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-------------S YN O P SIS -------------
This p a p e r  review s the background  to  the curren t state o f  the m arine industry. I t  then describes the h istory and  nature  
o f  a rtific ia l in telligence (AI), and  presen ts  som e deta ils o f  the structure a n d  fu n c tio n in g  o f  an  expert system . Expert 
system s are c lassified  a n d  som e sign ifican t issues in know ledge represen ta tion  a n d  reasoning  are d iscussed. The 
curren t sta te  o f  research  in A I a t L lo yd ’s R eg ister is described, and  a review  is p resen ted  o f  cu rren t a n d  possib le  
app lica tions o f  expert system s in m arine technology. The im plications o f  advanced  com puting  techniques fo r  ship and  
o ffshore opera tions are assessed.

INTRODUCTION

The past decade has seen a steadily increasing number of 
applications of artificial intelligence (AI) to every branch of 
science and engineering. Collaborative efforts by experts and 
AI specialists have produced systems which diagnose disease, 
evaluate military threats and even prospect for minerals, at a 
level of performance equalling that of human beings. The 
potential power of systems which not only replicate expensive 
or rare human knowledge, but also are capable of producing 
cumulative versions of it has stimulated worldwide efforts to 
develop and apply this technology. In time, expert systems will 
influence all areas of human activity where knowledge pro­
vides the means for solving problems.

During the same period of intense activity in AI research, 
fundamental changes have taken place in the world shipping 
industry. These led to a serious decline in shipbuilding activity 
and in the profitability of ship operation. Marine transport 
continues to be a low technology industry compared with the 
electronic, computer, communications and even air and road 
transport industries. This is one of the reasons for the ‘vicious 
circle’ of recession which has afflicted the industry for the past 
decade (Fig. 1).

However, it is inevitable that general progress in technol­
ogy will lead to the application of high technology in shipping. 
Many projects currently in progress, including the ‘efficient 
ship’ schemes, have this goal in mind.

Marine transport encompasses shipbuilding and ship op­
eration which, as in many other industries, continue to exist as 
completely separate functions. Both are highly competitive 
international businesses. Today, countries with high labour 
costs are seeking to improve their efficiency by developing 
and exploiting computer-based technologies (Fig. 2). The 
flexibility offered by automation in manufacturing makes 
robotic systems particularly suited to shipbuilding. The indus­
trial robot can be used in a variety of complex manufacturing 
tasks and is highly developed for welding and plate-cutting op­
erations.

To meet the present shipbuilding economic demands, the 
new generation of shipbuilding robots need to comply with 
two requirements. The first is enhanced awareness of the en­
vironment, for which new sensory systems are needed. The 
second is improved in-built intelligence for autonomous deci­
sion making. This means that future systems will have to 
replicate and apply autonomously what amounts to human 
expertise. To further this aim, ‘knowledge engineering’ can 
provide the technology to convert human knowledge into 
industrial power.
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In the ship operation sector, the technical objectives are 
remarkably similar. Moves towards enhanced operational 
flexibility and computerized ship management will require the 
use of advanced electronics, computers, instrumentation and 
communications. ‘Expert’ or ‘knowledge-based’ systems 
provide a means of extending automation by making systems 
independently capable of diagnostic and predictive decisions, 
providing for example a coherent picture of the ship environ­
ment in uncertain and changing wind and sea states and 
operational requirements.

Knowledge in any subject is usually of two kinds, public 
and private. Public knowledge includes the facts and theories 
which appear in text books and references. Private knowledge 
consists largely of rules of thumb and generalizations that have 
come to be called ‘heuristics’. Heuristics enable the human 
expert to make educated guesses, especially where informa­
tion is incomplete, or where an unusual combination of condi­
tions is involved. The ability to recognize and select promising 
approaches to problems with uncertain or incomplete data, 
and to check quickly whether results from complex analytical 
computational methods are realistic, is a very important part of



the Energy Programme of the Commission of 
the European Communities (EEC) and the 
U.K. Marine Technology Directorate (MTD). 
The project has produced a fuel characteriza­
tion expert system, with the active participation 
of 30 members from oil companies and engine 
manufacturers to research establishments. The 
fuels project, which is nearly completed, is 
closely linked to a second project, the Condi­
tion Monitoring Project, which is funded by the 
U.K. Department of Trade and Industry (DTI) 
and the MTD. A new generation of condition 
monitoring systems for diesel engines is being 
developed, incorporating fault diagnostic and 
predictive maintenance expert systems. The 
third project is the Danish-led ESPRIT Project 
‘Shipboard Installation of Knowledge-Based 
Systems’ (KBSSHIP). (ESPRIT is the Euro­
pean Strategic Programme o f Research in In­
formation Technology.) KBSSHIP is aimed at 
the development of an integrated expert system 
to support the master and officers in optimizing 
the safe and economic operation of merchant 
vessels. A new ESPRIT project led by Lloyd’s 
Register has also been recendy approved, 

Fig. 1. An overview of the marine transport industry aimed at developing a tool kit which will assist
in the maintenance and verification of existing 
software, which is expected to have a signifi­

cant impact on future ship-related computer programs.
In the following text, the main principles of AI and the tools 

for building expert systems within the Society are described. 
A review of marine applications is then presented with empha­
sis on the prototype systems currently under development in 
the Society’s research and development programme.

ARTIFICIAL INTELLIGENCE

Definitions
Most people today have some idea about what AI means, 

since the range of published applications in medicine, science 
and engineering is constantly increasing. However, it is diffi­
cult to state precisely what the field of AI covers. A picture of 
the discipline can be provided by the following definitions.

“AI is the science of making computers do the things 
which, if performed by humans, would be termed intelligent.”

“ AI is the study of how to make computers do things which, 
at the moment, people do better.”

“AI is the study of computer techniques for solving prob­
lems by exploiting efficienUy knowledge about a problem 
domain.”

The first definition makes the essential point that AI is 
concerned with making ‘smart computers’ by engaging in 
human-like cognitive processes. The next definition says 
something about the goals of AI. They are, at least in part, 
directed at the development of a better understanding of the 
human thought process. A new field of study called cognitive 
science has emerged to investigate this area. As ‘knowledge 
engineering’ catalyses a global effort to collect, codify, and 
utilize applicable knowledge, clarification and expansion of 
the human knowledge process itself will also be achieved.

The last definition brings us closer to engineering reality. 
It highlights the fact that the key to intelligent problem solving 
lies in reducing the random search for a solution by the use of 
knowledge. Most problems can be cast in the form of a search 
for a path from some initial state to a desired final state which

Fig. 2. Future sea transport features

human decision making in engineering. However, this exper­
tise is increasingly becoming eroded by the use of computers 
to solve problems in a manner which is not fully understood by 
the decision maker. Transferring currently available knowl­
edge into expert systems, to allow it to be used efficiently, is 
thus becoming an important issue.

The place of AI in ship transport and classification in the 
future is summarized in Fig. 3. However, a great deal of effort 
is still required both in resolving important difficulties in AI 
technology and in adapting it for practical use in the marine 
field. Within Lloyd’s Register, experience has been gained in 
AI in general, and expert systems in particular, through the 
development of applications in several marine technology 
areas. Many of these developments have been carried out by 
the Performance Technology Department under three re­
search programmes. The first is the Fuels Project, funded by

P. S. Katsoulakos & C. P. W. Hornsby
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Fig. 4. The principal divisions of Al

Fig. 3. The future impact of Al in the marine industry

is regarded as the goal. The network of possible routes leading 
from the initial conditions to the goal is viewed as a ‘search 
space’. Both the definition of the search space and the guiding 
of the search process require the application of specialized 
knowledge. The central role of knowledge in intelligence 
explains why the most successful Al programs so far have 
been expert or knowledge-based systems which operate in 
specific subjects. In short, expert performance depends criti­
cally on expert knowledge and the effective handling of that 
knowledge.

There are three principal divisions of Al: fundamental 
research, cognitive science and applied research (Fig. 4). The 
first is directed at the development of theoretical techniques 
for progressing towards the A l goals mentioned previously. 
An example is the development of systems with the ability to 
learn from experience. Cognitive science is directed towards 
understanding the way in which the human beings use knowl­
edge. In contrast, applied research is directed at the develop­
ment of programs with some specific applied purpose, usually 
industrial, scientific or administrative. It is within this cat­
egory that expert systems lie, the element of greatest interest 
to the engineering community.

Historical background
Some 40 years ago a British mathematician who had spent 

the war developing code-breaking techniques turned his atten­
tion to a concept which had fascinated men for ages. Having 
been actively involved in the development of early electronic 
computers, Alan T uring began to consider if  it was possible for 
machines to behave intelligently and how this could be estab­
lished or refuted. At that stage computers were in their infancy.

However, Turing demonstrated that a certain kind of very 
primitive computing machine could compute anything that 
was computable. Scientists and philosophers began to wonder 
whether the brain was a ‘Turing machine’. From these begin­
nings the initial Al objective, to provide a means of program­
ming intelligence into machines, was set. In the following 
years researchers tried to build intelligent computers by imi­
tating models of the brain as neural networks. What was over­
looked was the fact that the human brain contains 10 billion 
neurons, each one an advanced form of analogue device. The 
proposed structuring of the neuron networks was shown to be 
an inadequate model of the brain.

The first period of Al research was dominated by a naive 
belief that reasoning models coupled with powerful comput­
ers would produce human-like or superhuman performance. 
However, by the late 1960s, the severely limited power of 
general purpose problem solving strategies was realized. 
Expectations were reduced, and attention focussed instead 
upon application problems. The lesson learned was that expert 
knowledge was the key to expert performance; the knowledge 
representation and inference schemes merely provide mecha­
nisms for its use. It was from this background that expert 
systems emerged.

The first successful expert system was the mass-spectro- 
gram interpreter DENDRAL1. DENDRAL analysed chemi­
cal experimental data to infer the possible structures within a 
known compound. It employed an efficient variant of a simple 
methodology known as generate-and-test. Partial molecular 
structures consistent with the data were first generated, then 
elaborated in all possible ways. By systematically generating 
all plausible structures DENDRAL found candidates that 
human experts sometimes overlooked.

The best known expert system was MYCIN (1976), which 
addressed the problem of diagnosing and treating bacterial 
infections of the blood2’3. Several new features were intro­
duced during its development which have since become 
hallmarks of an expert system. Its knowledge comprised 
approximately 400 rules relating possible blood conditions to 
associated interpretations. A scheme was devised based on 
‘certainty factors’ to allow the system to reach plausible 
conclusions from uncertain or fragmentary evidence. MYCIN 
was also able to explain its reasoning processes. The user 
could interrogate it in various ways by enquiring why it asked 
a particular question or how it reached a conclusion.

Many other well-known expert systems were produced 
successfully in the late 1970s and early 1980s, mainly as 
research tools, but some also proved practically useful. They
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included PROSPECTOR in geology, which found a previ­
ously unknown deposit of the valuable mineral molybdenum, 
R 1 for configuring DEC V AX computer systems, and HEAR­
SAY II for speech understanding. A recent system, EURISKO 
(1982), which improves and extends its own body of heuristic 
rules through a complex learning process, made a break­
through in very large-scale integration by inventing a 3- 
dimensional AND/OR gate.

Search and reasoning
Many AI systems make extensive use of search tech­

niques. The ‘state-space’ system is an example of this ap­
proach. States are snapshots of the problem at different stages 
of a solution (Fig. 5). Each state is generated by the application
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Fig. 5. ‘State-space’ search

of operators, first to the initial states, and then to the interme­
diate states. The aim is to find a sequence of operators that can 
be applied to the initial state in order to reach the goal. There 
are various search methods, including exploring all possible 
intermediate steps.

The size of the underlying search space of practical AI 
problems prohibits a systematic consideration of all the alter­
natives. For example, if the initial state of a problem was that 
a ship’s speed is reduced, and the goal was to identify the 
cause, the possible number of combinations of engine, propel­
ler and hull deterioration that would explain this reduction is 
enormous. The efficiency of the search process is thus crucial 
to AI applications. A number of techniques are available for 
efficient searching, optimized for specific categories of prob­
lem.

Search is sometimes formulated as the simple ‘generate 
and test’ process described earlier. Another technique is that 
of ‘progressive charting refinement’ of a subject which allows 
search to be carried out in a number of stages. In the first stage 
a global subject ‘map’ provides overall directions. The details 
can then be established in a ‘local’ map.

For many applications it is possible to apply specialized 
information to guide the search process. S uch information can 
be a mixture of mathematical theory and heuristics. Heuristics 
can be expressed numerically or by rules. Numerical heuristics 
are functions estimating the closeness of a search path to a

goal. To be useful, evaluation functions must characterize the 
solution space adequately, which requires a substantial 
amount of knowledge. Arithmetic functions with weighted 
coefficients can only partly represent such knowledge. Heuris­
tic rules in symbolic computing are often necessary.

Reasoning is often based on creating assumptions or 
hypotheses and later revising beliefs in the light o f new 
knowledge received or derived. The revision process can be 
facilitated if the dependencies amongst the current set of 
hypotheses are known. These dependencies can then be ana­
lysed to establish justifications before an assumption is con­
firmed or retracted. Dependency-directed reasoning can be 
extended to the problem-solving process itself, by introducing 
justifications about goals and constraints. Alternatively the 
solution process can be guided by fixed searching methods or 
heuristics.

Current difficulties in AI
Despite the significant achievements of the past decade, AI 

technology is still at a research phase. Some AI programs can 
be regarded as experiments which will be partly disregarded as 
soon as they have been developed and tested. The successful 
principles they embody do however provide the basis for 
further experimentation. Key issues which have been estab­
lished during the relatively short history of AI are those of 
search and knowledge representation. Given a particular lan­
guage for expressing knowledge, the task of the solution 
method is to explore the resulting search space. Many power­
ful knowledge representation systems, reasoning techniques, 
search mechanisms and supporting software have been devel­
oped.

The main difficulties in AI relate to those fundamental 
principles which normally provide a solid framework in any 
established engineering or scientific subject. Such principles 
include the definition and classification of the application, the 
theoretical foundations, and the assessment procedures for a 
solution.

(i) AI can be applied in almost every subject. As a result, the 
definition and classification of the AI application area is 
not clear. For example, in medicine, human illness is 
classified in terms of pathology, osteopathy, neurology 
and so on. Such a classification scheme for expert sys­
tems has not been generally accepted. A challenge to AI 
is to specify which knowledge representation schemes 
are suitable for different categories of problems, and 
which solution methods perform well with each 
representation.

(ii) The main theoretical basis o f AI is logic. However, heur­
istics rather than theories are often the cornerstones of 
expert systems. There is a lively debate between those 
who prefer formal rigour, and those who believe practical 
experimentation is the best route forward. When funda­
mental principles for each class of application are estab­
lished, certain methodological advantages will emerge.

(iii) It is also important to be able to predict the main charac­
teristics of a solution, having adopted certain techniques 
to produce it. Such performance prediction in AI is not 
possible at present. For example, it is not always possible 
to estimate which knowledge representation and infer­
ence mechanism will give the fastest execution time in a 
specific application. Validation of an expert system also 
presents difficulties, as traditional methods cannot be 
used. The problems for which expert systems are being 
developed do not have a clear specification. Conse­
quently, there is often no standard or reference against 
which performance can be judged4.
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EXPERT SYSTEM S  

General description
An expert system is a computer program designed to 

embody organized knowledge of a specific domain of human 
expertise, and to simulate the performance of an expert in that 
field. The knowledge must thus be organized in such a form 
that the program can offer intelligent advice or make intelli­
gent decisions. Expert systems have several distinguishing 
features. These include:

(i) Symbolic knowledge representation and inference.
(ii) Heuristic search and reasoning facilities.

(iii) Self-knowledge, employed to reason and rationalize 
the system’s behaviour, and to provide explanations or 
justifications for conclusions.

The basic components of an expert system
The basic components of an expert system are shown in 

Fig. 6. The first component is an input/output module. Its main 
function is to provide a mechanism for communications 
between the user and the expert system. Problem descriptions 
are supplied by the user, and advice and explanations of 
decisions reached by the expert system are output. For expert 
systems operating in real time the input/output interface pro­
vides a filtering device for information received from sensors 
or other information sources. The output in the form of advice 
or warning is either sent to computer screens or can be linked 
to alarm or control systems.

The core of an expert system consists of a knowledge base, 
a data base (or working memory) and an inference mechanism. 
The knowledge base contains all the available knowledge 
about a particular subject. The database contains all the facts 
known or deduced about this particular problem. Inference 
strategies are then applied in order to derive a solution to this 
problem. It is one of the basic characteristics of an expert 
system that this separation takes place, allowing alterations 
and improvements to the knowledge without changes to the in­
ference mechanism, and allowing common inference tech­
niques to be applied to a variety of problems. It also provides 
transparency to the user and the domain expert. Both can see, 
if required, what the system is doing and why it is doing it.

I n p u t /O u tp u t  Module

Fig. 6. Basic components of an expert system

The knowledge base
The knowledge base contains all the information required 

to solve the problems for which the system is defined. The 
main facilities for representing knowledge are rules, object 
definitions, relationships and procedures. Rules are the most 
familiar element of an expert system. They are generally in an 
IF...THEN... form, which states either that if this situation 
occurs, this should be the reaction, or that in order to prove that 
this is the answer, it is sufficient to prove that these conditions 
hold. Object definitions (or descriptions) are used to identify 
and differentiate different knowledge building blocks. In­
creasing numbers of expert systems now use them to define the 
basic components of the system, and their possible values. 
Relations express dependencies and associations between 
these building blocks, and hence between the facts defined 
within them. Procedures specify sequences of operations to 
perform when attempting to solve a problem.

When an expert system is running, rules and procedures 
generate new facts or new hypotheses in a database (or 
working memory space), describing the current state of the 
problem. The activation and scheduling of operations and the 
initiation of alternative solution routes can be co-ordinated by 
control knowledge.

The inference mechanism
The inference mechanism is a control scheme for the 

application of the knowledge contained in the knowledge 
base. The main inference techniques are known as forward 
chaining and backward chaining. Real systems may focus 
upon one or the other, or a combination of both. There are 
however several other techniques, ranging from hypothetical 
reasoning to pattern matching and statistical pattern recogni­
tion.

Forward chaining involves reasoning from data to conclu­
sions. Forward chaining rules consists of a condition and an 
action part. If the condition matches the appropriate parame­
ters in a database then the action is executed. With a rule which 
states IF X  THEN Y, a forward chaining system will ascertain 
if X  is true, and then deduce a new fact, Y. As this changes the 
current set of facts, new rules may become applicable.

Backward chaining attempts to find data to prove or reject 
a hypothesis by regarding it as a goal. The system first identi­
fies the appropriate conditions that would be sufficient to 
achieve the specified goal. It then proceeds to try to establish 
these conditions, by examining the database to see if they are 
known to be true, and if not, by treating them themselves as 
goals. Thus the overall goal is resolved into a number of 
sub-goals; each sub-goal is then further partitioned into more 
sub-goals until a basic premise is reached, or the attempt to 
prove the goal fails. This topic is examined in more detail in 
the Knowledge Representation and Inference Techniques sec­
tion.

The explanation system
An additional element within some expert systems is the 

explanation module. This justifies the system’s advice and 
decisions to the user. It answers questions about why some 
conclusions were reached or why a competing hypothesis was 
rejected. The explanation module collects all the supporting 
evidence accumulated from the intermediate hypothesis re­
finement steps. Current research is aimed at producing ‘causal 
models’ which can be used to explain system decisions from 
first principles. Qualitative models, based on statements such 
as ‘if temperature increases within an enclosed container, then 
pressure increases’ are being specifically investigated for this 
purpose.
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Table 1. Categories of expert system applications

Category Function Features General applications Marine
Problem System Dialogue mode Real time applications

1. Classification Infer system 
malfunctions. 
Categorize or 
clarify problems 
actions or items.

Selection from 
several possible 
answers.

Database of 
associations 
between 
features and 
categories 
causal models. 
Filtering 
of improbable 
answers.

Medical.
Electronic.
Mechanical.
Taxonomic.

Electronic.
Mechanical.

Fault diagnosis:
- machinery
- electrical
- communications. 
Classification 
requirements.

2. General 
advice

Infer problem 
descriptions 
from specific 
requests. 
Apply
appropriate
information.

Large number 
of rules, 
constraints, 
regulations.

Information
storage and
retrieval.
Database
management.
Interpretation
by heuristics.

Administration.
Law advice.
Accounts.
Design
assessment.
Information
communication.

N/A International 
conventions. 
Ship operating 
costs. Shipping 
information.

3. Design Combine 
components 
to solve 
problem.

No limits on
possible
options.

Forward 
chaining to 
construct 
partial solutions, 
constraints and 
heuristics.

Computer 
configuration. 
Space planning.

N/A Ship machinery 
designs.

4. Planning and 
scheduling

Generate and
evaluate
plans
or actions to 
satisfy given 
constraints.

Multiple
solutions.
Concept
generation
and evaluation.
Optimization of
objective
function.
Quantitive
constraints.

Prototype plans
monitoring
evaluation and
replanning.
Continuous
reasoning.

Project
management,
process
planning.

Robotics.
Communication.
Military
planning.
Resource
allocation.
Scheduling.
Flexible
manufacturing.

Voyage planning. 
Ship and offshore 
platform design. 
Maintenance and 
surveys planning.

5. Monitoring Comparison of 
observations 
with key 
features of an 
adopted plan or 
specification.

Rapid response 
to deviations. 
Problem 
identification.

Hypothesis 
updating. 
Probabilistic 
techniques. 
Fuzzy logic.

Fiscal
management.
Project
management.

Regulatory 
control. Nuclear 
power plants.

Fleet management. 
Business plan 
monitoring. 
Equipment 
monitoring.

6. Simulation 
and prediction

Infer likely 
consequences 
of given 
alterations.

No established 
theory. High 
number of 
significant 
variables. 
Parameters 
with variable 
interactions.

Parametric 
dynamic 
models. 
Generation of 
a range of 
answers based 
on different 
assumptions.

Weather
forecasting.
Crop
estimations. 
Economic 
forecasts. Risk 
predictions.

Traffic
prediction.
Military threat
prediction.
Financial
forecasts.

Predictive 
maintenance. 
Trading and 
freight rate 
predictions.

7. Identification Infer descrip­
tions from 
observables.

Multi-discipline. 
Different levels 
of abstraction. 
Different types 
of information.

Assignment of 
symbolic 
meaning to 
structure, form 
and properties 
of physical 
objects on 
situations.

N/A Vision. Speech 
understanding. 
Image analysis. 
Surveillance.

Weather 
monitoring and 
surveillance. 
Navigation, 
position control.

8. Control Integration of 
identification, 
diagnostic, 
predictive and 
monitoring 
functions 
within an 
overall control 
plan.

Dynamic task 
scheduling. 
Error recovery. 
Automatic 
supervision.

Integration of
techniques
from all other
categories.
Selection of
control
algorithms
and parameters.
Dependency
networks.

Control system 
design.

Air traffic
control.
Business
management.
Missile control.
Engineering
control.
Communication
control.

Ship management. 
Bridge integrated 
control. Dynamic 
positioning.
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A classification o f expert systems
There are many different types of classification proposed

for expert systems, but one view is that most expert system
applications fall into the distinct types summarized in Table 1.

(i) Classification expert systems attempt to deduce which 
of a number of possible categories or classifications a 
problem or situation falls under. One of the main sub­
groups of these are diagnosis systems. Diagnostic expert 
systems explain why abnormal circumstances are pres­
ent in a system. Problems of this kind are very common; 
they include diagnosing a patient’s illness and localizing 
a fault in an electronic circuit. Diagnostic expert systems 
relate observed behavioural irregularities with underly­
ing causes using a number of techniques. A common 
method is based on acquiring a database with real 
observations of associations between symptoms and 
malfunctions. Another technique is based on generating 
a description of the system behaviour corresponding to 
all possible candidate faults; then matching the simu­
lated symptoms with real observations. Causal models 
which describe all the system components and their 
relationships could provide the basis of advanced diag­
nostic expert systems in the future.

(ii) General advice expert systems are used for retrieving 
information about specific problems. First, the problem 
is interpreted by heuristics. Then the appropriate infor­
mation is selected from the knowledge base and pre­
sented to the user as advice. Although commonly used in 
accounts, administration and cost estimates, they can be 
applied to many engineering functions. Design ap­
praisal, based on specific codes or an identified set of 
first principles, could usefully employ such methods. 
Advice on what international convention regulations to 
apply in certain situations could be obtained by interro­
gating an expert system. Regular information bulletins 
could also be stored in a form where the user is quickly 
guided to the appropriate data. To all intents these 
systems are capable of acting as a library with an effi­
cient librarian, finding the correct data for the user.
A special category of general advice expert systems is 
that of intelligent front ends. These aid operators of 
complex computer systems, for example when dealing 
with a multitude of alarms in large, distributed control 
systems during a process upset. Potentially, intelligent 
front ends will become part of most simulation or other 
complex computer programs.

(iii) Design expert systems synthesize solutions to problems 
from a set of possible components, according to certain 
restrictions on possible configurations, and with general 
goals in mind. Deciding the best layout for a computer 
system or the allocation of space and determination of 
resulting aerodynamic properties for a car are obvious 
examples. Some of the hardest AI problems are design 
problems.

(iv) Planning and scheduling expert systems generate se­
quences of time-related actions that satisfy given con­
straints. A plan is often formulated by connecting the 
main entities of a problem in various relationships. 
Heuristics are used to evaluate alternative plans and 
suggest improvements. Constraints represent usually 
conflicting criteria, incompletely defined, and almost 
certain to change with time. Heuristics are necessary to 
re-order priorities according to the prevailing set of 
constraints. Applications include robotics, communica­
tion, military planning, resource allocation and manu­
facturing.

(v) Monitoring systems continually test and study certain 
features of a situation or product. They can also be 
combined with planning systems, where the monitoring 
is of plan execution. They compare observations with 
features that seem critical to a successful outcome, look­
ing for conditions which might invalidate a plan or for 
potential effects which could violate a prescribed con­
straint. Possible applications exist in a wide range of 
sophisticated systems such as those employed in nuclear 
power stations, air traffic control and fiscal management 
aspects.

(vi) Simulation and prediction expert systems infer likely 
future consequences from given situations. Weather and 
economic forecasts are typical examples. Usually a 
dynamic model is employed in which future values are 
expressed as functions of selected parameters. The 
values of key parameters, appropriate for a given 
situation, are selected by heuristics. It is often more 
realistic to produce answers as a series of optional 
outcomes; these are based on assumptions which can 
be also chosen by heuristics.

(vii) Identification expert systems infer descriptions from 
observations. Problems are solved by storing knowledge 
of structure, form and properties of physical objects 
describing the state of a system. This category includes 
vision models, speech understanding, image analysis 
and surveillance. Vision and to a lesser degree speech 
understanding are amongst the most difficult areas of AI 
research.

(viii) Control expert systems can incorporate all the other 
systems. An expert control system governs the overall 
system behaviour. Control is based on formulating a 
plan and monitoring its execution to refine details. Iden­
tification, diagnostic and predictive functions are linked 
to the plan monitoring system. Air traffic control, man­
agement and process control are primary examples.

Real-time expert systems
In recent years, attention has increasingly focussed upon 

the use of expert systems directly linked in with pieces of 
equipment, serving fault diagnosis and monitoring roles. Two 
aspects make a system a real-time one; the system function is 
time-dependent, and the state of the world to which the system 
is being applied is changing constantly. There are certain 
problems in designing AI systems for continuous real-time 
operation. These relate to issues such as detecting change, 
speed of response requirements, interrupted reasoning and 
consistency of reasoning. If some events are more critical than 
others, the reasoning process must be interrupted to deal with 
the high-priority call. Changing data creates problems of 
consistency, and research in this area has established a number 
of reason maintenance methodologies5, but additional work is 
required to improve their efficiency. Real-time planning is 
another area which is of relevance to many marine applica­
tions, such as voyage planning and maintenance scheduling. 
Here the challenge is to plan which goals, possible actions, 
time scales and resources may change and how to re-plan when 
such changes take place.

Collaborating expert systems
The principles of distributed AI were established in the 

early 1980s. There are two approaches to the problems asso­
ciated with collaborating expert systems; task sharing and 
result sharing. Result sharing is especially suited for problems 
where decomposition into sub-problems is difficult. A super­
visory system is used to communicate the problem to all sub-
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systems. Each system which is able to contribute communi­
cates its results back to the common pool. Work on collabor­
ating expert systems, where several small systems co-operate 
in order to achieve a given goal, or share data and knowledge 
in order to achieve their own separate goals, has focussed on 
what are known as blackboard architectures.

Distributed Al systems have the same advantages over 
ordinary Al systems that distributed systems always have; 
modularity, speed, reliability and re-usability. There are some 
intrinsic problems however, relating to stability, resource- 
sharing, communications bottlenecks and problem-decompo- 
sition.

Features o f viable expert systems
In the previous sections the main areas for expert system 

applications have been identified. Some rules of thumb for 
choosing the ‘right’ type of application (one with a relatively 
high probability of success) are:

(i) problems in which specialized knowledge is needed 
but which do not require common sense;

(ii) problems in which experts exist, and in which know­
ledge is available and can be articulated;

(iii) problems in which there is rough agreement between 
experts (economic plans are not good applications);

(iv) problems which are not trivial and have generated 
general interest, but which are tractable;

(v) problems in which there is no algorithmic solution, 
and in which knowledge is heuristic and answers may 
be uncertain;

(vi) problems in which financial gain can be demonstrated 
to the organization involved, or an improvement in 
service to the customer achieved.

Assessment of expert systems
The assessment of an expert system can be based on the 

evaluation of its performance in three main areas.
(i) Completeness and correctness: the degree to which the 

knowledge in the domain is an accurate representation 
o f the knowledge required to carry out the task, and is 
applied to produce high-quality consistent results. This 
depends amongst other things upon the quality of the 
knowledge representation and inference techniques 
used, and upon their successful use in modelling prob­
lem solving in the domain.

(ii) Reliability: the degree to which the system is fragile 
(crashing unexpectedly), unpredictable in its opera­
tion, inflexible (unable to function outside its limited 
area of expertise) and discontinuous in its reactions to 
similar inputs. Some systems handle a limited number 
o f problems very well, but cannot solve problems even 
slightly outside a narrow system specification.

(iii) Usefulness and flexibility: the degree to which systems 
actually carry out the tasks desired by operators in the 
field, and their ability to be incrementally improved 
and debugged.

Knowledge acquisition
Knowledge acquisition is the process by which problem­

solving expertise is obtained from some knowledge source in 
a form in which it can then be encoded within an expert system. 
Sources of information incl ude textbooks and papers, manuals 
and the experts themselves, both theoretical specialists and 
practising workers in the field. Such knowledge elicitation 
involves the collection of specialized facts, rules of thumb and 
reasoning procedures in a narrow field of knowledge. The
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transfer of this information to a program is generally done by 
a ‘knowledge engineer’, who develops an understanding both 
of the domain and of the design and of the construction of the 
expert system. Knowledge acquisition has been recognized in 
the last few years as a major ‘bottleneck’ in expert systems 
development. However, tools are now becoming available to 
help in the automation of this process. An intelligent editing 
program can partially substitute for the knowledge engineer in 
simple applications, particularly when the expert is reasonably 
conversant with programming.

Another route towards overcoming this bottleneck in ex­
pert systems development concerns learning. The ability to 
learn, though presently in its infancy, makes a system capable 
of expanding and refining its own capabilities. An essential 
requirement before learning is the system’s ability to reason 
about its own processes. This, in practical systems, is often 
implemented by tracing back the rules that played a part in a 
problem solving session. The rules then serve as their own 
justification. Specific research on computer learning has 
emphasized general inductive inference methods6. Induction 
is the process of generalizing from particular instances or ex­
amples to general rules or principles. It involves a search for 
common features in examples which can be subsequently used 
in classification rules or concept descriptions. In cases where 
the underlying rules are already known, induction is of less 
interest.

Rule induction from examples
A number of applications for which expert systems are 

being developed contain large volumes of data organized in 
databases. The absence of established theory and lack of 
experts then make these data a major knowledge source. In 
such cases the expert can be substituted for in the construction 
of rules by this data and the knowledge engineer by an induc­
tion program. Many marine technology problems fall into this 
category, making computer induction an important technique 
in this area. Engineering concepts can often be described by a 
set of positive and negative examples of problem instances. 
These are used to generate rules that provide decision trees and 
point to the most significant solution parameters. Induction is 
a technique heavily investigated and relatively well devel­
oped, with commercial tools to assist in it on the market.

The type of induction process used varies with the source 
of the examples. If the source is an expert, a sequence of 
examples can be selected to optimize convergence to the 
desired concept. When the source is the system itself, ex­
amples are generated from the knowledge base information, 
and an expert is then asked to approve them. More commonly, 
the examples come from data collected ‘in the field’. In 
general, the induction packages available today are aimed at 
producing ‘IF (condition) -  THEN (action)’ rules without 
reference to the underlying cause of this regularity. The 
EXTRAN (ID3), INDUCE, HGA and BEAGLE systems 
are examples of this category. They may provide adequate 
performance in the specified domain, but they are unlikely 
to identify the causal connections underlying the observed 
regularities.

KNOW LEDGE REPRESENTATION AND 
INFERENCE TECHNIQUES

Knowledge representation systems render knowledge acces­
sible to computers. There are a variety of systems available, 
and they can be described in several ways, by their formal
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Fig. 7. Knowledge representation systems

characteristics, their user-friendliness and their descriptive 
power. Fig. 7 shows a categorization of the major knowledge 
representation techniques discussed below. Similarly, there 
are several different inference techniques available. We will 
review in more detail examples of each. In many cases, the two 
intertwine, since certain inferencing techniques will only be 
possible with certain knowledge representations.

Declarative and procedural knowledge
Knowledge can be viewed as being of two main types, 

declarative and procedural. Declarative knowledge states 
what a solution to a problem would consist of; it provides 
information which can be applied in several ways. Procedural 
knowledge embeds within itself the means to solve the 
problem. It does not state explicitly what a solution would 
consist of, but rather how to find it.

In pure declarative systems, it is assumed that knowledge 
representation can be formulated independently from consid­
erations of the way that knowledge will be used. Consequently 
these systems consist of two components; a static part based on 
logic theory and an active inference mechanism. The classical 
declarative representational mechanism in AI research is 
predicate calculus. It can be used as both a knowledge repre­
sentation language, and as an inference technique. The origi­
nal basis o f the language Prolog (PROgramming in LOGic) 
was a formalization and implementation of predicate logic on 
a computer.

Predicate calculus is a method of manipulating logically 
basic entities. Knowledge is represented by translating infor­
mation into formulae of predicate logic. These formulae are 
added in the knowledge base as axioms. Unlike propositional 
calculus, where a statement ‘Socrates'is a man’ is reduced to 
a single constant ‘ Socrates-is-a-man’, in predicate calculus the 
full structure of the sentence is represented, with a predicate 
‘man’ applied to a constant ‘Socrates’, producing man 
(Socrates). Inferences are formulae deduced from the axioms 
by inference rules. Thus given the simple axiom ‘all men are 
mortal’, which we could formalize as:

VX [man(X) ->  mortal(X)]
(where lVX’ means for allX, and *->’ means implies), and the 
fact man(Socrates), predicate calculus will allow us to deduce 
mortal(Socrates).

The solution approach in predicate calculus is that the goal 
state is expressed by a formula and is regarded as a theorem

which is to be deduced from the axioms by the inference 
mechanism. Some of the advantages of predicate calculus (and 
of declarative systems generally) are that the syntax and 
formal interpretation are well defined, there are clear inference 
rules and the knowledge base is modular and its application is 
flexible. However, the rules do not contain information about 
how to use knowledge, they are often less powerful, and they 
cannot represent such features as uncertainty or non-monoton­
icity, where the data being reasoned upon is changing or is 
inconsistent (as in reasoning over time). Research to improve 
the restrictive expressive power of predicate calculus is cur­
rently being undertaken, concentrating on advanced forms of 
logic and on integrating predicate calculus with other repre­
sentations.

In procedural representations, emphasis is placed on the 
knowledge of how to solve a problem, which is placed within 
rules or procedures. Most traditional programming languages 
such as FORTRAN have been procedural, since they contain 
within them knowledge of how to solve problems, embedded 
within the program code. AI languages and expert systems 
combine both procedural and declarative elements, with dif­
ferent systems focusing more on one than the other. Often, 
primarily declarative systems have the advantage of clarity 
and rigour, but lack the facilities for complex operations and 
calculations. Thus, a declarative rule-based language may 
have the ability to call or have intermixed within it code 
written in another purely procedural language.

An example of a procedural knowledge representation 
technique is a method or procedure which is executed when a 
piece of information is needed. The system does not know 
what the fact required is, nor what it depends on. It does know 
how to get it, possibly by an arithmetic computation, possibly 
by requesting facts from elsewhere and combining them.

An advantage of procedural representation is that control 
knowledge supports straightforward processing of informa­
tion for particular purposes. The expressive power of proce­
dural systems is comprehensive; any other scheme can be 
implemented by a procedural one. Drawbacks include loss of 
transparency in comparison with declarative systems: knowl­
edge can be attributed to a procedure as a whole and not to 
particular separate elements. Complex interaction between 
procedures creates the problem that adding or removing a 
procedure can lead to unexpected side effects.

Rules
Rules are the basic knowledge representation technique. 

They may manipulate either simple facts, such as ‘if it is 
raining’ then ‘you should take an umbrella’ or more complex 
object-based structures, as in if today (X) and raining (X) and 
person (Y) and going out (y) then useful-possession (y, um­
brella).

Rules can be procedural or declarative, depending on their 
complexity and type. Those explicitly containing instructions 
to assert and retract items in a database, and to print statements 
and to carry out calculations, are primarily procedural. Others, 
which simply state that if certain facts are true, then certain 
other facts are also true (and which leave it to the inference 
mechanism to react to this) are more declarative.

Rules may be manipulated by a variety of inference 
mechanisms. Some systems have rules which can be used by 
both forward and backward chaining systems alike. Others 
have different syntaxes for each, in which case there is a direct 
relationship between forward chaining and forward produc­
tion rules, and backward chaining and backward chaining 
rules.
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Forward production systems and forward 
chaining

Forward production systems consist of three main compo­
nents; a database (working memory), a set of production rules 
and an interpreter. The database contains the facts about a 
particular subject. Any changes in the database are monitored 
by the interpreter. The production rules contain specific 
knowledge about what additional facts can be deduced if 
certain conditions are satisfied (i.e. when facts in the database 
match with the condition of the rules). The action part of the 
production rules leads the deductions to be asserted into the 
database, either by the interpreter, or directly by instructions 
in the conclusion (depending how declarative the system is). 
New facts added to the database may trigger other production 
rules, which allow the deduction and assertion of more facts. 
An example of a forward production system is given in Fig. 8.

Classical production systems have the desirable property 
o f modularity. Production rules can be added or deleted 
without unexpected side effects, as procedures are initiated 
only by data and not by other procedures. They can thus be 
particularly suited for domains described by a large number of 
independent heuristics. The R1 system for configuring DEC 
VAX computers is a good example.

The drawback of pure production systems is that they do 
not contain control knowledge. The systems can be ineffi­
cient, as all the condition parts of all production rules are tested

before a rule is activated. Inference is also unguided; every 
iteration depends on all the system variables. In order to 
alleviate the first problem, structural improvements of the 
database have been proposed. In order to ameliorate the 
second problem, control procedures can be applied where the 
rules are partitioned into groups and only examined according 
to a pre-specified agenda. Another possibility is to explicitly 
control the sequence of execution, with rules depositing addi­
tional control ‘flags’ in the database which will trigger certain 
other rules in subsequent cycles.

Backward chaining systems and backward 
chaining

In backward chaining systems, also known as goal- 
directed or goal-driven reasoning systems, inference is based 
upon the idea that there is a specific goal which is to be proved. 
TTie application of rules is not only dependent on the data in the 
database or control knowledge, but also on the given goal. As 
in production systems, backward chaining employs a data­
base, a ruleset and an inference mechanism. It also maintains 
a stack of one or more goals. When the system is given a goal 
to prove, all the rules which conclude that this goal is proven 
are examined one by one to find what conditions would, if 
proved true, allow this deduction. Some of the conditions may 
be known as facts in the database already. Others may be un­
known, in which case the system tries to prove these as new 
goals, by looking at the database and the rules once more. The 
result is a backwards move, from goal back to sub-goal, until

Fig. 9. Backward chaining example
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either basic facts are reached which are known to be true, or the 
goal cannot be proved. An example of backward chaining, 
showing the deductive processes and the goal stack as it 
changes, is given in Fig. 9.

Backward chaining can be done in more than one way. All 
the rules can be examined and explored to a certain level before 
they are examined to a deeper level. This is known as breadth- 
first chaining. Alternatively (and more commonly) depth-first 
chaining is used, in which the first sub-goal (or rule condition) 
is explored and proved before the rest are considered. Prolog 
is a backward chaining language which makes use of depth- 
first search. MYCIN was also a backward chaining system.

Structured object, frame-based and object 
oriented systems

All these terms describe one very similar notion; that the 
world can be better described and reasoned about if a system 
has understanding not only of the connections between text 
strings such as ‘it is raining’ and ‘you should take an umbrella’, 
but also of the nature, structure and function of the elements or 
components about which the rules and other parts of the 
system are reasoning. Object-based or structured-object- 
based systems are characterized by the addition to the rule- 
base of a series of object descriptions, schemas or definitions, 
within which the types of entity to be reasoned about, their 
possible values, their ranges, and how their values may be 
obtained if unknown, are all described independently of any 
rules.

These object definitions may be organized in a hierarchy, 
in order to represent the real structure of the domain, and to 
make more efficient the storage of information. Thus a product 
tanker may be a class of tanker, and a tanker, a class of ship. It 
is then possible to state facts and general descriptions which 
must be true of all ships (in the absence of information to the 
contrary) which will be inherited by all tankers and all product 
tankers, without the need to state them explicitly. An example 
covering cars is given in Fig. 10.

Object definitions are now often known as frames, though 
the notion of a frame originally represented something slightly 
different. Frames were introduced into the Al research in 
19757 to represent a possible means of human cognition. 
Prototypical situations are defined, to which the real one can 
be matched and the additional information contained in the 
frame about how to react, or about other facts which can be 
assumed to be true, can then be applied. Frame-based systems 
and object-based systems are now treated as essentially the 
same, as they both define prototypical objects, their character­
istics, their common structure and attributes, and mechanisms 
to obtain data and react to changes.

Within object-based systems, three basic constructs arc 
used to define the entities in the domain; classes, attributes and 
object instances. At the top level, classes denote the basic 
problem concepts. They may be organized in a hierarchy. The 
characteristic properties which can be attached to a class are 
referred to as attributes. The attribute values are different for 
each object o f a class. Objects then represent particular in­
stances of a class. The object may be thought of as the basic 
unit of the system. As an example, the frame for a ‘ship’s 
engine room’ contains slots for the main propulsion system, 
generators and auxiliary machinery. Thus, in the absence of 
other information every ‘engine room’ will be assumed to 
contain these features or attributes. The value of the attributes 
is then determined for the individual object, possibly using 
default information. Objects can be created and destroyed, and 
can be tested and altered by rules.

Scripts are a special kind of frame and were developed to 
represent stereotyped sequences of actions and events. Scripts 
are more appropriate when dealing with dynamic environ­
ments. A sequence of scripts gives a description of changes 
with time (useful in applications such as weather forecasting 
or predictive maintenance).

An additional element often found within Al systems, 
and sometimes within conventional applications, is that of 
message-passing between objects. One method of object 
organization and manipulation involves attaching procedures 
to the object definitions, which state what should be done in 
certain situations, and which permit communication between 
objects. Objects encapsulate data inside the procedures which 
understand how to manipulate it. Thus, an object can be 
manipulated as data, and at the same time it describes the 
operations supported on that data. Objects are activated by 
‘messages’. Messages are requests for an object to perform 
one of its operations. The key feature of messages is that the 
requested operation is coded by a name describing what the 
programmer wants to happen, not how it is to happen. Thus a 
change to one object could lead to a message being sent to 
another, to alter a certain number of its values. The form of 
programming within which this technique is used is known as 
object-oriented programming. It is very similar again to the 
frame-based and object-based systems described above, with 
the addition of message-passing facilities between objects. 
The majority of frame-based systems today permit message- 
passing also.

The procedures describing the object response to messages 
are termed methods (described above) and reside in the class 
description. The different instances of a class utilize the same 
method. Consequently they respond differently only accord­
ing to variations in the attribute values. A commonly imple­
mented method is one which obtains a value in situations 
where it is desired but unknown.

C a r

si isa  jjj c o r t in a

Fig. 10. Classes, objects, attributes and Inheritance
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Another form of procedure, which describes a reaction to 
an event taking place in the database, is the demon. Demons 
are generally attached to object descriptions, but their main 
goal is to monitor the database looking for examples of the 
creation, deletion or updating of a valueof an object. They then 
react immediately (without the need to search through or 
examine rules).

The use of messages, methods, demons and inheritance are 
all forms of built-in inference, which take place without the 
intervention of rules. They thus straddle the boundary between 
knowledge representation and inference.

One last element which should be mentioned concerns 
hypothetical reasoning. Here, the system can explore different 
options simultaneously in situations where data is unknown or 
incomplete. It is then possible to ‘split’ the expert system’s 
attention, and assume certain things to be true and false 
simultaneously, exploring the implications of each choice. A 
hypothesis will then be disregarded if one or more of the 
assumptions made prove to be wrong or lead to an inconsis­
tency with known facts. This technique is implemented in 
several of the larger tool kits.

BUILDING EXPERT SYSTEMS 

Introduction
In building expert systems the principles and tools of 

knowledge representation and reasoning described above are

Table 2. Main characteristics of AI languages

Property LISP POP 11 PROLOG

1. Symbolic representation Y Y Y
2. Flexible representation 

(i) Lists Y Y Y
(ii) Dynamic binding Y Y Y
(iii) Untyped variables Y Y Y

3. Functional language Y (Y) -
4. Logic programming - - Y
5. Self-manipulation Y Y Y
6. Conventional syntax Y (V)

brought together to solve problems requiring expert knowl­
edge. There are three main categories of tool used to build 
expert systems: AI languages, shells and development envir­
onments.

AI languages
Current AI programming is basically concerned with the 

simulation of human intelligent behaviour through symbol 
manipulation. Symbols represent knowledge units which can 
be used to build complex knowledge structures. Languages 
which have the ability to reason with symbols rather than 
numbers are thus essential to practical AI applications.

The generation of intermediate problem states involves

AILanguage  
features

•  S ym bo lic  m an ipu la tion

Untyped  (variables 
hold a va lue o f any 
type)

•  List processing 
(crea tion  o f a rb itra ry  
data s tructu res)

• Dynam ic b ind ing 
(Procedures dete rm ine  
type  o f a rgum ent at 
execu tion  tim e)

A u to m a tic  m em ory 
m anagem ent

• In te ractive

•  P attern  m atch ing

• Procedure/ 
in fo rm ation  
in teg ra tion , (ob ject 
o riented  system )

•  F lexible con tro l 
s truc tu res

• E ffic ien t code

AI Solution Softw are
process requirement

AI development 
environment 

features

•  Increm ental 
p rogram m ing  (fa c ility  
to  redefine  parts  o f 
program  w ith in  an 
in te rac tive  session)

• In tegrated  ed ito rs , 
(called a t any tim e to  
e d it p a rt o f a running 
program m e)

D ebugging. Trap all run 
tim e  e rrors w ith in  the  
sys tem

• Trans la tion  program  
trans la tion  fo r p rin ting  
in easy read form

•  Program  understand ing  
aids

•  F lex ib ility  to  extend  
capabilities

Fig. 11. AI languages
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Table 3. Expert system ‘manufacturing’ tools

AI software
AI languages LISP, PROLOG, POP II
AI language environments ART, KEE, MUSE,

POPLOG...
Algorithmic languages FORTRAN, C, PASCAL...
Programming method Object oriented
Knowledge representations Rules, objects, frame

systems, logic
Reasoning modules Forward/backward

chaining rules
Control structures Blackboards, meta­

knowledge
Explanation routines Causal models; depend­

ency networks

AI hardware
Development machine Symbolics, Sun, Ex­

plorer...
Target machine PC, VAX, MICRO’S...
Parallel processing Transputers

search for applicable knowledge, or for alternative solution 
paths. Search in some applications can lead to what is termed 
‘combinatorial explosion’ (exponentially increasing number 
of choices). Although this can be resolved by the introduction 
of heuristics, automatic memory management is important. 
This requirement becomes more dominant as the body of 
heuristics grows. Control knowledge provides the manage­
ment of both search and assessment and requires flexible 
control structures in the programming language. The flexibil­
ity requirement for a language is further emphasized by the 
experimental nature of the solution process in AI problems. 
List processing, untyped variables and dynamic binding are 
some of the features which have been introduced for this 
purpose in AI languages. Many of the features which are 
summarized in Fig. 11 are available in the main AI languages 
LISP, PROLOG and PO P11.

Brief descriptions of some features of LISP, PROLOG and 
POP11 are given in Table 2. LISP was developed as a func­
tional language based on the Lambda Calculus and provides 
the highest level in self-manipulation. Everything, including 
both data and program, is coded in LISP, and building other

software layers (for example a reasoning module) on top of 
LISP is very easy. PO P11 is similar to LISP, with fewer 
functional capabilities. It has a simpler and more conventional 
syntax, an important goal during its development. PROLOG 
is a logic programming language. The control mechanism in 
PROLOG is based on backward chaining. In each language, 
however, the practical versions available today have veered 
from their initial pure nature in response to the practical needs 
of programming.

Shells and environments
One characteristic aspect o f AI programming is that the 

language is often only used as part of a development environ­
ment. The task of many AI problems is not one of coding up 
a solution but of exploring the problem and its possible 
solutions. To satisfy this requirement, development environ­
ments such as KEE, ART, KnowledgeCraft and MUSE have 
been constructed to support the evolution of a program as the 
problem understanding develops through experimentation. 
Some prominent tools currently available for building expert 
systems are listed in Table 3. Many software facilities such as 
languages and knowledge representation systems are com­
bined in AI development envir-onments. Such environments 
are well established today and new ‘expert system builders’ 
are being developed, as a consequence of the Alvey and 
ESPRIT programmes.

Simpler software packages aimed at assisting users to 
build expert systems for specific applications are termed 
‘shells’. Often running on personal computers, these specify 
certain restricted knowledge representation and inference 
techniques, in order to speed the process and increase the 
simplicity of applications development. Some, such as Le­
onardo, also provide built-in uncertainty handling techniques. 
The cost is reduced flexibility and power.

EXPERT SYSTEM S IN LLO Y D ’S 
REGISTER  

An overview o f the approach
The general approach adopted in the Lloyd’s Register 

research programme for the development of expert systems is 
outlined in Fig. 12. The knowledge acquisition phase incorpo­
rates both knowledgcelicitation and induction from examples. 
The approach is based on a two-stage prototyping arrange­
ment aided by an Information Analysis Expert System 
(IAES). The underlying concept in this architecture is that of 
‘Prototype Formulation and Refinement’. Producing a proto­
type working model is a common approach in engineering 
developments. In constructing expert systems this becomes 
almost essential due to the complexity of the problems and the 
experimental nature of solutions. Human experts also find it 
easier to criticize a working system than to say what is needed 
at the initial stages of development. The two-stage approach 
satisfies the flexibility and experimentation requirements and 
gives some modularity in the architecture. Furthermore the 
knowledge base can be incrementally developed and tested.

The first stage of the construction process is concerned 
with a ‘prototype rule-based’ system. This first prototype 
contains rules, typically arranged in a decision tree format, 
to provide solutions for a simplified model of a problem. 
Validation and improvement of the rules by experts can be 
consequently undertaken. A special software tool has been 
developed in LR for this purpose.

The second stage of development involves the selection 
and implementation of a knowledge representation system 
and a control strategy in an AI development environment.
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Fig. 12. Lloyd’s Register framework for building expert 
systems
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MUSE, an integrated set of tools for developing real-time Al 
applications, is the main environment currently in use within 
Lloyd’s Register. It provides a range of knowledge represen­
tation techniques to access a wide range of applications and to 
cater for development flexibility. MUSE is also linked to the 
IAES in a manner that provides the second prototype refine­
ment loop.

Information analysis expert systems: IAES
The majority of marine applications for which expert 

systems are being developed contain large volumes of data 
organized in databases. The traditional solution is to manually 
select the relevant information from the database, specify a 
model in suitable terms, ‘solve’ the problem and then compare 
the ‘fit’ against solution criteria. This process forms a proto­
type working model which is subsequently subjected to the 
test-evaluate-refine loop until the solution criteria are satis­
fied. This is both inefficient and time-consuming, especially 
when there is either a large volume of data or a large number 
of models to be tested.

To overcome this difficulty, recourse is made to an infor­
mation analysis expert system, IAES8. An IAES controls the 
extraction of information from the database according to the 
‘initial problem model’ defined interactively by the user. The 
first function of IAES is to provide a software link between a 
database (with all the available information on the subject) and 
the expert system development tools.

To assist in defining the initial problem model, IAES

P. S. Katsoulakos & C. P. W. Hornsby

prompts the user to define the type of the problem (for example 
diagnostic, predictive or planning). A list o f the main problem 
concepts is then established interactively and advice is given 
on possible solution methods. Following the selection of an 
initial plan, the problem is resolved into sub-problems and the 
appropriate classes and attributes are defined. A specific IAES 
database is then produced. This reflects the partitioning details 
of the problem and the data organization under the appropriate 
classes and attributes.

IAES hierarchical network model
The next function of IAES is to facilitate the automatic 

generation of rules or other knowledge structures using a 
hierarchical network model. Each sub-problem is represented 
as a node defined by classes and attributes. Rules are generated 
using induction and statistical techniques, supplemented by 
heuristics. The following steps are used in specifying the 
network model.
(1) The problem is initially divided into sub-systems 

which can be analysed independently.
(2) For each sub-system, different levels are identified in 

which information contributing to different aspects of 
the solution sequence is grouped together. Ateach level 
the relevant information is distributed into a number of 
nodes which represent the objects which are being 
considered within each sub-system.

(3) The first level of analysis generates the initial hypo­
theses.

Table 4. Results from fuel ‘Indication’ analysis

IV.i Example file
Attribute Class

FSS1 FSS2 FST3 FST5 FSP1 FSP2 FSP3 FSF1 FSF2

1 1 2 1 4 1 5 7 1 3 101
2 1 3 4 5 2 3 4 7 4 102
3 1 1 6 5 3 6 7 7 5 103
4 1 3 1 4 3 3 7 1 4 104
5 3 3 5 1 1 1 7 7 6 105
6 4 3 2 5 4 6 6 1 7 106
7 3 1 1 1 1 1 1 1 1 ISFFUE
8 1 3 1 1 1 1 1 1 1 ISFFUE
9 1 1 4 1 1 1 1 1 1 ISFFUE
10 1 1 1 1 1 1 1 1 ISFFUE
11 1 1 1 1 1 1 1 1 ISFFUE
12 1 1 1 1 1 1 1 1 ISFFUE
13 1 1 1 1 1 1 4 1 1 ISFFUE
14 1 1 1 1 1 1 1 7 1 ISFFUE
15 1 1 1 1 1 1 1 1 3 ISFFUE

IV.II Rule file

(FSP3) : 
1-4 :

5-7

First consider FSP3
(FST5) If FSP3

1-4 ISFFUE If FST5
5-7 102 If FST5

(FSS1) If FSP3
1 (FSS2) If FSS1

1 : 103 If FSS2
2 : 101 If FSS2

3-7 : 104 If FSS2
2-3 105 If FSS1
4-7 106 If FSS1
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(4) In the subsequent levels the implications of the initial 
hypotheses for pertinent problem concepts is consid­
ered. The consequences of a given set of hypotheses on 
dependent physical processes, and the second order 
(cascade) inter-action between sub-systems, are ex­
amples of aspects considered at two different levels. In 
another level, the pattern of events over time can be 
compared with anticipated trends.

Rule induction -  EXTRAN (expert translator)
EXTRAN is a FORTRAN-based software package for 

building expert systems. It contains an inductive learning 
module, which induces ‘If-Then’ rules from examples. The 
induction process is based on Quinlan’s ID3 algorithm, 
adapted to also handle numerical values9. The ID3 algorithm:

(i) selects a random subset of the database;
(ii) applies the CLS (concept learning system) algorithm to 

form a classification rule;
(iii) scans the entire database to find exceptions to the rule;
(iv) if  there are exceptions, includes some of them in the 

considered subset and repeats step (ii).
The CLS algorithm repeatedly partitions data according to 

the variable with the greatest discriminatory power. ID3 is 
most suitable for reliable data, such as those obtained from 
experiments. It precludes comparing qualitative variables, 
which means that numerical descriptors must be defined for 
the analysis.

A simple example is given in Table 4 of an application of

EXTRAN to the problem of fault diagnosis within the fuel 
sub-system of an engine (see Marine Applications section for 
more details). An EXTRAN problem is defined by a set of 
examples, in which factors that influence the solution (attrib­
utes) are linked to one of a range of possible outcomes or 
solution parameters (named classes in EXTRAN, but with no 
relation to the object classes mentioned above). Nine attrib­
utes of the engine have been identified in Table 4 as changing 
as a consequence of failures of the system, and 15 examples are 
given. The examples include six cases of specific component 
faults that can occur in the fuel sub-system. The others 
(ISFFUE) are examples of sensor failure. The value of each of 
the attributes indicates the absolute magnitude of the change, 
where 1 indicates no change from reference condition, and 7 
is maximal. The resulting rule and explanation is given in the 
Rules section.

It is also necessary to consider the issues of rule validation 
and maintenance/updating with regard to induced rules. Rule 
validation is needed at two levels: to ensure the consistency 
and correctness of the data used (input validation) and to 
ensure the general applicability of the induced rules (output 
validation). Input validation is undertaken manually by ex­
perts. For output validation, a special rule validation software 
package is being developed as an extension to EXTRAN. This 
is used to establish whether the information used to produce 
the rules is incomplete, and if so, to identify the under- 
specified set of conditions. These conditions are then gener­
ated and tested against the decision rules, with experts asked 
to endorse or reject the decision values obtained. Thus the 
examples are extended, and the induced ruleset validated or 
altered.

For rule maintenance, it is necessary to retain the example 
set used to induce the original rule, in order to allow incre­
mental changes to this set and consequent modifications to the 
rules. Software has been developed to automatically carry out 
the maintenance process after changes to the example-set.

AI development environment (MUSE)
The AI development environment MUSE10 is currently the 

main tool available in the Society for developing expert sys­
tems. MUSE is an integrated set of software tools designed to 
support prototype development of experimental AI applica­
tions, particularly in real-time domains. A key feature of 
MUSE is that it provides a mechanism for packaging up 
prototype solutions and delivering them on a specified target 
machine11.

The main MUSE components are summarized in Fig. 13. 
Poptalk is the main language, used for all the procedural code 
and for directly assessing the object system. It is an object- 
oriented language based on POP1112 and Smalltalk13. It pro­
vides control structures such as loops and data structures such 
as lists, strings and variables. Poptalk is an untyped language 
(i.e. variables can hold a value of any type). Functions control 
the execution of a Poptalk program and assist in structuring i t  
Poptalk also provides a data capture facility consisting of a 
series of data channels. These channels can be linked to 
physical data sources such as sensors, to deliver current values 
of parameters to the system.

The rule system of MUSE consists of a Forward Produc­
tion System (FPS) and a Backward Chaining System (BCS), 
whose function accords closely with that of the examples 
given previously. The MUSE FPS implements an OPS-style 
type ‘match, resolve, execute’ cycle14. The FPS is a collection 
of rules in the form ‘if the condition is true then execute the 
action’. The condition part consists of a number of clauses. 
Each clause defines the conditions to be met before the rule can
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Fig. 13. MUSE components
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Fig. 14. Setting up an application in MUSE

be executed (such as the constraints on the values of certain 
attributes). The rule actions initiate the creation, modification 
or deletion of objects in one or more databases. The BCS 
system is similar in style and operation to Prolog. Thus, the 
BCS rule base contains statements of relationships between 
problem concepts in the form: X  is true provided, X \ , X2, X3 
... are true or X  is true provided, Y 1, Y2, Y3 ... are true.

The BCS program contains predicates which represent 
goals and are distinguished by having a unique name and a 
number of arguments. Each predicate consists of a collection 
of rules and facts. The rules are headed by a goal or conclusion

and contain a set of clauses. Controlling the way that BCS 
applies the various rules or searches for relationships is not as 
explicit as in procedural languages. Depth-first search and 
chronological backtracking upon failure are the basic methods 
involved.

The third main element of MUSE is the object-based layer, 
which provides both access to object-oriented structures, and 
built-in facilities to provide many of the facilities necessary for 
the construction of advanced AI applications. Its components 
include demons, relations and facilities for system structuring 
and scheduling.
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The function of demons has already been described. In 
MUSE, demons are essentially functions watching for the 
creation of instances of a class, or for changes to the attributes 
of an object. A number of different kinds of demon can be 
declared. ‘Creation’ demons are executed after an instance of 
a class has been created. ‘Post-update’ demons are executed 
after a particular attribute it has been monitoring has been 
updated with a new value. In MUSE, relationships between 
objects are specified by special objects called ‘relations’.

Setting up an application in MUSE
The basic structure of any MUSE application is a set of 

reasoning modules termed ‘knowledge sources’ (KS) which 
communicate by shared access to particular databases. Every 
database is part of the ‘system object’, which represents the 
whole application.

The system object is an internally defined or built-in class 
which in MUSE is called a schema. It contains a number of 
built-in attributes or slots. The slots of the system object which 
are useful in structuring an application include ‘knowledge 
sources’, ‘notice boards’, ‘schemas’ and ‘libraries’ (Fig. 14).

The declaration of a knowledge source includes a number 
of pre-defined slots. It consists of a local database and one or 
more rule systems. The rule system consists of a set of forward 
or backward chaining rules plus interests in one or more 
databases ( ‘notice boards’) which the rules monitor and mod­
ify. Notice boards are employed as communication channels. 
All production rules monitor such databases for interesting 
changes. The blackboard approach previously described can 
be implemented in MUSE using notice boards.

In the example of a MUSE application given, three know­
ledge sources are utilized (KS 1, KS2 and KS3). Each contains 
a central shared database (KS1-DB, KS2-DB, KS3-DB). 
These databases are visible to all the knowledge sources in the 
application and to Poptalk code. They can be specified in the 
‘interests’ of any production rule set which will then monitor 
any changes. Each knowledge source has two rule sets (RS1/ 
RS2, RS3/RS4, RS5/RS6). Each of these rule sets is either an 
FPS or BCS. Each has its own private database (DB1/DB6) 
which is only visible to each individual rule set.

When the initial information in a problem is processed in 
the knowledge source KS 1, the results are communicated in 
the plan notice board. The plan notice board can trigger the two 
knowledge sources KS2 and KS3 which have access both to 
the plan and the final output notice board.

The order in which knowledge sources and other events are 
executed within the application is specified by the agenda. The 
agenda scheduling system is based on priority ordering. The 
agenda can be viewed as a fixed data structure with spaces 
representing differentpriorities. All theevents which are ready 
to be executed are placed in the agenda by explicit calls from 
another part of the application or by the ‘scavenger’, which 
collects the production rule sets ready for execution when 
nothing else is running. The agenda also allows reasoning 
chains to be suspended when new external events occur, 
allowing critical or alarm events to be processed immediately.

MARINE APPLICATIONS

The category ‘marine applications’ primarily covers ships and 
platforms for drilling, construction and petroleum production. 
Expert systems for the ship and offshore platform sectors fall 
into two categories. Firstly, there are general advice dialogue- 
based systems. These can provide members of the industry, 
ranging from shipbuilding experts to a ship’s crew and classi­

fication society surveyors, with the most updated information 
(rules, design standards and costs) in suitable marine technol­
ogy and management areas. Interpretation of information and 
expert advice are the eventual goals of such systems1516. The 
second category covers on-line expert systems designed to 
handle specific ship or platform functions. Such applications 
include voyage planning, engine fault diagnosis, and mainte­
nance prediction. A control expert system could also handle 
the overall management of a ship.

A general marine technology expert system  
(MTES)

Marine transport technology can be broadly divided into 
ship design and ship operation. Both are multi-disciplinary 
tasks influenced by factors which are external or internal to the 
ship. External factors include environmental conditions such 
as winds and sea states, broad social and economic issues and 
the following operational constraints:

(i) legislative and charter party constraints;
(ii) environmental time-independent constraints such as 

port of call, arrival times and their elasticities and navi­
gational restrictions;

(iii) environmental time-dependent constraints such as 
weather and sea state.

The environmental constraints have been recognized and 
treated as probabilistic problems. Certain operational require­
ments can be considered within the appropriate cost equations. 
The majority are either neglected or judged intuitively. Fur­
thermore, the critical economic factors such as the level of 
world trade, individual government policies, oil prices, freight 
markets and financing are changing unpredictably, making 
any attempt at mathematical modelling virtually impossible.

Internal design factors are related to areas such as hydro­
dynamics, machinery, structures, stability, control, main­
tenance scheduling and management. In all these areas 
mathematical modelling can be applied, although in many 
cases the most serious obstacle is actually to define the 
problem. The necessary information for comprehensive 
mathematical modelling is often not available. Traditionally, 
preliminary solution parameters are derived and used sequen­
tially as input for interconnected areas. The resulting initial 
design or operational parameters are then refined in an itera­
tion loop. The widespread use of computer aided design 
(CAD) techniques makes an integrated synthesis approach 
suitable for this process.

Ship configuration changes such as damage or engine 
power reduction can produce operational constraints. 
Responses to motion are also in this category. The overall 
difficulty is that problems arising from the variable interaction 
of internal design or operation factors, according to criteria 
which are dependent on variable external factors, cannot be 
resolved satisfactorily.

Ship design and management have been based on com­
puter implementations of the traditional process of 
analysis-synthesis-evaluation. These steps can be also ac­
complished by a Marine Technology Expert System (MTES) 
oudined in Figs. 1.5(a) and (b). The necessary input informa­
tion will be made available from existing designs or operation 
procedures. The rules thus obtained, augmented by expert 
human knowledge, will form a ship technology knowledge 
base. This will be operated by an inference system to attain 
specific goals or to perform design synthesis.

An advantage of this approach is the adaptability of the 
system in formulating new solutions for changes associated 
with economic factors, different trading constraints and instal­
lation of new equipment. The effects of implementing each
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Projected ship transport environment

Operational flexibility

Fig. 15. Development of an integrated technology expert system

Table 5. Marine technology expert system  
applications

Financial Technical

Investment decision Fleet monitoring
Business plan Voyage planning
Resource allocation Maintenance planning

Integrated bridge control
Administration Ballast control

Stowage plan
Inventory control Fault diagnosis
Inventory schedule Performance optimization
Crew Design
Accounts Design appraisal

Classification
Training Certification

Emergency procedures

Ship information

Weather
Ship movements

new decision can be monitored, and depending on the feed­
back, the overall plan can be refined.

Advances in communication technology allows monitor­

ing of the effects of advice given by shore-based marine 
systems (Fig. 15c). In particular, feedback data on a ship’s 
‘performance’ is an essential input for reliability studies and 
for measuring goal attainment in the ship design and opera­
tional plan.

An area where an expert system such as the described 
MTES can be utilized by classification societies is in machin­
ery, hull, electrical and refrigeration design appraisal and plan 
approval. The relevant classification rules and design stan­
dards can be identified by the system for any particular case. 
Where the expert system provides a real benefit is when it can 
provide advice on how to apply the rules and why certain 
formulae and appraisal procedures are considered to be appli­
cable. Additionally, certainty factors (estimates of safety 
factors) can be attached to different calculation procedures. 
Expert systems which will advise on finite element analysis in 
relation to loading and component details are already under 
development.

Specific marine technology expert systems
A number of expert systems are currently being developed 

worldwide for specific marine applications. These are shown 
in Table 5. Some of them are briefly described below, includ­
ing prototype systems under construction at LR.

E xpert voyage planning. A number of commercial voy­
age planning programs are already available. Now, expert 
systems are being developed to add heuristic and learning
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capabilities to such programs. The aim is to advise on an 
optimum voyage plan subject to constraints such as legisla­
tion, charter party details, route and weather, ship condition 
and ship responses to motion. Voyage planning is largely a 
determin-istic optimization problem with constraints for the 
expected motions (especially rolling), slamming, deck-wet- 
ness, structural response and the degree of propeller racing. 
The objective function is dependent on criteria such as arrival 
time, minimization of operating costs and minimization of 
rough weather damage. The expert system must thus identify 
the appropriate objective function, or objective function val­
ues, given information on port arrangements, bunkering ports, 
fuel costs, chartering details and future contracts. Heuristics 
can also be used to select a global track from knowledge base 
data. Digital maps and statistical weather forecasts will have 
a significant impact on future voyage planners.

A marine fuel oil characterization expert system 
(FOCES). A prototype fuel oil characterization expert system 
has been developed within an EEC-funded research pro­
gramme currently near completion17.

Any classification or ranking of fuel combustion behav­
iour can be based on the overall oxidation and pyrolysis routes 
of the three main hydrocarbon classes, saturates, aromatics 
and mixed polyaromatics18. However, non-linear ‘interaction 
effects’ between different hydrocarbons are present, produc­
ing a problem space of such complexity that traditional ana­
lytical treatment is virtually impossible. The engine response 
variations create additional complications. The statistical dis­
tribution of combustion parameters such as ignition delay and 
rate of pressure rise shows large deviations from the mean 
values. The magnitude of this variance, is fuel-dependent19. An 
expert system approach was thus selected for this application.

FOCES is based on a two-stage characterization. The first 
stage is aimed at identifying a property area in a ‘fuel map’ 
within which a second-stage analytical procedure can estab­
lish a detailed correlation. This is similar to looking at a global 
country map to find the area for which details can be subse­
quently looked up on a local map. The fuel maps are produced 
as rules by computer induction and other statistical techniques 
for each engine area affected by fuel properties (such as 
ignition, combustion, fouling and wear). A set of typical 
ignition maps are shown in Fig. 16(a). The fuel classes IC1 to 
IC6 define set percentage ranges o f change in the ignition 
delay period (IDP) from a reference condition (minimum IDP 
throughout the load range, gas oil). An important feature of the 
approach is the ability to simplify classification maps by 
broadening the ranges associated with the fuel classes. Only 
one fuel property is used in Fig. 16(b).

Diesel engine fault diagnostic expert system. A fault 
diagnostic expert system is under development in the condi­
tion monitoring research programme, co-ordinated by Lloyd’s 
Register, within the ‘U.K. efficient ship project’20. The fault 
diagnosis and fuel characterization systems will be integrated 
with a simulation module in an advanced condition monitor­
ing system which is illustrated in Fig. 1721. The objectives of 
the diagnostic system, named DEEDS (Diesel engine expert 
diagnostic system) are:

(i) increased reliability and safety for diesel engines;
(ii) the ability to advise non-qualified personnel on the 

location, severity and causes o f faults;
(iii) the provision of clear and correct system state informa­

tion to support engineers handling abnormal operating 
conditions;

(iv) early warnings of component condition for main­
tenance planning.

The functional requirements of the system include:
(i) early detection of specific engine component or sensor 

faults;
(ii) diagnosis of faults (including multiple independent 

faults). (This can be linked with alarm systems to 
provide causes for reported alarms.)

(iii) a warning system for interfacing to maintenance plan­
ning;

(iv) identification of probable faults in a situation of fewer 
sensors;

(v) assessment of confidence levels for the diagnosis;
(vi) assessment of fault severity;

(vii) an interface to the operator, to permit requests for 
additional information, and to inform the user of the 
diagnosis and the implications for the monitored 
components.
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Table 6. Main stages of DEEDS diagnostic process

Process Technique

1. Sensor diagnostics Kalman filters, heuristics
2. Fault detection Generation of reference data 

by mathematical simulation 
and comparison

3. Identify engine subsystem(s) Heuristics
with faults Causal model

4. Identify all plausible Modified 'set covering'
faults in a subsystem model

5. Generate and test Pattern matching, fuzzy
plausible single faults set techniques, heuristics

6. Generate and test Heuristics, reliability data,
multiple fault hypothesis decision tree analysis, causal 

model, simulation
7. Refinement of fault hypothesis Temporal logic, causal model
8. Fault hypothesis validation Simulation
9. Consequence analysis Heuristics, temporal logic, 

causal model

The development of this expert system is based on obtain­
ing an experimental database of associations between symp­
toms and engine faults (Fig. 18). An extensive engine test 
programme is being undertaken at several research centres, in 
which 80 fault conditions are artificially imposed into engine 
components, and the resulting changes in sensors’ signals 
from the engine are recorded.

In the final application, the fault diagnosis expert system is 
closely linked with an engine simulation model. This responds 
to changes in engine speed, load, ambient conditions and fuel 
oil quality by predicting the expected engine performance. 
When sensor data indicate significant deviations from these 
simulation reference values (outside the expected range of 
accuracy of the sensor), a set o f deviations is generated and 
passed to the fault diagnosis system. Fault hypotheses are 
generated and tested, and then confirmed if sufficient support­

ing evidence can be found in the reactions of other sub­
systems, and in the combustion process. The simulation 
model also provides final confirmation for any fault iden­
tified by the expert system. The main stages of DEEDS are 
given in Table 6 and are described in some detail in ref. 22.

Expert maintenance system. Expert maintenance sys­
tems both for diesel engines and for the whole ship structure 
are under development within LR, the latter under the 
KBSSH1P programme. Their objective is to produce condi- 
tion-based maintenance schedules which maximize ship 
availability, subject to operational constraints. Optimiza­
tion of maintenance schedules for hull and machinery pro­
duces benefits in ship availability, crew requirements, 
direct maintenance costs and spare parts inventory control. 
The knowledge base of the maintenance expert system must 
contain the following three sets of information.

(i) Planned or reference maintenance schedules for the 
appropriate items.

(ii) Knowledge of factors which produce increased 
maintenance activity (such as fuel quality and heavy 
weather).

(iii) Heuristics and/or models specifying deterioration 
patterns for each component for each of the factors 
in (ii).

Initial estimates of when maintenance is required will be 
provided during the commissioning of the equipment from the 
manufacturers’ planned maintenance schedules. These will be 
constantly updated by demons, triggered by factors respon­
sible for increased maintenance activity [list (ii)]. The organi­
zation and scheduling of predictive maintenance itself is a 
form of planning problem. Heuristics can be employed to 
select appropriate parameters and/or models for estimates of 
change in maintenance schedules. It is envisaged that it will be 
necessary to monitor actual deterioration trends (for example, 
engine lubrication condition and accumulated debris) to refine 
the predicted maintenance plan.

Integrated ship control. Systems integration on ships re­
fers usually to engine room control and cargo handling and
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Fig. 18. Development of a fault diagnosis expert system

sometimes communication, navigation and other systems. 
Total integration is, however, the goal of many research and 
development activities and particularly of the many national 
‘efficient ship’ projects.

Developments to integrate bridge control systems are on 
the way. The typical bridge operational system consists of the 
steering control, magnetic compass, engine room telegraphs, 
radar, radio, gyro, echo-sounding and satellite equipment. 
Electronic charts are also finding their way into the bridge 
area. Integration of the bridge control with the machinery con­
trol, cargo handling and surveillance systems into a central

ship management area will eventually take place, but can 
impose overwhelming demands on both the computer 
hardware and the operators.

Conditions can change rapidly during an emergency 
situation, so that a course of action, initially correct, could 
moments later be disastrous. Assimilation and interpreta­
tion by the bridge officers of all the information available 
by all the above systems is almost impossible. Further­
more, no computer, regardless of its speed, can evaluate 
quickly enough all possible outcomes presented by an 
emergency. Efficient inference mechanisms augmented 
by expert heuristics can offer a solution to this problem. 
A n umber of expert systems for intelligent process control 
in real-time land-based industry have already been devel­
oped and marketed. They usually act as alarm manage­
ment systems, by monitoring large numbers of process 
variables and alarm signals.

Dynamic positioning expert systems. A dynamic 
positioning system is a computer- and thruster-assisted 
manoeuvring system. It provides a means of controlling 
the position and heading of a vessel or mobile offshore 
unit within pre-defined limits. Thrust is applied to over­
come disturbances from wind, currents, tides and waves. 
Different types of thrusters and/or a controllable-pitch 
propeller are employed for this task.

Controllers for dynamic positioning application are 
based on established multi-variable control theory. Nor­
mally, because ship motions have significant non-lineari­
ties, it is necessary to change control parameters (gain and 
phase) to obtain satisfactory control over the power range 
of a ship. Expert systems have been developed in this area 
to act as supervisory controllers. Their role is to interpret 
prevailingconditionsandtoselectacontrol mode with the 
appropriate controller parameters.

Offshore platform design. The design of an offshore 
platform is probably the most complex of all offshore 
design problems. It may require up to 10 million man- 
hours and involve hundreds of experts. The overall 
objective in developing a field is to exploit a petroleum 
reservoir in the most economical manner. Suggested de­
velopment concepts consistent with a production plan 
are reviewed and refined in the light of environmental, 
technical, and economic constraints. These constraints 
include weight, cost and time estimates, phasing of activi­
ties and field development economy. Techniques devel­
oped for planning and monitoring expert systems are 
particularly suitable here. Management, communication 
and monitoring aspects can also benefit from the use of 
expert system technology. There are several research 
projects to develop expert systems to assist in offshore 
platform design.

CONCLUSIONS

The industrial revolution has been succeeded by the infor­
mation technology era -  a mixture of computers and com­
munications encom passing knowledge-based systems. 
Information technology can be used to raise the technological 
level of ship transport to enable the generation of new products 
and services in a technically competitive environment. The 
use of this technology in a coherent and disciplined way 
requires comprehensive knowledge of its advantages and
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limitations. Such knowledge is also necessary for the inde­
pendent assessment of its impact on safety and ship integrity.

Future developments towards integrated ship manage­
ment systems rely on developing new techniques for diag­
nosis, prediction, planning and control and for interpreting 
information which is unclear, uncertain and unreliable. Expert 
systems are particularly suitable for these problems and will 
inevitably become an essential element in marine technology. 
Another advantage of such uses is the accessibility of the 
knowledge base, allowing easy updating when parameters 
change due to the inherent dynamism of the ship transport and 
offshore platform environment. Expert systems technology 
also serves to provide a means to codify and preserve scarce 
and/or expensively gained knowledge, storing the expertise of 
retiring personnel, and making available to less experienced 
individuals at least some o f the wisdom gained by the best 
practitioners o f a craft.

The benefits of expert systems in marine applications have 
now been successfully demonstrated. The development of a 
number of expert systems and of a methodology for their 
construction has awakened interest within the marine commu­
nity, and will be an important contribution to the long-term 
revival of the shipping industry.
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Discussion
Trans.I.Mar.E., Vol. 101, pp. 17-41

M. Houlder (Postgraduate, University of Sheffield) You
are at least looking towards safety-critical applications. Can 
formal methods provide the expert system software validation 
that is, therefore, required? What concerns me is the indeter­
minacy intrinsic to expert systems coming from the use of 
statistical techniques and confidence levels and so on.

P. S. Katsoulakos (LR) This point is quite correct. Indetermi­
nacy at present does cause problems in safety-central applica­
tions. However, the problems of verification are very much 
broader than this, and few real safety-critical systems existing 
today could be said to have been verified formally at all. We 
look forward to the time when the verification and validation 
techniques being developed today can be applied in the expert 
systems area, and in a related research programme (the REDO 
project), Lloyd’s Register is attempting in part to address this 
problem.

R. V. Thompson (President, I.Mar.E.) Could the authors 
underline the fundamental advantages and disadvantages of 
using:

1. real time simulation techniques;
2. expert systems in, for example, engine control systems. 

Is the name ‘expert’ system misplaced in that the activity
defined essentially consists of a ‘normal’ operating control 
system upon which is superimposed a series of hierarchal logic 
queries or functions?

P. S. Katsoulakos (LR) The advantages and disadvantages of 
using on-line simulation models or expert systems for engine 
monitoring and control are as follows.
1. Simulation
a. Advantages. This provides a good baseline for detection 

of symptoms of a fault, which varies with operating 
conditions and content environment. Also on-line simu­
lators can be used to model decisions postulated by on­
line expert systems, thus providing a validation facility.

b. Disadvantages. Speed.
2. Expert systems
a. Advantages. Expert systems can supplement engine 

control systems by providing an ‘intelligent’ filter for 
input information. In particular it is useful when multi- 
variable inputs need to be evaluated in order to establish 
control input variables.

b. Disadvantages. Safety-criticality and verification. Ex­
pert systems are far more general than engine control 
systems. The main function of expert systems in control 
is to provide intelligent interfaces.

F. D. Petit (Crown Agents for Overseas Government 
Administrations) In times of cheap fuel (such as now) the 
shipowner tries to make some money on profitable operations. 
How can you persuade the shipowner to invest now in expert 
systems?

In times of expensive fuel (perhaps by 1992/3) the bad 
times may return and the shipowner will need the full help of 
expert systems -  but by then it may be too late for him to invest 
in them.

If fuel costs become very great then perhaps other factors 
will again come to the fore -  very efficient hull design, sail- 
assisted ships, Flettner rotors and other alternative power 
systems.

In the light of the above how do you propose to interest the 
shipowner in the appropriate expert system for each new 
development?

P. S. Katsoulakos (LR) Mr. Petit’s question reflects the 
priorities of the marine industry and their possible relationship 
with expert systems. Expert systems can be applied for two 
distinct purposes:

1. Integrated ship control leading to crew reduction.
2. Advisory expert systems coupled to different ship 

functions such as fuel characterization, maintenance 
planning, loading, and others. Such systems will be 
aimed at optimizing performance, reliability and 
safety. Their commercial development will depend on 
market demand.

It is likely that each new future development will make use 
of ‘intelligent front ends’ for communication with the central 
ship control and the operators. In essence Mr. Petit’s question 
can only be answered by demonstrating first at a research 
level, and then in practice, that the systems will provide some 
commercial benefit to their users, whether in terms of reduced 
costs or improved service.

D. R. Cusdin (Shell Seatex) I would like to congratulate the 
authors on a good, informative paper which provides a wel­
come introduction for non-experts into expert systems in the 
marine industry.

Although my company is developing computer pro­
grammes as an aid to voyage optimization and thus to improv­
ing profitability, we have not yet approached the stage where 
the computer and its expert systems take full control of the ship 
handling operations. If such systems are intended to replace 
experienced crew members, no doubt an experienced backup 
programmer/engineer will still be needed in the case of black­
o u t

My company has however developed an expert system 
called SE AFUEL,1 which is a computer program built around 
a knowledge base associated with the storage, handling and 
pre-treatment of marine residual fuel oil on board a ship.

This system can be used for on board trouble shooting or as 
a training aid, and it probably falls between categories 1 and
2 in Table 1 of the paper.

Our experience shows that the system must be ‘user 
friendly’. I do not know if this is the same as the author’s terms 
of ‘usefulness’ and ‘flexibility’. Simple uncluttered screens 
must be used with simple dialogue and a simple, logical 
approach. Fig. 1 over the page shows such a typical screen. 
‘Help’ screens aid the user, and Fig. 2 (over the page) shows 
the help commands available. The ‘WHY advice’ and ‘HOW 
X ’ have proven to be very useful.

The authors have explained the differences between for­
ward and backward chaining, and I would like to ask in which 
application the authors consider these should be used?

Again, I would like to thank the authors for a most interest­
ing paper.

Reference
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The ESP ADVISOR. Vers 2.05 Copyright (c) 1984
Expert Systems International
GOAL: system SECTION: control

In which part of the plant has the fault occurred ?
(1) -  Storage tank
(2) -  Centrifuge
(3) -  Filter
(4) -  Pump
(5) -  Heaters

Enter the number of the relevant entry : 1

Fig. 1. A simple user-friendly ‘Prompt’ screen

P. S. Katsoulakos (LR) Mr. Cusdin’s comments indicate that 
expert systems have already found practical applications in the 
marine industry. The SEAFUEL system is a good example of 
perhaps the most useful type of expert system today; the 
‘Dialogue mode’ as referred to in Table 1 of the paper. Most 
of the expert system features described in the paper are for 
‘realtim e’ applications. Suchsystems are being constructed in 
the Society’s research programme for decision support rather 
than to take control of the ship handling operation. Il is the 
opinion of the authors that the latter situation will not be 
realized in the foreseeable future.

Forward and backward chaining systems are combined in 
the majority of applications. In general backward chaining 
systems are used when we need to prove a well-defined goal, 
for example, when there are a limited number of possible 
solutions, one of which is likely to be the case. In the diagnostic 
system that we are developing the forward chaining system is 
used to arrive at a set of possible faults by examination of 
dynamic data.

C. Levantis (Det Norske Veritas) With respect to definitions 
of artificial intelligence, exactly how intelligent are these

expert systems? Is it not really a comparison between a mathe­
matical model and real monitoring?

P. S. Katsoulakos (LR) A number of definitions have been 
included in the paper to differentiate the meanings of the 
fundamental concepts in AI. Expert systems simulate the use 
of expert knowledge to solve problems in a specific domain. It 
can be safely assumed that very few can be termed ‘intelli­
gent’. Even learning capabilities in expert system are in their 
infancy. Interpretation of the differences between a mathe­
matical model and actual data from monitoring processes can 
be a suitable application for expert systems, but this is not the 
only function of these systems.

R. J. Clements (The Marine Technology Directorate Ltd.)
I would like to congratulate and thank Dr. Katsoulakos for an 
interesting and instructive paper. I have found it most useful 
and look forward to understanding better these ‘black boxes’ 
that all the experts are talking about for the future.

An impressive range of expert systems has been described 
which are being developed within LR but these are not the only 
ones and many companies and universities are developing 
their own in different areas. Can they be made intelligent 
enough to talk to each other and consequently be used to 
shorten the time required to produce the overall model or the 
ultimate expert system?

P. S. Katsoulakos (LR) The use of advanced information 
processing and communication tools offers endless possibili­
ties. Collaborating expert systems have been briefly described 
in the paper. Distributed AI offers the advantages and disad­
vantages of any type of distributed systems. It is possible to 
divide marine technology into many application areas for 
which expert systems can be developed in selected centres of 
expertise. A supervisory system could then communicate with 
all the sub-expert systems providing the ‘ultimate marine 
system’. The notion of combining many expert systems in the 
same application to produce a more advanced expert is proba­
bly unrealistic, due to the complexities of data management 
and the variety of knowledge representation and inference 
strategies used in different systems.

The ESP ADVISOR. Vers 2.05 Copyright (c) 1984 Expert Systems International 
GOAL: tank-type SECTION: control

TABLE OF AVAILABLE COMMANDS

YES / NO — Question TRUE/FALSE TRACE on /o ff — Proof trace on/off
UNKNOWN — Answer is not known PRINT on /o ff — Advice print on/off
EXPLAIN / ?? — Explain the question LOG on /o ff — Logging mode on/off
WHY N —  Why qstn. to depth N SAVE X — Save session to X
WHY advice — Why last advice given STATUS — Status of beliefs
HOW X — How param. X proven STATUS X — Status of param. X
SHOW — Display current param. SHOW X — Display parameter X
VOL X — Volunteer parameter X RECAP — Recap advice so far
CHANGE X — Change parameter X DIRECTORY — Directory of params.
HELP X — Help with command X HELP user — Display user commands
QUIT — Quit current section EXIT — End of consultation

Enter the number of the relevant entry : help

PRESS ANY KEY TO CONTINUE

Fig. 2. SEAFUEL ‘Help’ screen
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M. Phillips (M obil Oil Co. Ltd.) An expert system is a 
computer-based knowledge system which contains a large 
number of rules and facts from which it can infer solutions to 
questions put to it by myself (user).

What problems exist in terms of:
1. handl ing inconsistencies;
2. systems knowing their own limits;
3. the ability to build in common sense?

P. S. K atsoulakos (LR) Mr. Phillips has recognized some real 
problems within the current generation of expert systems. 
Many methods of handling inconsistencies are in use. The 
handling of inconsistencies can be viewed from two different 
perspectives. When the information provided by the user (or 
by sensors in real-time control) is inconsistent, procedures can 
detect this (at a cost in processing power) and react by identi­

fying the likely confidence in each fact (e.g. from its 
RECENCY or its SOURCE), and deleting the least likely 
inconsistent data item. They can also (in some cases) identify 
and remove all logical dependencies from this data item. 
However, in commercial systems, this is generally an ex­
tremely costly and time consuming exercise.

Expert systems operate within their own limits and some 
have the ability to communicate that they cannot find a 
solution when they run outside those limits. Users must be 
aware that, as with experts, performance degrades as they 
reach the boundaries of their knowledge.

Today it is almost impossible to build in common sense into 
expert systems. This relies on a vast mass of tacit knowledge, 
developed by experience and communication with others over 
many years. Attempts to build very large knowledge bases are 
being made, but their success is still uncertain.
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