THE INSTITUTE OF MARINE ENGINEERS

The Memorial Building, 76 Mark Lane, London EC3R 7JN Telephone: 01-481 8493 Telex: 886841 Fax: 01-488 1854

SUPPLEMENT

TRANSACTIONS INDEX

Volume 100

Index to the Transactions of Technical Meetings and Conferences held in the 1987-1988 session

© 1989 MARINE MANAGEMENT (HOLDINGS) LTD

ISSN 0309-3948 TransIMarE Vol. 100 Supplement

Neither the Institute nor the publisher holds itself responsible for statements made or opinions expressed in papers presented or published

INTRODUCTION

This index covers Volume 100 of the Transactions and the proceedings of Conferences held in the 1987-88 session. The three sections of the Index are described below.

1. List of Papers

This is a complete list of the papers presented during the 1987-88 session at the Institute's Technical Meetings and Conferences, giving the title, author(s) and code number of each paper published in each of the six parts of Vol 100. Thus TP1, 1 is Transactions Part 1, Paper 1.

2. Author Index

This is an alphabetical list of the authors of the papers presented in the 1987-88 session (Technical Meetings and Conferences) with the code number of the paper concerned.

3. Subject Index

Each paper has been ascribed a series of 'keywords'. These are listed alphabetically with the code number of the paper to which they refer.

1. LIST OF PAPERS

TECHNICAL MEETINGS

TP1, 1 A F Harrold Presidential address: the executive role for the marine engineer Consulting marine engineer

TransIMarE Vol 100, TP1, Paper 1

TP1, 2 *N Maw †D Karbalai

The influence of rope lateral compliance on winch drum design

*Sunderland Polytechnic †NEI Clarke Chapman Ltd TransIMarE, Vol 100, TP1, Paper 2

TP1, 3 A Fowler Microcomputer-based simulation of marine propulsion University of Newcastle-upon-Tyne

TransIMarE, Vol 100, TP1, Paper 3

TP1, 4 Dr B H Thomas H W Harper

The significance of balancing rotating and reciprocating machines

Vibration Consultants and Instrumentation Ltd TransIMarE, Vol 100, TP1, Paper 4

TP2, 1 A Macleod Construction of a semi-submersible accommodation rig in a Japanese shipyard TransIMarE, Vol. 100, TP2, Paper 1

TP2, 2

C W Logan

The safe use of electricity under water Comex Houlder Ltd TransIMarE . Vol 100, TP2, Paper 2

TP2, 3

A G Sheil D M Manson

Development of pumps for the marine and offshore oil industries Weir Pumps Ltd

TransIMarE, Vol 100, TP2, Paper 3

TP2, 4 T Sriskandarajah Installation of steel flowlines from a diving support vessel

Brown & Root Vickers Ltd TransIMarE, Vol 100, TP2, Paper 4

TP3, 1 A F Harrold

The investigation of marine casualties Consultant marine engineer TransIMarE, Vol. 100, TP3, Paper 1

TP3, 2 Dr N P Kyrtatos

The potential of ceramics and insulation in marine diesel engines

National Technical University of Athens TransIMarE, Vol 100, TP3, Paper 2

P Herring Sequential turbocharging of the MTU 1163 engine

MTU TransIMarE, Vol 100, TP3, Paper 3

TP4, 1 C Thew

Full-scale trials in varying depths of water on a King Class fast patrol vessel

Richard Dunston (Hessle) Ltd TransIMarE, Vol 100, TP4, Paper 1

TP4, 2

Dr D J Tighe-Ford Dr.JN McGrath M P Wareham

Evaluation of warship impressed current cathodic protection systems

Royal Naval Engineering College, Manadon, Plymouth TransIMarE, Vol 100, TP4, Paper 2

TP4, 3

E B Shone R E Malpas P Gallagher

Stainless steels as replacement materials for copper alloys in sea water handling systems

Shell Research Ltd TransIMarE, Vol 100, TP4, Paper 3

TP5, 1 Dr G T Reader

Stirling engines: potential applications in a marine environment

Royal Naval Engineering College, Manadon, Plymouth TransIMarE, Vol 100, TP5, Paper 1

*Dr G Walker *Dr R Fauvel †Z Xia

Marine applications of Stirling engines
*University of Calgary

†Shanghai Marine Diesel Engine Research Institute TransIMarE, Vol 100, TP5, Paper 2

TP5, 3

P D Dunn R A Marshall

Cycles for coal-fired engines for marine applications University of Reading TransIMarE, Vol 100, TP5, Paper 3

TP5, 4

H Nilsson S Gummesson

Air-independent Stirling engine-powered energy supply system for underwater applications
United Stirling AB
TranslMarE, Vol 100, TP5, Paper 4

TP5, 5 Dr D H Rix Thermodynamic modelling of Stirling engines-work at Cambridge University Cambridge University TransIMarE, Vol 100, TP5, Paper 5

TP6, 1 J S H Heng
The installation of flexible flowlines and their protection
Coflexip (UK) Ltd
TranslMarE, Vol 100, TP6, Paper 1

TP6, 2 J P Mitchell New generation semi-submersible crane vessel Micoperi Ltd TransIMarE, Vol 100, TP6, Paper 2

CONFERENCES

(Note C denotes conference)

The Design and Development of Passenger Ships

C 1/1

Machinery concepts for advanced passenger ships
Wärtsilä Diesel

TransIMarE (C), Vol 100, Conf 1, Paper 1

C 1/2

L R Hansen
Propulsion system installation in passenger cruising vessels
MAN B&W Diesel A/S

TranslMarE (C), Vol 100, Conf 1, Paper 2

C 1/3 H Schmid Machinery design for overall economy in passenger ships Sulzer Brothers Ltd TransIMarE (C), Vol 100, Conf 1, Paper 3

C 1/4

R Häefner R Gruhn E Günther Kroos

Reliable economic propulsion systems with high passenger comfort
Krupp MaK

TransIMarE (C), Vol 100, Conf 1, Paper 4

C 1/5

M Kanerva I Mikkonen J Nurmi

Designing passenger ships for actual service conditions Elomatic Oy, Consulting Engineers TransIMarE (C), Vol 100, Conf 1, Paper 5

C 1/6

C Andreau L Gillet M Bervas

Structural design improvements of passenger ships Bureau Veritas, Chantiers de l'Atlantique TransIMarE (C), Vol 100, Conf 1, Paper 6

C 1/7 R H Vie Sitmar cruises' diesel-electric cruise ship newbuildings International Shipping Technical Services In, Monaco TranslMarE (C), Vol 100, Conf 1, Paper 7

C 1/8 F Kunz
Passenger ship vibration and noise: prediction, prevention
and cure
Lloyd's Register
TransIMarE (C), Vol 100, Conf 1, Paper 8

C 1/9

Dr H G Payer D Köster

Strength and vibration investigations for passenger ships Germanischer Lloyd TransIMarE (C), Vol 100, Conf 1, Paper 9

C 1/10 J Victor Experimental model tank and wind tunnel testing for the design of passenger cruise ships Technical Marine Planning Ltd TransIMarE (C), Vol 100, Conf 1, Paper 10

C 1/11 A H Jones
Cost control through energy management
A comparison between Royal Princess and an equivalent

SWATH ship TransIMarE (C), Vol 100, Conf 1, Paper 11

C 1/12 Dr J W English Considerations in propeller design

Considerations in propeller design Consultant, Maritime Technology TranslMarE (C), Vol 100, Conf 1, Paper 12

C 1/13 O Björheden
Ten years experience of highly skewed controllable pitch
propellers on passenger ships
KaMeWa Marine Laboratory
TransIMarE (C), Vol 100, Conf 1, Paper 13

C 1/14 C 1/25 **U** Gragen S A Greer Rudderpropeller installation on superflex ferries Protection against fire in passenger ships Schottel-Werft, Spay Seaborne Modular Sciences Ltd TransIMarE (C), Vol 100, Conf 1, Paper 14 TransIMarE (C), Vol 100, Conf 1, Paper 25 C 1/15 A D Graham Variable frequency AC electric propulsion Hill Graham Controls TransIMarE (C), Vol 100, Conf 1, Paper 15 2. AUTHOR INDEX C 1/16 G Geddes Technical history of events prior to the QE2 conversion Gerald Geddes and Partners Andreau, C C1,6 TransIMarE (C), Vol 100, Conf 1, Paper 16 Björheden, O C1,13 C1,19 Borman, J B C 1/17 W Öehlers Boughen, D M C1,22 The re-engining of the OE2 - the largest diesel power station Brubakk, E C1,18 Clements, MJ C1,23 MAN B&W GmbH Cowley, J Dr C1,21 TransIMarE (C), Vol 100, Conf 1, Paper 17 Dunn, PD TP5,3 English, J W C1,12 E Brubakk Fauvel, R Dr TP5,2 H Smogeli Fowler, A TP1.3 QE2 from turbine to diesel - consequences for noise and Gallagher, P **TP4,3** vibration Geddes, G C1,16 Det norske Veritas Gillet, L C1,6 TransIMarE (C), Vol 100, Conf 1, Paper 18 Gragen, U C1,14 Graham, A D C1,15 C 1/19 J B Borman Greer, S A C1,25 The electric propulsion system of the QE2: some aspects of Gruhn, R C1.4 the design and development Gummesson, S TP5,4 GEC Electrical Projects Ltd Günther Kroos E C1,4 TransIMarE (C), Vol 100, Conf 1, Paper 19 Häefner, R C1,4 Hansen, LR C1,2 C 1/20G S Powell Harper, H W TP1,4 TP1,1 + TP3,1 Unicontrol alarm and monitor system Harrold, AF GEC Electrical Projects Ltd Heard, DJ C1,22 TransIMarE (C), Vol 100, Conf 1, Paper 20 Heng, JSH TP6,1 Herring, P **TP3,3** C 1/21 Dr J Cowley Jofs, K C1,1 Passenger ship legislation Jones, A H C1,11 Chairman, Britship (IOM) Ltd Kanerva, M C1,5 TransIMarE (C), Vol 100, Conf 1, Paper 21 Karbalai, D TP1,2 Köster, D C1.9 C 1/22 D J Heard Kunz, F C1.8 Fire protection systems on modern passenger ships Kyrtatos, N P Dr **TP3.2** Wormald Europe Ltd Lindberg, B C1,24 TransIMarE (C), Vol 100, Conf 1, Paper 22 Logan, C TP2,2 Macleod, A TP2.1 C 1/23 D M Boughen Malpas, R E Dr **TP4,3** M.J Clements Manson, D TP2,3 Current developments in 'active' fire protection and their Marshall, R A TP5,3 applications to future passenger ships Maw, N TP1,2 Walter Kidde plc McGrath, J N Dr TP4.2 TransIMarE (C), Vol 100, Conf 1, Paper 23 Mikkonen, I C1.5 Mitchell, J P TP6,2 C 1/24 **B** Lindberg Nilsson, H TP5,4

H Svensson

Ventilation and air conditioning - planning and layout

Fläkt Marine and Fläkt Indoor Climate AB

TransIMarE (C), Vol 100, Conf 1, Paper 24

aspects

Nurmi, J

Öehlers, W

Payer, HG

Powell, GS

Reader, G T Dr

C1,5 C1,17

C1,9 C1,20

TP5,1

n: nun			
Rix, D H Dr	TP5,5	Fire protection, active system	C1,23
Schmid, H	C1,3	Fire protection systems	C1,22;C1,25
Sheil, A	TP2,3	Fire pump system	TP2,3
Shone, E B	TP4,3	Flexible flowline protection	
Smogeli, H	C1,18	COPS	TP6,1
Sriskandarajah, T	TP2,4	Flowline installation	TP2,4
Svensson, H	C1,24	Flowline installation (flexible)	TP6,1
Thew, C	TP4,1	Frequency changer	C1,15
Thomas, B H Dr	TP1,4	Insulation in engines	TP3,2
Tighe-Ford, D J Dr	TP4,2	King Class patrol vessel	TP4,1
Victor, J	C1,10	Legislation, passenger ship	C1,21
Vie, R H	C1,7	Machinery, economic operation	C1,1
Walker, G Dr	TP5,2	Machinery installations, overall econom	y C1,3
Wareham, M P	TP4,2	Maintenance	
Xia, Z	TP5,2	Rotor balancing	TP1,4
		Managerial skills	TP1,1
		Manoeuvrability	TP1,3
		Marine engineer (executive role)	TP1,1
		Micoperi 7000	TP6,2
3. SUBJECT IND	EX	Model tank testing	C1,10
		MTU 1163 engine	01,10
		Sequential turbocharging	TP3,3
Air-conditioning		Noise	110,0
Layout on vessel	C1,24	Prediction, prevention and cure	C1,8
Alarm & monitor system	C1,24	QE2 conversion	C1,18
Unicontrol	C1,20	Offshore	C1,10
Balancing machinery	TP1,4	Crane vessel	
Bar Protector	111,4	Micoperi 7000	TP6,2
Pipelaying	TP2,4	Flexible flowline installation	
Casualties	112,4	Pumps	TP6,1
Legislation	C1,21		TP2,3
Casualties, investigation of		Rig construction	mpa 1
	TP3,1	Japan	TP2,1
Cathodic protection systems, evaluation		Steel flowline installation	TP2,4
Cavitation	C1,12	Passenger ship design	04.5
Ceramics in engines	TP3,2	Diesel electric	C1,7
Computer simulation	mna a	Fire protection	C1,22;C1,25
Diesel engine design	TP3,2	Fire protection, active	C1,23
Marine propulsion	TP1,3	Legislation, casualties	C1,21
Continuing education	TP1,1	Machinery	C1,1;C1,3
Corrosion		Propeller design	C1,12;C1,13
Stainless steel vs copper alloy	TP4,3	Propulsion	C1,2;C1,4
CPP	C1,13	Propulsion, electric AC	C1,15
Crown Odyssey	C1,4	QE2	C1,16;C1,17;C1,18
Cycles in engines			C1,19;C1,20
Stirling/Rankine/Field	TP5,3	Royal Princess	C1,11
Deck design	C1,9	Service conditions	C1,5
Diesel electric, QE2	C1,17	Structure	C1,6
Diving safety	TP2,2	Superflex ferries	C1,14
Dynamic balancing	TP1,4	Testing	C1,10
Economy of machinery	C1,1;C1,3	Ventilation/air-conditioning	C1,24
Egawa/Taneda procedure	TP1,2	Vibration analysis	C1,9
Electric propulsion AC	C1,15	Vibration and noise	C1,8
Electricity underwater	TP2,2	Pipelaying	0.1,0
Engine design		Diving support vessel	
Ceramic applications	TP3,2	Bar Protector	TP2,4
Coal fired cycles	TP5,3	Power limiting	C1,15
MTU 1163	TP3,3	Propeller design	C1,13
	P5,1;TP5,2;TP5,3	Highly skewed	
	TP5,4;TP5,5	Controllable pitch	C1,13
Torpedo engine (Stirling)	TP5,1	Highly skewed	C1,12
Extensometric measurements	,-	QE2	C1,12
Sovereign of the Seas	C1,6	Diesel electric, QE2	C1,17;C1,19
Extinguishing systems	C1,22	Propulsion system	01,17,01,19
Fast patrol vessel	~1,22	CODOG frigate	TP1,3
King Class	TP4,1	Pump development	111,5
9	1,2	- amp development	

Weir downhole pumpset	TP2,3	Sovereign of the Seas	C1,6
QE2		Stainless steel in sea-water handling	TP4,3
Electric propulsion system	C1,19	Stirling engine applications	TP5,1;TP5,2
Noise and vibration	C1,18	Stirling engine, thermodynamic modelling	TP5,5
Pre-conversion history	C116	Stirling engine, underwater applications	TP5,4
Re-engining	C1,17	Strength analysis	C1,9
Refrigeration, cryogenic	v show	Superflex 2000 ferry	
Stirling engine	TP5,2	Rudderpropeller installation	C1,14
Resilient mounting	C1,17;C1,2;C1,4	SWATH comparison	
Retardation and resistance of fire	C1,25	Royal Princess	C1,11
Rig construction	TP2,1	Thermodynamic modelling	TP5,5
Rope load relaxation	TP1,2	Torpedo engine (Stirling)	TP5,1
Rotor balancing	TP1,4	Trials on patrol vessel	TP4,1
Royal Princess	C1,11	Turbocharging (sequential)	
Rudderpropellers, installation of	C1,14	MTU 1163	
Safety		Unicontrol	C1,20
Active fire protection	C1,23	Ventilation	
Fire protection systems	C1,22;C1,25	Layout on vessel	C1,24
Underwater use of electricity	TP2,2	Vibration	
SAGA 1, submarine	TP5,4	Prediction, prevention and cure	C1,8
Sea-water handling systems	TP4,3	QE2 conversion	C1,18
Semi-submersible accommodation rig	TP2,1	Vibration analysis	C1,9
Semi-submersible crane vessel	TP6,2	Warship cathodic protection	
Service conditions	,	ICCP configurations	TP4,2
Design of passenger ships	C1,5	Weir downhole pumpset	TP2,3
Sitmar Cruises' newbuilding	C1,7	Winch drum design	TP1,2
Smoke dispersal	C1,10	Wind tunnel testing	C1,10