Hg (27:6)

Turbogenerator load 450 kW (530)

Fuel consumption:

11,040lb./hr. = 0:51

$$
(1,200)
$$

provided that a corresponding reduction was made to the heat
quantity taken from the higher stage bleed point. It would
be seen however, that tropical operation reduced the higher
stage bleed to zero and the L.P. bleed to

Commander Tyrrell's observations concerning the pro-
pulsion turbine design had, for the most part, been answered
already by Mr. Ryall. The author was not aware of any
basic inability of built up diaphragms to take somewha

Dr. Silver's contribution had been a most interesting
addition to the paper. He was correct in suggesting that an
increase of 4 per cent in feed pump steam consumption would
be justified if the capital cost could be reduce

The author agreed with Professor Lameris that steam
conditions must continue to be advanced. Too much con-
servatism could only stagnate development. It was impossible
however to obtain quantitative information from which

controller so that the dump valve did not open until a pressure
of about 18lb./sq. in. gauge had been reached. The difference
in heat intake at the de-acrator—Fig. 22 (280 deg. F. feed) and
Fig. 3 (240 deg. F. feed) is ab

It was indeed a step toward the eventual complete auto-
mation of the boiler firing process if there was no need to
withdraw burners not in use at reduced loads. This required
some provision for cooling the idle burner tip

and if the cost was acceptable he would favour it.
The figure of 0.01 c.c./litre oxygen content for the de-
aerator performance was the minimum performance guaranteed
by the manufacturers and it was true that this would b

The author welcomed Mr. Hutchings' remarks although
in regard to the use of 280 deg. F. feed temperature he would
refer again to the figures which had been carefully estimated
by the economizer manufacturers. The washing o

The author was grateful for Mr. Hutchings' correction of the figure given in the paper for F.D. fan capacity margin. This should indeed have been 104 per cent and not 140 per cent.

Negligible air heater fouling, even in the close pitched fin
design used, had been experienced in existing ships. Mr.
Hutchings had brought out very clearly the argument in
favour of the steam assisted oil burner and the s

sequent to enabling designs to be based on 14 per cent Co_2
combustion.
As far as combustion control equipment was concerned
it was the author's view that no matter how certain the
eventual advent of full automation, the

to be avoided.

Mr. Ryall presumably would not suffer unduly from com-

placency in apparently having retained one satisfied customer.

Perhaps it had been certain of the Association's manufacturing

retailers who had been

Mr. Ryall's figures, presumably, and those quoted above
were for standard 28 $\frac{1}{2}$ in. Hg vacuum conditions. The H.P.
astern cylinder gland sealing steam flow through the L.P.
astern turbine could well be greater than M

grateful for Mr. Ryall's correction on this point.

Mr. Ryall's contention that an electric motor drive for

the main circulating pump would be some £2,000 cheaper

was not apparent in the cost studies made at the time. T

condenser vacuum could be economic provided no significant
undercooling of the condensate took place. Despite the claims
of the condenser designers it had not been found possible in
practice to avoid this undercooling in c

The single stage Curtis wheel generator turbine mentioned
by Mr. Ryall would obviously require an entirely reliable
device to divert its exhaust from the H.P./L.P. crossover to
a condenser in the event of an emergency stop

times. The necessary automatic devices and the steam line drainage problem should be relatively easily solved however, and the system was worthy of very close consideration. The Diesel set mentioned in the paper combined t

functions of an alternative electric power generating source in
the event of breakdown of the turbine set (whether this was
a multi-stage unit or a single-stage unit operating on bled steam)
and the necessary auxiliary pow

remarks, which provided a most useful comment on all the
major aspects of the cycle described in the paper. He had
the greatest regard for the technical achievements of Mr. von
Feilitzen's company and wished to acknowledge

almost too good to be true and he thought perhaps that the De Laval generator turbine would not be more than 7 per cent better than the one referred to in the paper if comparable part load performance was considered. Even

Mr. Mackenzie had suggested that 300 days per annum
at sea would have been a more realistic basis for assessment
of ship performance. If this were so, his argument advocating
a higher efficiency cycle was, as the author sa

He was not clear as to the comparison which was made
with the cycle yielding a fuel rate of 0.503lb./s.h.p./hr. 75
deg. F. average sea temperature for Middle East/N.W. Europe
did not allow the inference that average conde

The increased capital cost of the 0-503lb./s.h.p./cycle
was more likely to approach £50,000. The additional effect
of the extra machinery weight and maintenance costs would
remove most of any apparent savings achieved.
Mr

board discharge valves had subsequently been changed to this type.

The relative positions of the main gearcas and the bolit main singure
In this particular layout followed orthodox practice in-solar as the fact
in spart in this particular layout followed orthodox practice in-solar as
the

It was not taxe in pair in the very wisk on the very wisk on the stress in pair
that the division in a few words. One this this which would be obvious vas that there was nothing
assign) difficult in achieving simplificati

APPENDIX

S.S. Serenia, the first ship of the class, left the builders'
shipyard on 16th June en route to drydock on Merseyside.
No difficultly was experienced with the machinery during
this passage although the presence of substant

FIG. 23—Looking into the main tailshaft bush from the after
end. The upper and port side oil grooves can be discerned
by the light bearing and hand tool marks (done prior to fitting).
A puddle of lubricating oil is visible

port side oil grooves can be discerned by the light bearing
marks and the hand tool marks (done prior to fitting). A
puddle of lubricating oil is visible below the tailshaft end.
During trials off the west coast of Scotlan

Some further observations could be made at this stage:

- 1) The bleed from the propulsion turbines was considerably higher than design for Fig. 2 conditions and was in the region of 8,5001b./hr.
- 2) The main circulating pump turbine steam consumption was about 3501b./hr. The head across the pump was measured at $3\frac{1}{2}$ ft.
- 3) The turbo generator loading throughout the trial averaged 443 kW (measured on a recording type kW meter).
- 4) The sea temperature was 55 deg. F. and the domestic heating load was negligible.
- 5) The steam inlet condition at the H.P. turbine was 5601b./sq. in. gauge/895 deg. F. for 6001b./sq. in gauge/900 deg. F. at the superheater outlets. The

FIG. 24—Looking aft across the propulsion unit to the
manœuvring console, automatic combustion control and boiler
fronts. It will be noted how the transposition of the boilers
has grouped the burners towards the centre and

FIG. 25—Showing the main propulsion plant with the auxiliary
Diesel alternator in the left background and the superheated
steam distribution manifold in the right background. The
open nature of the layout is well illustrat

Fig. 27*— Showing the manoeuvring console and combustion control panel with turbo-alternator and main switchboard in the background*

Fig. 26—Showing the main turbine and looking forward into *the cargo pump turbine flat. The external desuperheater runs up the left side of the photograph*

main condenser vacuum was held at 28.5in. Hg
throughout by adjustment of the main circulating
pump speed. The overboard discharge temperature
was 77 deg. F. and the condensate undercooling
appeared to be of the order of 4

FIG. 28—*Looking to starboard where the main alternators and switchboard are situated. The Diesel alternators and combustion control panel may also be seen. The high level of lighting and absence of dark spots is apparent*

specific fuel rate in temperate sea water would be within the figure of $0.5231b./s.h.p./hr$, allowed for this installation.
If a mean was taken between consumption measured by settling tank soundings and oil flowmeter (and th

The Development of Heavy Duty Marine Diesels During the Past Five Years*

W. KILCHENMANN (Member)[†]

Discussion at the Meeting of the Eastern U.S.A. Section in New York, on Monday 13th March, 1961

MR. NICHOLAS BACHKO said that Mr. Kilchenmann was
to be congratulated for a well written and informative paper.
The subject of Diesel propulsion for large ships was no over-
Whelmingly popular on that side of the ocean an

-
- etc.

3) Heavy sludging and contamination of crankcase oil.

4) Water leakage from piston cooling lines in the crank-
-
-
-
-
-
-

exactly contributed by the critical case.

So Corrosion of bearings and journals.

6) Contamination and sludging deposits in the scavenge

belt with consequent fires.

7) Unusually heavy maintenance requirements of fuel

s

* The full text of this paper and the discussions in Canada are published in the September issue of the Canadian Supplement, f Technical Director, Diesel Engine Department, Sulzer Bros., Switzerland.

being rapidly advanced. Steam turbines, even while enjoying
a definite advantage in lower maintenance and in higher degree
of reliability, were still being refined to insure an even better
characteristic than they now atta

challenging to the Diesel. They also had a proven reliable gas turbine for marine application which challenged the Diesel on all counts, including the burning of heavy boiler fuels. In addition, this unit, in a newly propo

LIEUT. G. D. KINGSLEY, JR., U.S.M.S. said that it was
with a great deal of pleasure that he discussed Mr. Kilchen-
mann's paper, especially in view of the fact that it put forth
such strong arguments in favour of the large

found with intermediate speed engines. It pleased him a great
deal to see that, with the possibilities of ship propulsion des-
cribed by Mr. Kilchenmann's paper they might yet see the day
of large Diesel engines in ships s

development and improvement that were required to bring
high output engines into being. He would like to make a brief
comment on those areas. They could find no fault with the
discussion on welding, and although in the Uni

In view of the short time available, he would like to comment about a part of the paper, on which there might be
a slight difference of opinion, and that concerned the term
""heavy fuel". On several points he agreed with M

- light on the following:

1) In order for the Diesel propulsion plants to compete

1) In order for the Diesel propulsion plants to compete

19 right down the line with steam propulsion plant, in

19 the United States, the u
	- 2) Were there better methods of handling bunker fuels than those outlined?
	- Could the author, from his experience, say if it were
correct to assume that the average large slow speed,
high powered engines were using fuels varying from
600 to 1,500 sec. Redwood number 1, and if this
assumption were

of heavier or true Bunker C fuels, even at their lower

cost?

He wished again to thank Mr. Kilchenmann, Mr. Speer

and Mr. Thomas for the opportunity to participate in the

activities of the Institute of Marine Engineers.

MR. W. S. HENRY said that Mr. Kilchenmann had presented a most interesting and timely paper which to the fanous name of Sulzer. The thoroughness, with which his company had developed and evidently proven the soundness of t

bettire,

He considered that a well designed and proven large

Hettive,

He considered that a well designed and proven large

modern Diesel could have certain operational advantages, such

as a steaming radius, manuvariabi

DR. JOHN J. MCMULLEN, B.S., M.S. (Member) said that
he did not have a prepared contribution, but he felt that being
an old time friend of Mr. Kilchenmann, in Switzerland, he
should come to his defence. In fact, he had sugg

United States was based on the attitude which was typified
by the previous three contributions. One of the things he
feared was that the engineer in the United States was not
thoroughly familiar with the development of the

wrong.

Wrong

The basic point was the economics of the entire problem.

Briefly, the fuel costs in a foreign ship represented the highest

single item of operating expense and it was for this reason

that emphasis had bee

of Diesel engines available, he would guess offhand would
approach eighteen or twenty. In addition, the shipyards, which
were building Diesel engines abroad and which had licenses to
construct such engines, were quite nume

Author's Reply

Mr. Kilchenmann replied that Mr. Bachko's discussion
represented a very strong attack against all those who liked
Diesel engines. Anybody reading it out of context would think
that the many shipowners in Europe, who put Di

ranges.
The range of 10,000 to 15,000 tons, there were 60
per cent Diesel ships and 40 per cent steam ships in 1954,
and in 1960 there were 60 per cent Diesel ships and 40 per cent Diesel and only 20 per
cent steam. Highe

like to take up. For instance, cocassive wars of eylinders back
and piston rings, when burning Runker C fuel; these days,
excellent war figures of 002ion. per 1,000 hours were frequently
yimder in the solution of the syli

for marine applications. The author, without going into
details, could only wish him luck.
He was grateful to Lieut. Kingsley for his contribution.
The first problem he had raised was again whether boiler
fuel could be us

thus put pressure on the fuel still located inside the pipe.
After a few seconds, a black mass with the consistency of
toothpare started showly dripping out of the other end. That
toothpare to strough veripping out of the

INSTITUTE ACTIVITIES

Minutes of Proceedings of the Ordinary Meeting Held at The

An Ordinary Meeting was held by the Institute on Tues-
day, 14th February 1961 at 5.30 p.m., when a paper entitled
"The Design and Layout of a 22,000 s.h.p. Tanker Machinery
Installation" by Mr. J. B. Main (Member), was pr

A vote of thanks to the author, proposed by the Chairman was greeted by acclamation. The meeting ended at 8.30 p.m.

Eastern United States Section

A meeting of the Eastern United States Section was

held in New York on the 13th March 1961, when a paper

entitled "The Development of Heavy Duty Marine Diesels

During the Past Five Years"

Election of Members

Elected on the 18th September 1961

MEMERES

Minoo Dhunjishaw Aibara

Harold Duncan Aimer

Leonard Balls

John Beldam Booth

Leslie Budd, Eng. Lieut., D.S.M., R.N.

Duncan Campbell, Capt. R.N., B.Sc.(Glasgow)

George Arthur Davies

Ascencio Anthony de Freita

George Soens Douglas Thompson Leslie James Western Edward Hall Wilson William Harold Yates, Eng. Lieut., R.N. Robert Coxon Young

Assocxare MEMBERS

William Ather

Robert Ayon

William Achr

Robert Ayon

The Trans Bell

Patrick Morice Fitzgerald Blood, Lieut. Cdr., R.N

Ronald Guthric Bownaker

Leventer Trevor Brown

Cyri Casmil Burges

John Clark Bu

Asher Samson

Francis Edward Smith

Andrew Thomson Steel

Peter Turner

Reginald Tyrrell

Vidya Bhushan Verma

Ernest Vivian

John Banks Wassall

Alfred James Weall

Peter Wenden

ASSOCIATES

Arcangelo Natale Bagnato

Robert Graham Candow

Gepalam Kannaiah Chetty, Cd. Eng., I.N.

Howard Eric Crompton

Budherd Bikash Das, Cd. Eng., I.N.

Henry John Gardner

Albert George Grant

Alan Barry Hamono, B.E

GRADUATES

Rajagopalan Ananth, Sub. Lieut., I.N.

Robert Archer

Satyapal Bhardwai, Sub. Lieut., I.N.

John Garry Beaumont, B.Sc.(Durham)

John Henry Brown, Jnr.

Campbell Crawford Gawn

Zekerya Ghiasci, Sub. Lieut., Imper Stuart Munio

Alexander Haggart Noble

John Francis Parkinson

Cyril David Pereira, Sub. Lieut., I.N.

M. H. Riswadkar, Sub. Lieut., I.N.

Charles Rex Sadgrove

H. C. Sethi, Sub. Lieut., I.N.

Arie Shifman

John Campbell T

STUDENTS
Jeffrey Leonard Brommage
Dhirendra Kumar Hajela, B.Sc.(Agra)

Douglas Roy Maxwell McBride William Michael Stuart Parks Peter Stringfellow Amarjit Singh Vijan Vinod Kumar Vohra PROBATIONER STUDENTS
Jagish Chander
Dhir Chand Sharda TRANSFER FROM ASSOCIATE MEMBER TO MEMBER

Harvey Addison

Clifford Somerville Harnett

Duncan Lyon

Benjamin Corbett Pester, Lieut. Cdr., R.N.Z.N.

C. S. Sundaram

Charles Herbert Bradwell Watson TRANSFER FROM ASSOCIATE TO MEMBER
Matthew Dunnachie
James Whyte McCowatt
Edward Clark Ranson TRANSFER FROM ASSOCIATE TO ASSOCIATE MEMBER
John Cochrane
Sidney Offord
Frederick Cunningham Turnbull TRANSFER FROM GRADUATE TO ASSOCIATE MEMBER

Donald Henry Andrew

Leonard Armstrong

Michael Treloar Best

John Roxburgh Brown

Donald Cormack

Robert Jackson Fullerton

Gerald Taylor Gailey

Alan Frederick Hodgkin

Harry E TRANSFER FROM GRADUATE TO ASSOCIATE
Francis Hugh Ferguson

TRANSFER FROM STUDENT TO ASSOCIATE MEMBER
James Leak

TRANSFER FROM STUDENT TO GRADUATE
David Warwick Dean
Garneth Cyril Alexander Ellis
Peter John Hambling
John Keith Wilson

TRANSFER FROM PROBATIONER STUDENT TO GRADUATE

Peter Harvey Bamforth

Nicholas Bill Knowlton

Ian Robert Jamieson

James Brown Ramsay Shearer

TRANSFER FROM PROBATIONER STUDENT TO STUDENT
Derek Anthony Hancock
Allan McLeod Hodgson

OBITUARY

Sir W illiam C r a w f o r d C u r r ie, G .B .E .

An appreciation by Sir Donald F. Anderson (Past President)

The immediate impression which Willie Currie made on everyone whom he met was that of a modest, kind, endearing man, most thoughtful for others. This was a true reflexion of his character, and only became stronger as one knew him better.

I worked under him in various capacities for over 20 years, and as a much younger man I was constantly astonished by his readiness to listen to the young, and his wish to let them

Willie Currie was a tiger for work, and however long the day had been he never left the office without a bundle of papers to read at home. With an excellent memory and an apparently unlimited capacity for absorbing information, he had an immense knowledge of the detail of his business. He had little time for outside interests, but shooting, rugger, cricket, and those areas, such as India, where he had lived and worked as a younger man, always kept their attraction for him.

have their say. No one could have been less of a dictator than he—no one could have filled his chair with less pomp or more consideration for others.

It is not surprising that with this character he should have evoked such loyalty and respect from those who worked in the companies under him. Whether at sea or ashore, whether at home or abroad, they all regarded him with unbounded affection, and he took immense trouble to get to know them.

The P. and O. Group was the centre of his life. His thoughts and activities revolved around it, and he had the good fortune to be supported in this by Lady Currie, who took part with him in so many of his shipping and company activities, as well as making her individual contribution to many others.

To me—and a thousand others—Willie was a unique character. Those who served him will never think of him without warmth, for he was that sort of a man.

Stem Wint
LIAM CIVERIC, GIBE, Chairman of the P. and O. They and O. Stem Navigation Company and of the British India Steam
Navigation Company and of the British India Steam
Navigation Company from 1938 to 1960, who wa

tons of shipping, but veen in 1945 it had enough ships to
tos of shipping, but veen in 1945 it had enough ships to
resume at least skeleton services. The reconstruction of the
flect was one of the most astonishing achievem

SIR WESTCOTT STILE ABELL, K.B.E., M.Eng.

SIR WESTCOTT STILE ABELL, who was President of the Institute in 1924, died on 29th July 1961 at the age of 84.
An eminent naval architect and constructor and a former Chief Ship Surveyor of Lloyd's Register of Shipping, hi

of Naval Architecture. While lecturer at Greenwich, and
during his professorship, Sir Westcott contributed important
papers to the Institution of Naval Architects. In 1913 he was
appointed a member of the Committee of the

College, Keyham, Devonport, before proceeding to the Royal
Naval College, Greenwich.
Joining the Royal Corps of Naval Constructors in 1900,
he was soon appointed to the staff of the Chief Constructor at
Devonport Dockyard

Professor T. B. Abell. He served on a special Admiralty
committee to consider the practicability of building submarine
merchant ships during the time of the submarine menace.
In 1916 he was appointed technical adviser to t

After the war many questions arose which called for the
ripe experience of Sir Westcott, especially at the Board of
Trade for the classification of ships and other important
matters. He served on the Board of Trade Load Li

He retired from his position of Chief Ship Surveyor to
Lloyd's in 1928 and for the next 13 years was Professor of
Naval Architecture at Armstrong College, Newcastle upon Tyne.
Sir Westcott, who was created K.B.E. in 1920,

Marine Engineers and followed its development keenly. He
had been a full Member since 1916.
Among his publications were "The Safe Sea", published
in 1932, "The Shipwright's Trade" in 1948 and "The Ship
and Her Work".
In 19

WILLIAM BLACKWOOD JOHNSTONE, O.B.E.

An appreciation by D. D. McGuffi?

MR. W. B. JOHNSTONE, son of the late Mr. William Johnstone, Lloyd's Register principal surveyor at Greenock, died on 20th August 1961, at the age of 67 while on holiday He was educated at Allan Glen's School, Glasgow, and

Register Technical Committee. In 1953 he was elected Chair-
man of the Dry Dock Owners' and Repairers' Central Council
and he was past president of the Clyde Shiprepairers' Associa-
tion. He was also a member of the Glasgo

In 1915, during the first world war, he joined the firm of
Alexander Stephen and Sons as assistant manager in the Repair
Department. This position Mr. Johnstone held until 1928
when he was appointed manager. He joined the

Association and was a member of the Executive Committee.
His activities in the Scottish Section of the Institute of
Marine Engineers are well known and for the past two years
he held the position of a Vice-President of the

PATRICK NESSAN CRONIN (Associate Member 16330) was
born on 1st December 1922. He was indentured between
1943-47 with George Watt Ltd., Dublin and from 1947-48
with the Commissioners of Irish Lights at Dun Laoghaire.
In 194

Mr. Cronin was elected an Associate Member of the Institute in 1955. He died of a heart attack in his office at the Department of Industry and Commerce on 25th January 1961 at the age of 38 years.

THOMAS GREY BOYS (Member 18424) was born at Sunderland, Durham, in 1901 and served his apprenticeship with Sunderland Forge and Engineering Co. Ltd. from 1917-22. During the period of his indenture he attended Sunderland T

RICHARD HENRY BROWN (Associate 8876) died in March 1961 while on sick leave. Born on 30th December 1909, he served his apprenticeship with Smith's Dock Co. Ltd. of North Shields between 1926-1931. He entered the B.P. Tanke in that rank in various B.P. motor ships until his decease.
During his 29 years at sea with the company, which included
the full span of World War II, Mr. Brown served in no
fewer than 27 Diesel tankers. He was involved in

JOHN ERIC COLLIER (Probationer Student 23206) was
accidentally drowned at Easter 1961. He was educated at
Fareham County Secondary School for Boys, Hants., between
1955-60 and had obtained the General Certificate of Educat

John Collier was elected a Probationer Student of the Institute in December 1960. He was in his eighteenth year.

JAMES LEWIS (Member 21867) died on 10th May 1961
aged 36 years. His apprenticeship was served at Cammell
Laird and Co. Ltd., Birkenhead, with whom he spent five
years. Following this he was employed by Shell Refineries
for

FREDERICK JOHN POTTS (Member 10714) was born on 30th May 1904. After a five-year apprenticeship at the Walker-
on-Tyne yard of Swan, Hunter and Wigham Richardson Ltd.
from 1920-25, he went to sea. Between 1927 and 1935 he

sex. Mr. Potts died suddenly on 10th August 1961. He had been a full Member of the Institute since 1946 and was also a Member of the North East Coast Institution of Engineers and Shipbuilders.

PIETER VAN STRIEN (Associate 22796) died suddenly at sea on 20th July 1961, while sailing through the Suez Canal was buried the following day in Cairo. At the time he was employed as second engineer in *London Victory*, a