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Paper fo r  w r itte n  discussion

ON DAMPING OF TORSIONAL VIBRATION IN A PROPULSION 
SYSTEM HAVING A FLUID DRIVE

R.E.D. Bishop, Ph.D., D.Sc.(Eng.), Sc.D. 
W.G. Price B.Sc., Ph.D., C.Eng.* 
P.K.Y. Tam, M.Sc.t

F.Eng. ‘

SUMMARY
The magnitude of serious torsional vibration in a ship 

diesel propulsion system is limited by damping. It is shown 
that the effects of the damping can be radically different, 
depending on whether or not that damping couples the 
principal modes. It is common, perhaps usual, to ignore 
coupling but it may not be safe to do so - particularly if a 
fluid coupling is used in the drive.

INTRODUCTION
It is well known that resonant torsional vibration in a 

ship’s propulsion system is limited by damping. Accord
ingly precautions are taken at the design stage to ensure 
that either resonance will not occur under operating 
conditions or, if it does, there is adequate damping to 
render it harmless.

Generally speaking there are two approaches available 
for making the necessary checks.
(a) “Critical speeds” and principal modes may be cal
culated and overall modal damping factors applied to the 
resonant conditions at such of those speeds as are rele
vant. This is the “classical” concept of modal analysis and 
it is quite sufficient to meet the practical needs for most 
systems. Indeed one variant of it is the only technique 
discussed by den Hartog!(1956)(3)j perhaps the best known 
specialist in this field, while another forms the basis of the 
Guidance Notes on the subject in Lloyd’s Register of 
Shipping’s Rules and Regulations.

(b) Alternatively an attempt may be made to “distribute” 
the damping as it is thought to occur. Unfortunately 
the distribution of the damping is notoriously difficult 
to specify with any confidence, as den Hartog (1956)<3> 
points out. With a given distributed damping, the analyst 
may proceed to estimate steady oscillation of any desired 
order.

The main purpose of this paper is to demonstrate, by 
reference to a particular diesel propulsion system which 
actually failed in service, that when a fluid drive is used 
there is really no question of choice. The second of the two 
approaches must be used since the first may lead to opti
mistic false conclusions. A second purpose is to present 
the theoretical argument in a concise way so as clearly 
to show the relationship between the two approaches; for 
the writers are unable to cite any paper or book in which 
it is shown how to proceed from a knowledge of the 
principal modes and natural frequencies of a multi
cylinder engine system to the calculation of responses 
at any prescribed speed of given orders.

THE PROPULSION SYSTEM 
It will be helpful to illustrate the theory by means of 

an actual system. Fig. 1 shows a marine propulsion system 
which embodies a fluid coupling (or “fluid flywheel”). 
The failure of coupling bolts suggests that excessive torque 
fluctuations occurred in the stub shaft connected to the 
engine side of the coupling when the engine ran at its 
normal operating speed.

Flu id
coupling

1-797:1

*Department of  Mechanical Engineering, University College London 
•(•Department o f  Mechanical Engineering, University of  Hong Kong

Fig. 1 The starboard propulsion unit o f  a twin screw ship
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A number of authorities suggest that torsional analysis 
may legitimately be performed for that part of the system 
on one side of the coupling, as if the system were severed 
at the fluid in the coupling (e.g. see Tuplin 1934<S), den 
Hartog 1956'3)and Nestorides 1958<4)).The theory presented 
in Appendix A is offered as general support for this 
conclusion.

According to Tuplin (1934)(5) :
(a) very little vibration is transmitted across a fluid coup

ling:
(b) the amplitudes of relative motion across the coupling 

vary roughly as the inverse of the frequency;
(c) for most purposes the system can be said to act as if 

it is completely severed at the coupling;
(d) to investigate torsional vibration of the system on one 

side of the coupling the other side may be treated as 
if it has a constant velocity:

(e) under the assumption (d), the side of interest may be 
assumed to be subject to damping that is proportional 
to the vibration velocity.

These observations are entirely compatible with those of 
den Hartog (1956)(3>and Nestorides (1958)<4). In fact, den 
Hartog derives a constant of proportionality for the rela
tionship referred to in (e).

The assumption (c) will be made here and, as suggested 
in Appendix A, the natural frequencies and principal modes 
will be sought for the free-free system comprising discs A 
to K inclusive along with their connecting massless shafts. 
The system under discussion is therefore as represented in 
Fig.2, the relevant mechanical constants being those given 
in Table 1.

Rotations of the discs are represented by the matrix
x={x, ,x2......... x n }

and we are interested in the torque amplitude Ij u>2 X, 
where Ij (=1293 kg m2) is the polar moment of inertia of 
the input side of the coupling, oj is the frequency of vibra
tion in rad/s and X, is the amplitude of the oscillatory 
component of x t .

Further details of the system and its operating con
ditions are given in Table II.

TABLE II - DETAILS OF OPERATING CONDITIONS

Engine continuous service rating : 3.486 MW (brake) at 
440 rev/min
Maximum continuous rating : 4.101 MW (brake) at 465 
rev/min
Propeller service speed : 237 rev/min 
Propeller maximum speed : 250 rev/min 
Engine idling speed : 250 rev/min 
Indicated mean effective pressure : 1.489 MN/m2 
Vee-angle of engine : 45°
No. cylinders : 12 
Firing order : 1,3,5,6,4,2 
Crankshaft arrangement : see Fig. 3
Firing interval between banks for corresponding cylin
ders : 45° of crankshaft rotation
m re c ip  equivalent reciprocating mass/cylinder : 228 kg
A, cylinder area : 0.126 m2 
S/t : 4.13 
stroke : 460mm

Engine
A

J H B

1 I I )
U 5  __ 6 _ 7 __ 8

M = M = M = l
J  * 11L

Fig. 2  The engine side o f  the complete torsional system  shown in Fig.l. (For the values o f  the mechanical 
parameters see Table 1.)

TABLE 1 - DATA FOR THE TORSIONAL SYSTEM 
SHOWN IN FIG.2.

S tation Item C oord inate M om ent D am ping Stiffness
o f  inertia co n stan t

kg.m 2 Nm s N m /rad
A D am per X l  1 64

o u te r 9,355 1.55x10®

B D am per Xjo 18
inner 1 0 1x10s

C Cyl. 1 x9 95 778
7 7 x l0 6

D Cyl. 2 X 8 95 778
7 7 x l0 6

E Cyl. 3 X 7 95 < 778
7 7 x l0 6

F Cyl. 4 X 6 95 778
7 7 x l0 6

G Cyl. 5 X5 95 778
7 7 x l0 6

H Cyl. 6 X 4 95 778
9 8 x l0 6

1 Cam gear X3 91
train 2 2 2 x l0 6

J Flanges x 2 26
4 8 x l0 6

K Fluid X l 1293 1,480
coupling
in p u t

STEADY FORCED TORSIONAL VIBRATION 
It is convenient, first, to adapt certain general results 

of linear vibration theory to torsional oscillation of the 
system under discussion. An equation may be written 
down for the torsional motion. It is

Ax + Bx + Cx = <J>n ein ^ t ; ( 1)

where A B, C are respectively the inertia, damping and 
stiffness matrices, f lis  the engine speed in rad/s, n is the 
order of vibration and $ n  represents the matrix of gen
eralised excitation amplitudes at the coordinates x. For 
a 2-stroke engine, n=l ,2,3,4... and for a 4-stroke engine 
n=1/ i ,l ,1^,2....The steady forced response is evidently

x = (C -n 2 £22 A + inftB)-1 <£neinr2t (2)

The column vector <£n may be expressed as 

£ n  = lvM>n,

where Mn is the amplitude of excitation at a single cyl- 
linder or row of cylinders and 4>n is a complex vector re
presenting the phase differences "between excitations at the 
various cylinders. The quantity Mn contains a Vee-factor

110 Trans I  Mar E 1979 Vol 91 (TM ) 6



to account for the two cylinders of a common row if 
required and, for n=l,2 and 3, it must contain a contri
bution from reciprocating inertia. For the engine under 
discussion, whose crankshaft arrangement is that of Fig.3,

b 0
0
0
1

-Vl-isJ-i/l 
- J 4 + V 3 / 2  
-ViM V3/2 
-'/2—i y  3/2 

1 
0 
0

Fig.3. The throws o f  the crankshaft. The numbers relate to 
the cylinders (num ber 1 being the fu rthes t forward  
in the ship) and the firing order is 1,3,5,6.4,2.

The system of Fig.2 has 11 natural frequencies o>0 ,co0, 
...,C0 j 0 . The corresponding principal modes are x ( 0 
X<10\ th e  first being the “rigid body” mode for which 
<2>o=0. Thus a square modal matrix X of order 11 may be 
defined whose columns are the principal modes. (The 
elements of the first column will all be the same number.) 
Having found X we can change over from the physical 
coordinates x to principal coordinates

P =  i P o . P i ...........,Pio(

in the conventional manner, since

x=Xp

Let

Z = C — n2 f i2 A +inHB

(3)

so that the receptance in equation (2) is 

a=  Z->,

and so

x = ff0neinfit.

According to elementary matrix theory, if 

X1 ^ - 1 X = XTZX

(4)

then

and so

X '1 cr( X1 ) -1 = (XTZX)

a  =X(X1 ZX )“‘ XT (5)

where the superscript T means “transposed” .
The bracketed quantity in equation (5) is the square 

matrix

N n-2 n 2 L + in£2M

where L, M and N are respectively the inertia, damping 
and stiffness matrices corresponding to the principal 
coordinates. Thus equations (2) and (3) show that

p = (N n2f t 2 L + in ftM )'1 X1 !>nMne in ! 2 t . (6)

The theory that we have adapted to torsional vibration 
is, of course, very well known and easily accessible in 
textbooks: see for example Bishop, Gladwell and 
Michaelson (1965)(1). In particular, it will be recognised 
that the matrices L and N are both diagonal and, in our 
example, of order 11.

RESONANT TORSIONAL VIBRATION IN 
PRINCIPAL MODES

It is common to assume that, not only L and N are 
diagonal, but also M. This assumption is implicit in the 
first of the two approaches mentioned in the Introduct
ion. When this is the case the responses at the principal 
coordinates are uncoupled. Resonance occurs in the rth 
mode if

n!2 cor, (7)

where is the r111 natural frequency (r= l ,2,....10). The 
resonant condition may be assumed to dominate the 
response when it occurs and so it is examined for each of 
the critical speeds.

Suppose that resonance occurs of the n thorder in the 
rth mode, so that only the response pr is of major interest. 
Equation (6) reduces to

p.r = (cr -  n2 n 2 ar + in£2br) _I X(r)T0 n Mneinfit (8)

since

and, here,

w ith

L — diag j<io ?....... ?̂ io j

N = diag jO, C] ,c2 ,....... ,Ci0J

M = diag |0 ,b i,b 2,....... ,bi0}

cjrar cr

At resonance, then,

P r :
X(r)T</>nM nem ^t

iwrbr (9)

Trans I  Mar E 1979 Vol 91 (TM ) 6 111



The corresponding amplitude at any coordinate of interest 
(xj say) is thus

X
x i(r)X(r)T£nMr

GJrbr
(10)

whence the resonant behaviour can be investigated and 
potentially excessive responses can be identified.

It is of interest to compare this result with the Guid
ance Notes issued by Lloyd’s Register of Shipping. The 
Notes require that the modes be scaled in such a way that, 
at engine cylinder 1 with rotation *a.Xalr!= 1. for r = 0 ,1,2 
...10. Now

Xj(r)X(r)T0nMn
cr

is the appropriate static response at xj when there is no 
dynamic magnification. Hence the dynamic multiplier or 
Q-factor is

empirical rules for arriving at the value of Qr. Unfort
unately, it appears that those rules cannot reasonably be 
applied directly to the system of Fig.l as they do not 
cater for a fluid coupling.

The lowest three non-zero natural frequencies of the 
system are

coi =144.5 rad/s or 1380 c/m, 

cj2 =217.5 rad/s or 2077 c/m,

W3 =506.2 rad/s or 4834 c/m.

If. then, we were interested in dangerous vibration over a 
speed range of, say, 300 rev/min - 465 rev/min, we might 
reasonably wish to investigate the criticals listed in Table 
111. Of these one would surmise that the worst cases might 
be those of 346 and 460 rev/min, for the vector sums 
X(r)T0 n in an Argand diagranrare then additive.

TABLE III - POSSIBLE CRITICAL SPEEDS

£2 307 319 345 346 378 394 403 415 460 462
C r  arCO? or r 1 2 1 2 2 1 3 2 1 1

oorbr corbr n 4 6‘A 4 6 5Vt 316 12 5 3 4Vl

and

Xj = Qr
Xj(r)X « T0nMn

a r ^ r

This is the result that would be found by following the 
Lloyd's Register Notes and, further, the Notes contain

Without being able to do more than guess the Q- 
factors we should perhaps expect a response with per
ceptible peaks at the speeds listed in Table III. As a 
check the 3rd order resonance in mode 1 was computed 
assuming a Q-factor of 20. The amplitude of torque 
fluctuations in the stub shaft was found to be about 52 
KNm. Even with this light damping there is no prediction 
of anything approaching torque reversal, since the mean 
torque was around 76 KNm.

S
\ A rith m e tic  sum o f  

^com pone n t v ib ra tions

O perating to rque  

(assumed constant)

4 0 -

40C

0  Engine speed, rev /m m

Fig.4 - Vibration o f  orders 2 ‘A, 3, 4 ‘A, 5, 5 'A, 6 and 6!4 assuming constant mean torque over whole range o f  engine speed. (Note  
vibration o f  order 4 is no t excited)
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140-

120-

100-

Q Eng/nt 5p**d, rev/min

Fig. 5  - A pproxim ate  curves o f  mean torque and fluctuating  torque

MEASURED VALUES 
When the torque fluctuation in the stub shaft con

nected to the input side of the fluid coupling was measured 
it was found that

(i) torque reversal occurred over a substantial range 
of engine speed (300-430 rev/min);

(ii) there was a peak of 6th order vibration at about 
324 rev/min.

Neither feature could possibly be said to confirm the 
predictions that might be made on the basis of Table III.

In arriving at Fig.4, an admittedly gross assumption 
has been made, namely that the mean torque at 440 
rev/min is the same over the whole speed range. It is 
pointed out by den Hartog<3) on page 200 of his book, 
however, that a fluctuating disturbance retains approxi
mately the same percentage of the mean torque over 
virtually the whole of its speed range. If, then, the mean 
torque curve of Fig.4 is given the more realistic form 
shown in Fig. 5, the disturbance becomes that shown in 
Fig. 5. In all essential details this agrees with observa
tions made on the system in service.

COUPLING OF THE PRINCIPAL MODES CONCLUSIONS

If the analysis is performed by means of equation (2) 
the result is quite different and gives predictions that are 
much closer to the measured results. The data in Table 1 
permit the matrices A, B and C to be formed and we can 
proceed directly to use equation (2) to find x, and hence 
Xj.

Alternatively one can use the principal coordinates. 
From A and C, the principal modes may be found and 
hence X formed. Then the matrices

i: = XT^ ’ M = 2 TJ?X- n  = :xt o c .

can be computed. But when this was done, M turned out 
to be very far from diagonal because of the presence of the 
fluid coupling at one end of the system and so damping 
couples the modes closely. As a check, equations (3) and
(6) can now be used to recalculate x and, hence, Xj and the 
torque amplitude. As one would expect the results were 
found to be identical to those found by the direct route. 
The results found by these two methods in which coupling 
is admitted, are shown in Fig.4.

It is not safe to investigate the torsional vibration 
characteristics of a propulsion system which embodies a 
fluid coupling, using the well-established procedures in
volving consideration of “critical speeds” . Being placed, 
in effect, at one end of a separately disturbed vibrating 
system and being relatively heavily damped, the coupling 
closely couples the principal modes. It is advisable then 
to return to first principles when estimating responses 
at different orders. If, however, the data needed for anal
ysis in terms of critical speeds are available, they can be 
employed in an extraction of the required data.
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APPENDIX
RESONANCE OF A SYSTEM CONTAINING A FLUID 

COUPLING

It is shown by den Hartog (1956)<3> that the fluid 
coupling acts as a simple viscous damper. Let the damping 
constant be b. We can now identify three subsystems:

B; the torsional system extending from the propeller 
up to and including the output side of the coupling, 

C; the massless damper across the coupling,
D; the remaining torsional system extending from and 

including the input side of the coupling.

These subsystems are simply linked at rotations qj and q2 
as indicated in Fig.6 .

Compatability of the subsystems requires that 

^ lb .=  'J 'lc  = 'J 'l , say,
* 2 c = ^ 2 d = * 2 . say,

= 'P , say.

Further, equilibrium requires that

4>ib + <I>ic = 0 ,
4>ic + <i)2c = 0 ,
4>2c + <t»2d = 0,

4>3 d = <P, say.

If all these equations are suitably combined it is found 
that

' I ' =  a  4 3  <l> = §43
642623

011 + 522 + - ! -  
lwb

Fig 6 - The torsional system  represented as three sub-systems. B is the driven side and D is the 
driving side. C is the massless damper which represents the e ffect o f  the flu id  coupling.

Since we are concerned with the possibility of resonant 
conditions within subsystem D, let D be excited at q3 and 
consider a general coordinate q , also in D. What are the 
conditions under which D resonates? (2)

Using the notation of Bishop and Johnson (1960) , we
have

where a  43 is the cross receptance between q and q 
of the composite system. Suppose that B and D are devoid 
of damping so that all the receptances 0 and 5 are real 
functions of w.The quantity

* l b  =0114> 1 b ,
iwbOI'ic -  ^ c )  = ^ lc .

^ 2 c  = 522<*>2d + 623‘l33d. 
'P4c = 642(I>2d + 643(I>3d.

The quantities 0 are receptances of B while the 5 are 
receptances of D. The 'P are amplitudes of the generalised 
coordinates q and the <J> are the amplitudes of the corresp
onding generalised forces.

0 1 1 + 622  + 1
iwb

cannot be set equal to zero as is usual with simple systems 
because to do so would require both the real and imag
inary parts to vanish separately - which is impossible.

The conclusion is that the response at q4 will become 
infinite only when 643 becomes infinite. This, however, is 
the condition that is fulfilled when the unattached sub
system D is excited at resonance.
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Discussion
DR IJ  BICKLEY (Mirrlees Blackstone (Stockport) 

Ltd) commented on the paper in two respects; a) the 
original coupling bolt failure, and b) the adequacy of 
current torsional vibration calculation methods to predict 
the torsional vibration behaviour of propulsion systems 
with a fluid drive.

With regard to a) it should firstly be appreciated that 
this system had no flywheel and that fluid coupling input 
had been used to serve the purpose of a flywheel. It was to 
be expected therefore, that the vibratory torque levels in 
the stub shaft for this system would be similar to those 
expected in conventional arrangements utilizing a flywheel 
and with the bolting system designed accordingly.

It had been stated that the torque fluctuation in the 
stub shaft was such that torque reversal over a substantial 
speed range occurred; but this was quite usual for medium 
speed diesel engines with 12 cylinders or less. It was not 
customary to calculate the vibratory torque conditions for 
a flywheel/crankshaft bolting arrangement because exper
ience had shown that it was not necessary with a properly 
designed bolting arrangement (using fitted bolts, or similar). 
In the instance described it would appear that a totally in
adequate bolting arrangement had been used.

With regard to b) the purport of the paper seemed to 
be that, with fluid drive systems, the classical normal mode 
calculation methods no longer sufficed to ensure that 
systems would perform satisfactorily in service. This had 
been appreciated for a long time now and references to the 
necessity of forced frequency calculation methods had 
appeared in the Lloyd’s Register of Shipping. Rules since 
1969 (currently Part 5 Chapter 8 Section 7 Item 2). Nearly 
all engine builders, coupling, damper and gearbox manufac
turers had their own forced vibration calculation programs, 
as had the classification societies and the CAD Centre’s 
TORVAP A.

All these programs would solve the authors’ equation

(2) and so would be capable of producing the results shown 
in the authors’ Figs 4 and 5.

Dr Bickley’s company, for example, had used forced 
vibration methods of calculation for the past ten years and 
now all systems were investigated using these methods to 
determine stresses and vibratory torques throughout the 
system under differing conditions of engine balance.

It should also be pointed out that whereas the authors 
had quoted a torque in the subshaft of 52 kNm at 460 rev/ 
min for the 3rd order one node using classical calculation 
methods; and stated that this gave no prediction of any
thing approaching torque reversal, their own Fig 4 showed a 
vibratory torque in the stubshaft of about 44 kNm which 
was less than the classical methods. Were the vibratory 
torque for the orders shown in Fig 4 to be calculated (at 
460 rev/min) using classical methods, and added arithmet
ically, the total would be about 87 kNm, i.e. higher than 
the 83 kNm shown in Fig 4.

This implied that no calculations, rather than the 
wrong type of calculations, had been carried out, and in no 
way substantiated the claim that classical methods had led 
to optimistic false conclusions.

By using the data supplied by the authors, and assum
ing a minimum shaft diameter of 285mm and resultant 
harmonic components of tangential effort, or Tm values, 
from Mirrlees Blackstone’s K major engine frequency and 
forced vibration calculations, results comparable to the 
authors' Fig 4 and 5 had been obtained.

The natural frequencies were:
1st = 1382 vpm
2nd = 2079 vpm 
3rd = 4840 vpm

which differed about 0.1% from the authors’ figures. The 
forced vibration results were shown as Figs A and B. These 
compared with the authors’ Figs 4 and 5, respectively.

FIG A Vibration o f  orders 2‘A , 3, 4 'A, 5, 5!6, 6 and 6 ‘A  assuming constant mean torque over the whole range o f  engine speed.

Trans I  Mar E  1979 Vol 91 (TM) 6 115



Operating speed rev/min

FIG B Curves o f  mean torque and fluctuating torque.

O p e ra tin g  speed re v /m in

FIG C Fourier sum m ated torsional stress (‘A - 1 2  orders) in damaged shaft assuming 
propeller power law and shaft m inimum dia. o f  285mm.

Comparing the torced vibration results showed gener
ally similar vibratory torque levels, especially the 6th peak 
which was just over 70 kNm in both Figs 4 and A and 
about 70 kNm (total stress) in both Figs 5 and B. The

differences were that the Mirrlees Blackstone results were 
lower than the authors’ above the 6th order peak, and 
higher below the 6th order peak. The results were based on 
24 harmonic orders (!/i - 12) and the summated levels of
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vibratory torque included the effect of phase angles.
Using only the orders plotted in Fig 4, an arithmetic 

addition of vibratory torques calculated by the company’s 
forced vibration program gave 78 kNm at 460 rev/min and 
54 kNm at 200 rev/min (Fig 4 gave figures of 83 kNm and 
50 kNm, respectively).

The authors’ simpler approach to torque summations, 
together with slightly different Tm values, particularly the 
3rd, probably explained the slightly different results.

Fig C gave the total stress in the stub shaft and com
pared it with the Lloyd’s Register of Shipping limit for 
crankshafts (based on 285mm dia). The stress was modest 
and gave no cause for concern.

To sum up then, current methods of torsional vibration 
calculations predicted the authors’ results. The bolts 
probably failed due to faulty design, not due to mis
application of torsional vibration calculations and the fact 
that the authors “are unable to cite any paper or book in 
which it is shown how to proceed from a knowledge of the 
principal modes and natural frequencies of a multi-cylinder 
engine system to the calculation or responses at any pres
cribed speed of given orders” , was because, when using 
forced vibration calculation methods, it was not necessary 
to do so.

D McKINLAY (Lloyd’s Register of Shipping) said that 
the authors had presented an interesting and provocative 
paper but two of their conclusions appeared to be quest
ionable.

They had claimed that their calculations and measure
ments showed that excessive vibratory torque existed in the 
stubshaft and that was the reason for failure of coupling 
bolts. Subsequently they felt that the methods of calcul
ation described in the Rules of Lloyd’s Register of Shipping 
were inadequate.

The torque fluctuations in the stubshaft calculated by 
the authors and said to be substantiated by measurement 
were not unusual in practice. He recommended that they 
look further for the reason for the failure of the coupling 
bolts.

The authors had stated that the Rules of Lloyd’s Reg
ister could not reasonably be applied directly to the system 
of Fig 1 as they did not cater for a fluid coupling. The 
authors should refer to Part 5 Chapt 8, section 7.2 of the 
Rules which referred to vibration of systems requiring com
plex and detailed analytical treatment. Experience had 
shown that for forced damped vibrations, tabulation 
methods were preferred since these automatically took 
care of all modes of vibration, dealt with excitation and 
damping in detail, and gave results close to measured values. 
Further, vectorial synthesis of the component harmonic 
order of vibration was necessary; not the arithmetic analysis 
used in the paper. Indeed, calculations and measurements 
from a system apparently identical to that chosen by the 
authors showed reasonable agreement.

Lloyd’s Register of Shipping had introduced torsional 
vibration considerations into classification requirements in 
1944 and since that time had examined the characteristics 
of all systems in all ships classed by the Society. These 
examinations were not confined to calculation but had 
been confirmed by many shipboard measurements and it 
could be claimed that the Rules were a reflection of exper
ience gained within the Industry.

It was of interest to study the authors’ example 
further. Perhaps they would care to comment on why they 
had chosen to omit the gearing and propeller from the 
calculations. Consideration of the complete system indicat
ed that the fluid coupling and the propeller i d  not signifi
cantly contribute to the damping of the crankshaft. Effect
ively the input member of the fluid coupling became the 
undamped flywheel of a simple engine system.

Table A1 showed the modal mass (L) modal stiffness 
(N) and critical damping for the first four modes, the 
figures being derived by matrix methods as adopted by the 
authors and based on the mass-elastic system given in the 
paper.

Inspection of these normal modes revealed substantial 
damper motion; the fundamental being its natural frequ
ency (Table A2).

Taking into account the damping values detailed in the 
paper the first four damped natural frequencies, together 
with the damping ratios (C/Cc) and Q-factors (&C/Cc) 
appeared as shown in Table A3.

The fundamental mode was shown to be extremely 
heavily damped; a not unexpected result, but one which 
contrasted markedly with the authors’ assumption of a 
Q-factor of 20.

TABLE AI -  NATURAL FREQUENCY ANALYSIS

TABLE A2 -  NORMAL USE

Mode No. 1 2 3 4

Damper Outer X I1 1.00 1.00 .10 .03
Damper Inner X10 .14 -.95 -.97 -.96
Cyl. 1 X9 .12 -.97 -.94 -.86
Cyl.2 X8 .10 -.95 -.61 -.01
Cyl. 3 X7 .08 -.86 -.08 .85
Cyl. 4 X6 .05 -.73 .47 1.00
Cyl. 5 X5 .03 -.55 .87 .31
Cyl. 6 X4 -.01 -.34 1.00 -.64
Cam gear train X3 -.02 -.17 .85 -.97
Flanges X2 -.03 -.08 .70 -.84
Fluid Coupling Input XI -.08 .03 -.12 .05

TABLE A3 -  DAMPED NATURAL FREQUENCY ANALYSIS -  
DAMPER IN OPERATION

MODE
No.

FREQUENCY
Hz C/Cc Q

1 2 3 .7 6 .443 1.1
2 3 1 .0 6 .098 5
3 7 9 .9 8 .029 17
4 130.81 .017 29

TABLE A4 - DAMPED NATURAL FREQUENCY ANALYSIS -  
DAMPER NOT WORKING

MODE
No.

FREQUENCY
Hz C/Cc Q

1 23.00 .002 300
2 34.60 .012 40
3 80.56 .006 84
4 131.12 .003 144

MODE
No

FREQUENCY
Hz

MODAL MASS 
Kgm2

MODAL
STIFFNESS

MNm/rad

CRITICAL
DAMPING

kNmS

1 23.00 75.47 1.57 21.8
2 34.61 537.47 25.42 233.8
3 80.56 422.28 108.21 427.5
4 131.12 406.03 275.59 669.0
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The results of the calculation based on the assumption 
that the damper was not working were given in Table A4. It 
could be seen that the damping from the cylinders and fluid 
coupling was so weak that the modes were to all intents and 
purposes uncoupled and the frequencies corresponded to 
the undamped values. This confirmed that the damper at 
the forward end of the engine had the major effect.

Mr KcKinley concluded by saying that this contribut
ion had been produced in collaboration with other 
members of the department of Lloyd’s which dealt with 
vibration analysis. They hoped that the authors would 
correct the error in Table III in the final text.

MR R S KEYS, MA (Department of Marine Engineer
ing, Southampton College of Higher Education) wrote that 
the authors had given consideration to an engine closely 
coupled to a fluid coupling in which the damping effects 
might be considered to be purely viscous. They had shown 
that the effects of the coupling of principal modes resulting 
from this damping rendered the more simplistic approach 
adopted in Lloyd’s Register of Shipping’s Rules unaccept- 
ably inaccurate for this type of system. However, it seemed 
strange that in the Appendix they had justified the total 
isolation of the engine at the fluid coupling with the 
assumption that the driven system, B, contained negligible 
damping when in fact it included the propeller which was 
subject to considerable turbulent damping (proportional to 
the square of the vibrational velocity).

The authors had given no details of system B. If this 
involved a long propeller shaft of low flexibility then it 
could be shown that the effects of the damping at the 
propeller on the remainder of the system were negligible; 
if however the shaft was short and stiff the effects of the 
propeller damping might be considerable, thus calling into 
question the validity of the statement in the Appendix that 
j3] i is real.

With the rigidly coupled type of propulsion system a 
similar theoretical analysis could be performed but involv
ing turbulent damping at the propeller. In this case not only 
did the matrix M become non-diagonal but also the matrix 
L which would"now contain the turbulent damping terms. 
This would seem to indicate that coupling of principal 
modes should be expected in marine propulsion systems. 
However, as already stated, the presence of a long flexible 
propeller shaft could be shown to reduce the non-diagonal 
elements to very low values, thus implying almost negligible 
mode coupling. Under those circumstances the conditions 
for resonance would reduce to those which had been so 
widely used in the past.

With the increasing use of “all-aft” machinery configur
ations, the propeller-shaft stiffness was considerably 
increased and one would expect this to lead to significant 
mode coupling in the traditional propulsion systems. It 
would seem reasonable, therefore, to question the reliance 
which could be placed on Lloyd’s Rules in the case of any 
‘all-aft’ configuration, bearing in mind also the greater 
occurrence, of tailshaft failures by crack propagation from 
the keyway in short-shaft propulsion systems. These fail
ures had, in many cases, been simply attributed to “the 
effects of the keyway as a stress raiser” whereas it might 
have been more correct to attribute them to the higher 
stresses, resulting from mode coupling, using up the factor 
of safety inherent in the present Rules.

The implication of the authors’ work was surely that 
the time had now come to take a new .look at the Rules in 
the light of modern advances with a view to being able to 
predict more accurately the behaviour of non-traditional 
systems for which the established empirical criteria no 
longer applied.

MR F E B WEBB, C Eng, MIMechE (A.P.E.-Allen 
Limited) expressed surprise that the authors, using tradit
ional methods (set out for example in the Rules of Lloyd’s 
Register of Shipping*) had been unable to predict that the 
two-noded 6th order critical at 346 rev/min would induce a 
vibratory torque in shaft number 10 greater than the mean 
torque at the same speed. Using the data given he had been 
able to arrive at the following results.

The mean torque at 346 rev/min according to the pro
peller law, would be 47 kNm.

The harmonic component for the 6th order was 
0.06 N/mm2 and the “static response” was ±0.0004 
radians.

Lloyd’s Register Rules did not give a formula for the 
dynamic magnifier for a tuned damper, but Mr Webb

4£(J A2 )understood that MD = -j—t-t-*---- r— ^
j r  (Adi ■ &D2)

gave accurate results (using the notation of Lloyd’s Rules) 
and in this particular case gave a figure of about 8.5. Engine 
damping by comparison was small, and no allowance need 
be made for the fluid coupling.

The vibratory torque in shaft number 10 was 
±64 kNm, i.e. 1.36 times the mean torque at 346 rev/min.

The disturbing feature of this case was that the coup
ling bolts failed. The vibratory torques were not excessive. 
It would appear that the fluid coupling had not been 
designed to cope with the torque variations produced by a 
diesel engine.

MR K-H KLUGE (Blohm & Voss, Hamburg) com
mented that his company, as manufacturers under license 
of SEMT Pielstick medium-fast engines of Types PC2, 3 and 
4 normally drew up calculations for the whole system, from 
the diesel engine up to, and including the propeller. This 
meant that for the excitation from the engine and from the 
propeller the whole system was examined (as installed), and 
calculation of the natural frequencies of the two systems 
were dealt with separately, up to the fluid coupling in both 
cases.

However, the system specified in the paper only 
contained data for the section from the diesel engine to the 
fluid coupling.

Blohm & Voss had carried out a comparison calcul
ation for this section, using their torsion computer pro
grams; the values did not differ greatly from the ones 
presented in the paper.

It might be of interest to note one or two features of 
those calculations:
a) They were made individually for each system section 

and for any specified speed (in this case 440 rev/min).
b) Calculations were made for torques (and also the stress, 

if the corresponding diameter was known), for the 
deflection; for the geometric sum up to order 12; for 
the largest individual deflection with its order; and for 
the torques of the four highest individual orders.

c) It was iso  possible to determine the moments for four 
important system points over a required speed range. 
This provided a rapid survey with very little paper
work.

d) In the calculations the system had been assumed to 
have the fluid coupling attached. The masses of the 
parts, from the transmission to the propeller, had been 
assumed to be treated in the coupling estimated. The 
results were almost identical with those of the previous

* R u les  a n d  R eg u la tio n s  fo r  th e  C la ss ific a tio n  o f S h ips  1 9 7 8  
L lo y d ’s R e g is te r  o f  S h ip p in g , P a rt 5 , C h a p te r  8, S e c tio n s  
7 -1 2  inc lu sive.
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calculations. The natural frequencies remained, of
course, unchanged.
As the authors of the paper had correctly assumed, a 

fluid coupling separated a torsional vibration system. 
Theories with which Blohm & Voss were acquainted and 
the calculation in their computer programs were based on 
this assumption. In the case of two ship’s systems, however, 
experience had led them to use a fluid coupling in an 
auxiliary drive on the diesel engine.

Contrary to expectations (and also contrary to the 
preliminary calculations) almost the same values were 
measured on the auxiliary drive as at the free engine end 
(Measurements had been made with an electric vibration 
pick-up). There was, therefore, no separation of the systems 
by the fluid coupling.

If the authors had had any similar experiences he 
would be pleased to hear of them.

PROFESSOR D E NEWLAND, Ma, ScD, C Eng, 
FIMechE (Professor of Engineering, University of 
Cambridge) was surprised that the torsional vibration of 
systems with a fluid coupling had not been studied in detail 
before. The authors had made a valuable contribution by 
drawing attention to this omission and by describing their 
calculations for a particular case. Prof. Newland had studied 
the paper with great interest and would like to comment on 
a number of points arising from the results and conclusions.

In order to explain the background to these comments, 
it was helpful to refer first to a primitive system consisting 
of two rigid flywheels joined by a massless elastic shaft, 
(Figure 7). This system has two degrees-of-freedom and two 
natural frequencies, co=0 rad/s (corresponding to steady

rotation with no torsional vibration) and cj= k + ' 2
\  l i  I2

(for the I-node mode of torsional vibration).

The system’s characteristic equation was

S2 jlj 12S2 + k (I i  + 12)} = 0 (1)

MG 7 Uncoupled sub-system with two degrees-of-freedom.

For the parameter values shown in Figure 7, the numerical 
eigenvalues were:

Sj = 0 
s2 = 0
s3 4 = 0 ± i 14.14 (s-i) (4)

indicating that the natural frequency of undamped tor- 
ional vibration was 14.14 rad/s r 135 cycle/min.

Next, consider the system shown in Figure 8: In this 
case the wheel of inertia I2 was subjected to rotary viscous 
damping; the wheel might be close to a parallel wall from 
which it was separated by a layer of oil. The coefficient of 
viscous damping was X. The eigenvalues of this system were 
the solutions of the characteristic equation

and, in formal terminology, the eigenvalues of the system 
were

S i 0
s2 0

s 3  , 4  = 0 ±  i
I *i + *2)

Ii h
(2)

s { Ijla s3 + X ^s2 + k(Ij^ + I2 ) s + kX( -  0 (5)

and, for the same parameter values of Figure 7 plus the 
damping coefficient X given in Figure 8 , the numerical 
eigenvalues were

si
s2
S3 , 4

0
-4.42 (s-1) 
-3.42 ± i 12.57 ( s '1) (6)

where the real part of these expressions indicated (zero) 
damping and the imaginary part gave the angular frequency 
of the characteristic oscillations (i.e. the natural frequency). 
If coordinates and <p2 gave the angular displacement of 
the two wheels (Figure 7), then, for example, the transient 
solution of the equations of torsional vibration had the 
form

= A + Bt + C cos /k  ^  + M t + D sin /kf^ 1 -+ ^  t (3)
Y  V i i W  \ /  \ ii *2/

where A, B, C and D were constants determined by the 
initial conditions. The repeated root Sj = 0, s2 = 0 gave rise 
to the Bt term, corresponding to steady rotation at con
stant angular speed.

The corresponding transient solution had the form

<p1 = A + Be-4-421 +e_3-42t (C cos 12.57t + D sin 12.57t) (7)

The natural frequency was, for these parameter values, 
12.57 rad/s = 120 cycle/min, and the damping ratio approx
imately 3.42 _ a TT 

12.57
Thirdly, consider the system shown in Figure 9. In this 

case a third wheel of inertia I3 was added to replace the 
rigid wall in Figure 8, the system remaining otherwise 
unchanged. The new characteristic equation was then 
s3 ^Ii I2 13s3 + X I} (I2 + 13 )s2 + kI3 (I1 + I2)s +

+ kXfli + Ia + Ia)} = 0  (8)
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4>2

IX

fluid coupling T \

11 = 3 kg m2

12 = 1-5 kg m2

k =  2 0 0  Nm /rad 

A =  16-875 Nm s/rad

12 = 15 kg m2

13 = 4 5 kg m2

k = 2 0 0  Nm/rad 

X =  16-875 Nms/rad

FIG 8 Sub-system  coupled to a rigid wall by a viscous restraint.

and, if I3 had the value shown in Fig 9 (comparable to Ix 
and I2), all other parameter values remaining unchanged, 
the eigenvalues were:

Sj = 0
s2 = 0
s3 =  0  , (9)
s4 = -1 0  ( s '1)
s5<6= -2.5 ± i 12.0 (s-1).

The corresponding transient solution was

<Pi =  A + Bt + Ct2 + De-10t +e-2-5t (Ecos 12t + F sin 12t) ^

(in which the constant C was always zero since constant 
angular acceleration was not possible in the absence of a 
constant applied torque). The natural frequency was now
12.0 rad/s = 115  cycle/min and the damping ratio approx
imately -yy = 0 .2 1 .

Under conditions of forced vibration, maximum 
amplitudes of vibration would occur when the frequency of 
excitation was near to the natural frequency, which, for the 
simple systems described above, had the values tabulated in 
Table IV.
TABLE IV CALCULATED NATURAL FREQUENCIES AND 

DAMPING RATIOS FOR THE SYSTEMS SHOWN IN 
FIGURES 7, 8 AND 9

NATURAL
FREQUENCY

DAMPING
RATIO

Uncoupled system 135 cycle/min 0
(Fig. 7)
Viscous coupling to 120 cycle/min 0.27
a fixed wall
(Fig. 8)
Viscous coupling to 115 cycle/min 0.21
another wheel
(Fig. 9)

FIG 9 Three degrees-of-freedom system  incorporating a viscous 
coupling element.

Turning now to the published paper, the authors had 
given numerical data on the natural frequencies of their 
uncoupled system, the first two of which were 1,380 cycle/ 
min (for the I-node mode) and 2,077 cycle/min (for the II- 
node mode). However they had not given the corresponding 
eigenvalues of the coupled system, when viscous restraint of 
the form shown in Figure 8 had been introduced. It would 
be most valuable to have this extra data in order to assess 
how the resonant frequencies had been changed by the 
introduction of viscous damping at the coupling.

Inspection of the authors’ Figure 4 suggested that, 
since there was a 6th order resonance at 310 rev/min 
approximately, there must be a torsional critical frequency 
of about 1,860 cycle/min. The smaller resonance peaks for 
the 5lA and 616 order torques occurred at speeds in agree
ment with this figure. It appeared, therefore, that the 
natural frequency of the II-node mode had been moved 
from 2,077 cycle/min to 1,860 cycle/min by the introduct
ion of damping at the coupling.

The position of the I-node mode was not clear from 
Figure 4. There was no visible resonant peak between 400 
and 500 rev/min where 3rd order excitation of a frequency 
near the I-node resonant frequency would be expected to 
show a peak. Above 500 rev/min the amplitude curves were 
evidently moving up towards another peak, but this was 
probably the result of lower order resonance of the II-node 
mode (e.g. 3rd order resonance at 620 rev/min).

If, as Prof. Newland believed, a 3rd order resonance of 
the I-node mode was not visible in the authors’ Figure 4, 
this would explain why they had found that, in the un
coupled case, an assumed Q-factor of 20 gave only relativ
ely small torque amplitudes in the I-node mode. In order to 
complete the comparison between the uncoupled and the 
coupled cases, it would be most helpful if the authors could 
provide an estimated amplitude level for 6 th order excit
ation of the II-node mode in the uncoupled case (using an 
appropriate assumed Q-factor for this mode).

It seemed to him that, although the presence of a fluid 
drive altered the natural frequencies of torsional vibration 
of the system concerned, it might still be possible to use 
well-established approximate calculation procedures to 
determine vibration amplitudes, provided that the critical
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speeds (and mode shapes) were correctly determined. This 
meant that the eigenvalues (and eigenvectors) of the dyna
mic system must be extracted by a suitable numerical 
computer procedure, but there was no real difficulty here, 
once the problem had been appreciated and the coupled 
equations of motion established.

Lastly, it was interesting to see that, in the primitive 
example considered above, the natural frequency of the 
full system in Figure 9 was significantiy different from that 
of the coupled sub-system shown in Figure 8 . This suggest
ed that it might not always be possible to rely on calcul
ations for the propulsion system on one side only of a fluid 
coupling, and that the adjacent sub-system on the other 
side of the coupling might have a significant effect on the 
natural frequencies of the first sub-system. The authors’ 
views on this point would be extremely helpful. In this 
connection, it seemed that the theoretical analysis in the 
authors’ Appendix was inconclusive in the sense that, 
although the term

011 + §22 +
1

icob

a 4 3 '4 3
' 2 2

(11)

which might not be infinite, even though all the §’s were 
infinite. The truth of this statement could be seen by con

sidering the condition for resonance of the sub-system D 
when it was rigidly restrained at coordinate 2. Its natural 
frequencies would then generally differ from those when it 
was not restrained at 2. When restrained at coordinate 2, 
^ 2  ~ 0 , and so, in the authors’ notation,

' 2 2 ^ 2  +  § 2 3  $ 3  -  0 (12)

The amplitude at coordinate 4 was given by

^ 4  -  § 4 3  $ 3  +  § 4 2  <l>2 =  $ 3  § 4 3  + 5 4 2  — M  ( 1 3 )
<t>o
*3

which, from equation ( 12), could be written in the form

§ 4 2  § 2 3
'4 3

' 2 2
(14)

Since, in general resonance no longer occurred at the fre
quencies for which 6 4 3  = 00 (the condition for resonance in 
the unrestrained case), it was clear that

§ 4 2  § 2 3

could not be zero (just as the authors had said), never
theless it could become very small. Hence the response at 
coordinate q4 could become very large (although not infi
nite), even though § 4 3  was not infinite. Furthermore, even 
when §43 was infinite, it did not follow that a 43 was infi
nite. The reason was that, when § 4 3  approached infinity, 
then, in general, so would §42, §23and §22  all approach 
infinity. Under this condition, (provided that j31:1 was not 
infinite) the authors’ equation gave;

§ 4 2  § 2 3

§ 4 3
' 2 2

would not necessarily be infinite at the same frequencies as 
those which made §43 infinite. In short, the coupled sys
tem might have resonant frequencies (defined as the 
frequency for a resonant peak) different from the uncoupled 
sub-system’s resonant frequencies. The simple example 
quoted above in which the resonant frequency had changed 
from 135 cycle/min (for the unattached sub-system, Figure
7) to 115 cycle/min (for the coupled system, Figure 9) 
appeared to support this conclusion.

The Professor looked forward with pleasure to the 
further comments and conclusions of Professor Bishop and 
his co-authors, who were to be congratulated on their 
interesting and thought-provoking paper.

Authors ' Reply__________________

PROFESSOR R E D  BISHOP, replying for the authors, 
said that before turning to the individual contributions they 
would like to thank all contributors for their trouble. Some 
of the comments were quite vigorous and provocative, but 
all were stimulating. It was encouraging to find so much 
interest in what some might think of as a pretty drab and 
esoteric subject.

Turning to what one or two of the contributors had 
written, the authors felt a little like the Englishman abroad 
who, when he finds himself not understood, merely shouts 
a little louder. In the paper they had referred to a problem 
of torsional vibration when there was a fluid coupling in the 
vibrating system and had pointed out that:
1) Judging from the limited information on the subject 

there was confusion on how to tackle that problem.
2) It could be tackled on the basis of an assumption 

which, the authors suggested, was self-evidently 
empirical and could not possibly be regarded as exact.

3) On the basis of this assumption the problem could be 
resolved using a commonly quoted technique or 
“closed form analysis” in view of its mathematical 
objectives. On the other hand,'direct application of 
“critical speed analysis” did not lead to correct predic
tions although it was often recommended in the 
literature.

4) The solution found with the critical speed approach 
could in fact be reconciled with predictions made on 
the basis of the closed form analysis and, as the authors

could not find such reconciliation in the literature, 
they had showed the truth of this.

This had all been clearly set out in the paper, but one or 
two contributors seemed to have missed the point.

In the terms of the above four aims, Mr McKinlay and 
Dr Bickley had held that Point 1 was false because there 
was no confusion Point 2 they had not referred to explicit
ly. Point 3, they had felt, was common knowledge. And 
point 4 was “not necessary” according to Dr Bickley!

These two contributions came so close to each other 
that it would be convenient to take them together. Dr 
Bickley had first referred to the coupling bolt failure, con
tending that “it would appear that a totally inadequate 
bolting arrangement had been used” . Assuming acceptance 
of his assertion that the “fluid coupling input had been 
used to serve the purpose of a flywheel” , it seemed strange 
that “it was not customary to calculate the vibratory 
torque conditions for a flywheel/crankshaft bolting 
arrangement . . .” Why not? (Indeed, judging from para. 6 
of Dr Bickley’s own contribution, it was not clear that he 
really meant what he said.)

The connection in question had 12 fitted bolts and the 
authors knew of no reason for questioning its design or 
construction. On the contrary they had suggested that the 
experience Dr Bickley relied on should be supplemented 
with something less vulnerable (i.e. some simple calcula
tions); as, if calculation was “not customary” , it was not 
clear how he would judge what connection would be ade
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quate. And if, as here, the connection was to withstand 
substantial torque reversal over the whole range of operat
ing speed, it seemed that the customary attitude left much 
to be desired.

Dr Bickley, in his second point, had taken the authors 
to task for suggesting that there was either anything novel 
in their analysis, or that Classification Society rules were in 
any way deficient. His contribution gave the impression 
that what they had said was widely known. Before writing 
the paper, the authors had checked the Lloyd’s Register’s 
Rules and Regulations for the Construction and Classifica
tion o f  Steel Ships 1976, Chapter R(E) and with great 
interest they had now checked the Rules, Part 5, Chapter 8, 
Section 7, Item 2. But they had only found two general 
“catch-all” paragraphs which made neither mention of fluid 
couplings nor how they should be treated.

The authors had said in the paper that there were two 
approaches to forced torsional vibration calculations, one 
of which was satisfactory in this context, and one which 
was not. Dr Bickley’s reference inferred that the satisfac
tory technique was known to Lloyd’s Register and that 
Lloyd’s Register preferred it to be used “where more com
plex vibratory conditions arose” (whatever that meant). 
Even this had not been made clear in the reference used by 
the authors.

Dr Bickley had admitted that the authors had got their 
sums more or less right, but felt that anyone not only 
could, but would, have found similar results. In this latter 
contention he did not appear to be supported by any of 
the facts known to the authors (and incidentally quite a lot 
had been written about this particular propulsion system). 
Unless the users’ manual of TORVAP A provided this 
information — which seemed highly unlikely — he had 
provided no references that really supported him and 
he was plainly out of step with others who had discussed 
this paper.

Unless he could provide a clear, unambiguous and satis
factory statement of how a fluid coupling was covered by 
authoritative design rules, the authors hoped he would 
forgive them if they registered a degree of scepticism. What 
he had said could too easily have been said with the help 
of hindsight.

Turning to Mr McKinlay: first of all, the authors 
wished to reject his view on the actual failure they had 
referred to for precisely the reasons they had stated. How 
one could seek to discredit the design of a coupling, or its 
manufacture and installation, while apparently ignoring a 
considerable torque reversal over the whole working range 
of operating speed, was not clear. If this really was thought 
to be good practice in marine engineering, the quicker such 
thinking was tightened up the better.

No one questioned the standing of Lloyd’s Register’s 
Rules. Nor had the authors suggested that they were like a 
Fair Isle jumper, i.e. comforting, complicated and beautiful
— but made of pure wool. What they had done was drop a 
gentle hint that the jumper might not adequately cover all 
the relevant parts.

Now, since attention had been focussed on this detail, 
they were bound to say that the one thing absent from this 
discussion had been a clear and unequivocal statement of 
how Lloyd’s Register had treated fluid couplings up till 
now, with suitable references and dates. If such a statement 
could be made and the techniques shown to be equivalent 
to, or better than, what the authors had suggested, they 
would gladly withdraw and ask to be .forgiven for hinting 
that all might not be well.

It was understandable that the technical points the 
authors had mentioned seemed to raise a question regarding 
Lloyd’s Register’s Rules. But it was far from understandable 
that they had provoked little more than assertions that the

rules were sacred.
Like Dr Bickley, Mr McKinlay had asked a number of 

detailed questions. The authors felt that they were of some
what secondary importance and did little more than dis
tract attention from the main matters in debate and they 
would therefore ignore them. To take a specific point, 
common to both contributions, did the vectorial addition 
of responses (as opposed to arithmetic summation) matter 
much when, at the same time, one was concerned with 
guessed values of Q factors?

Mr Keys’ doubts appeared to centre on Item 2 i.e., on 
the hypothesis on which the problem could be tackled. 
Like Professor Newland, he might be assured that the 
Appendix did not contain a proof of its validity; in the 
authors’ words “it is offered in general support” of the 
suggestion.

Mr Keys was perfectly justified in raising the wider 
issues and, although those were not the authors’ immediate 
concern, they were most interested by them. He had per
ceptively noted that the sea itself complied with the hypo
thesis (or something very like it) even when the propulsion 
system was rigidly coupled. The modes were therefore 
coupled, but the coupling was very weak (and so did not 
matter) when the propeller shaft was long. And it was this, 
apparently, which saved Lloyd’s Register’s rules from 
failure in all cases (whether or not there was a fluid coup
ling in the drive).

Professor Bishop added that the authors hoped Mr 
Keys would follow the matter up; for they agreed with his 
final observations. Could he deduce a general theorem 
about the effect of propeller shaft stiffness on modal- 
coupling? Could he suitably quantify “coupling” in this 
context? There did seem to be a worthwhile research 
project in what Mr Keys had pointed out and the authors 
strongly urged that his comments be taken very seriously.

Mr Webb’s contribution was exceedingly difficult to 
discuss because it contained a number of statements whose 
basis was not at all clear to the authors. His assertion that 
“no allowance need be made for the fluid coupling” pre
sumably referred to damping, and one wondered why he 
thought the coupling was fitted. If he had employed tradi
tional methods (for example as in Lloyd’s Rules) the 
authors were not surprised that he had reached results 
remote from theirs, from those of other contributors to 
the discussion and, as far as they could remember, from any 
that had been found by a number of authorities on the 
system in question.

The communication from Herr Kluge was very 
interesting (and should, incidentally, serve to convince Mr 
Webb that all was not well with traditional methods). That 
company appeared to have some excellent software and its 
technique for investigating torsional vibration appeared to 
have produced the same result as shown in the paper.

The authors’ main concern had been to examine a 
working hypothesis. Inasmuch as the calculations agreed 
with measured data, the hypothesis had been upheld. But 
there remained the question of whether or not the hypo
thesis would always produce the correct result. Blohm & 
Voss had apparently run across a case in which it did not 
and the authors offered the following comments:

a) The hypothesis could not possibly be exactly right, as 
they had already pointed out.

b) They would expect the anomalous behaviour of the 
auxiliary drive they had mentioned to be dependent — 
and perhaps heavily so — on frequency of excitation.

c) It would be of great interest to examine the system in 
question in the light of the type of reasoning suggested 
by Professor Newland.

d) It should be possible to examine any particular system
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adequately, when necessary, by calculating both sides 
and allowing for a quadrature linking at the coupling. 
The authors should perhaps have djne this themselves, 
as other contributors to the discussion had implied, but 
it could only be at the expense of lengthening the 
paper unduly,

e) They had no experience of a similar case.
This had not been the only contribution to the discussion 
which had persuaded the authors that there was a serious 
matter here, and one needing more attention.

Professor Newland’s comments were both welcome and 
characteristically elegant. Although the results the authors 
had obtained did suggest that the hypothesis used was ade
quate, it was self-evident that it could not be exactly true. 
In fact Professor Newland himself had demonstrated this 
quite clearly and his observations had led in the end to 
questions about its validity. The authors agreed that there 
did remain a good deal that could and should be sorted out.

Professor Newland had asked a number of specific 
numerical questions and, short of making the computations 
again from scratch, the authors were unable to supply the 
crisp answers that he would expect and they would have 
liked to give — at least without a considerable delay. The 
reason was that the author (P K Y Tam) who had made 
the detailed calculations now resided in the Far East, but if 
the program came to light and an opportunity to examine 
these matters should present itself, they would communi
cate with Professor Newland privately.

He had stated that “it might not always be possible to 
rely on calculations for the propulsion system on one side 
only of a fluid coupling and that the adjacent sub-system 
on the other side of the coupling might have a significant 
effect on the natural frequencies of the first sub-system” . 
As the last portion of his contribution was devoted to a 
discussion of this point, the authors offered a number of 
comments on what he had said.
a) One was not really concerned with natural frequencies 

but with resonance frequencies since, strictly, the 
argument disappeared if damping was ignored. To put 
the matter another way, natural frequency, as Profes
sor Newland had used the term, was the imaginary part 
of a root and was unlikely to be a helpful parameter to 
contemplate.

b) This was a matter which seemed well worthy of study 
but the authors could not accept that the facts would 
be laid bare without due regard to phase differences: 
amplitude and phase in steady harmonic vibration 
seemed to be crucial, and not just amplitude in free 
vibration.

c) The argument about the possible smallness of

011 + 522 +

seemed to be quite sound; but the phase angle should 
be noted.

d) The second point centred upon Professor Newland’s 
equation (14), could be argued more simply since that 
equation was obtained from the authors’ result

^42^23
a 43 ~  6 4 3  ]----

011+ ^22 +-----
iwb

by merely noting that it was obtained when 

and b~>°° .

This seemed to be a rather more illuminating approach 
since it underlined the nature of the necessary limiting 
process. What its practical significance was the authors 
were not sure.
Two approaches to more general theory suggested 

themselves. One was through particular idealized systems 
(which need not, of course, be specified numerically). This 
line of attack had been used by Professor Newland to con
siderable effect and it could obviously be made to shed 
much light on the function of fluid couplings in torsional 
systems. The other was through suitable extensions of 
receptance theory. Either way it seemed to the authors 
that questions of phase were of the essence and it was in 
this direction that the authors recommended that Professor 
Newland’s contribution should be generalized.

To sum up then, it seemed that some tidying up of 
current design rules was needed for systems embodying 
fluid couplings. At the very least a more incisive formula
tion of those rules seemed desirable. Although the working 
hypothesis that the authors had quoted from Tuplin’s 
book<5) gave excellent results in the system examined, 
there was practical evidence (from Herr Kluge and Professor 
Newland) that it might not always do so.

The existence of difficult special cases was by no 
means precluded by theory (as had been agreed by Mr Keys 
and Professor Newland). And the very reasons why the 
fluid coupling raised such issues had wider implications 
where classification society rules were concerned (as Mr 
Keys had pointed out).
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