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THE VIBRATIONAL PROPERTIES OF BRANCHED
TORSIONAL SYSTEMS HAVING ONE, OR MORE,

BRANCH POINTS

Dr. B. Dawson* and J. M. Sidwell*

This paper presents the general properties of the natural frequencies and normal elastic
curves of multi-rotor, branched torsional systems having one or two branch points. The
relationship between the natural frequencies of the system and the natural frequencies of the
individual branches when the branch points are clamped is shown. The characteristics are
illustrated by a number of synthesized examples, which have been specifically chosen to

exhibit the general properties of branched systems.

1.0 INTRODUCTION

The design of marine propulsion units often necessitates the
determination of the natural frequencies and normal elastic
curves of branched systems which have a single branch point and
a number of multi-rotor branches originating from this point.(1>
When three or more of these branches are similar, or have a
number of natural frequencies in common, multiple natural
frequencies ofthe system occur, which affects the distribution of
the natural frequencies and which may also cause difficulty when
using certain computational routines.

In order to optimize on a specific design that will avoid
dangerous resonances, a designer requires an appreciation of the
vibrational properties of branched systems. It is the objective of
this paper to help provide the designer with such an appreciation.
The general distribution of the natural frequencies of branched

* The Polytechnic of Central London

systems is presented for systems having one or two branch points.
It is shown that for systems with one branch point any multiple
natural frequencies are equal in value to the repeated simple
natural frequencies of the individual branches when the branch
point is clamped. It is also shown that a branch frequency which
is repeated I times will give rise to an (/* — 1) fold multiple
natural frequency of the system.

For systems with more than one branch point it is con-
venient to refer to the arms connecting the branch points as
“links” and the arms having one end connected to a branch point
and the other end free as “branches”. The general distribution
of the natural frequencies for systems with two branch points is
presented. However, the relationship concerning the distribution
of the natural frequencies is not so explicit in this case as com-
pared to the case of single branch point systems. It is shown,
however, that by considering the system as a set of subsystems
with each subsystem having only one branch point, then each
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The Vibrational Properties of Branched Torsional Systems Having One, or More, Branch Points

subsystem may be treated in turn as a single branch point system
and in this manner a more explicit relationship concerning the
distribution of the natural frequencies may be obtained.

It is also shown that the number of nodes in each branch
arm may be inferred from a knowledge of the distribution of the
natural frequencies of the system with respect to the individual
branch natural frequencies.

2.0 SINGLE BRANCH POINT SYSTEMS

The torsional natural frequencies &i of a multi-rotor
branched system with one branch pointand a numberofbranches
as shown in Fig. 1 are given by the eigenvalues of:

AX = uBX (1)
where X is the column matrix of the angular displacements 6j,
B is a positive diagonal matrix of inertias and A is a symmetric
stiffness matrix of the type shown on the previous page.

Each row sum and column sum is zero. After premultiplyin
both sides of equation (1) by B~i then (B~"A —§21)X = 6
where | is the unit matrix: i.e. MX = 0 and M will be of the
above type with each row divided by the appropriate inertia and
with —co2 added to each element on the main diagonal. The
eigenvalues of M are the squares of the resonant frequencies of
the whole system. The matrix A for the general case of a single
branch point system with M branches may be written in the form:
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where each matrix Aiis of the form:
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I is the number of rotors in the ;,h branch excluding the branch
point rotor, and hence kriis the branch shaft stiffness adjoining
the branch point of the branch. M atrix B of equation (1) may
be expressed in the partitioned form:

Bi o
o B2
0 Bmo
0 o b

where b is the inertia of the branch point rotor.
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It is proved(2) that for such systems the following relation-
ship applies between the eigenvalues of the total system given by
AX = i'BX and those of the subsidiary systems given by the
equations AiX = 1B-X, namely that if the values Xi are arranged
in ascending order Xi % X2~ X3. .. < Xn, taking into account
any multiplicity of eigenvalues, then the N eigenvalues X0' . . .
Xn_i' of the system satisfy the relationship.

@

where Xn_i' has an upper limit given by Xn_x' < Xn,i -f alb and
the condition Xi < Xj+i implies X* < Xi' < Xi+J.

2.1 Single Branch Point Systems without any lIdentical Branch
Frequencies (Untuned Systems)
For this type of system Xi < Xj+i for all Xand the inequality
of (2) is reduced to the form:
X</ < Xi< Xi'< X2< X2< X3< ...< X, i< Xn_ 3)
with the upper limit of Xn-i' given by Xn_i' < xn_i + alb.
It may be recognized that the partitioned matrices Al A2
. along the main diagonal of A are the stiffness matrices of the
individual branches with their branch points clamped. Thus, for
the system in Fig. 1, if the individual branch eigenvalues are
arranged in ascending order X1(X2... X12 and noting that for
this system Xi < Xi+J) then the eigenvalues of the complete system
interleave the eigenvalues of the branches in the manner:

X0'= 0, Xj< X]'< X2< X2 ... < x10< Xn'< x12< x[2

&3B + &3c + km)
Is

< M2 4 B2

where X = O to account for the free body mode.

To illustrate the validity of the above criterion, a branched
system was synthesized, utilizing a technique developed by the
authors<3), such that the branch natural frequencies were as
shown in Fig. 2.

Branch A
natural frzquzncizs
SO, 70 rad/s
Branch C
15t 60,
100rad/s
Branch B

natural frequencies
20y40 rad/s

Fig. 2—System I—No common branch frequencies
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Arranging the branch natural frequencies in ascending order
and now, for convenience, letting Xrepresent the natural frequ-
encies gives:

X, 15;X2 = 20; X3= 40; X4 = 50; X5= 60; X6 = 70; X7 = 100

and the natural frequencies of the completed system may be
predicted according to the criterion above to be:

X =0;:15< X,'< 20< X2 < 40< X3 < 50<

Xg< 60 < V < 100 < X7 < K

where K Vlim :
’ L}

< 70 < V

4 472 667 h4 022 800
2000

65 104 895

216 33

The natural frequencies of the system (System 1) have been
obtained by a matrix procedure for the whole system and are
shown in Table I. It can be observed that the natural frequencies
fall within the specified frequency bounds.

The eigenvector information obtained from the matrix
solution is also summarized in Table | in terms of the number of
nodes in each arm for the particular natural frequencies of the
system. It can be seen that an extra node is introduced into a
branch once a natural frequency of that branch has been passed

The branch natural frequencies arranged in ascending order

and letting Xnow represent the natural frequencies are:
A 10; X2= 15; X3 = X4 = X5= 20; X6= 40; XP= X8= 50;
X9 = 60; X,0= Xu = Xj2= 70; X,3= 100
20,70 rad/s
Branch frequencies
SO, 70 rad/s
20, 40
rad/s
_ 15,60.
100 rad/s
50,70 rad/s

Fig. 3—System Il—Common branch frequencies

The natural frequencies of the complete system may by
reference to equation (2) be predicted to interlace the natural
frequencies of the individual branches in the following manner:

through. This is to be predicted since at a natural frequency of a X' - 0; 10< Xi'< 15 < X2 < 20 = X3 =20 = X =
branch the branch point will be a node as the branch natural
frequencies were calculated with the branch point clamped. At 20 < X5 < 40 < Xg'< 50 = X' 50 < X& < 60 < X9
a higher frequency the wavelength will be less and the node will
move from the branch point into the branch. < 70 = XI0'= 70 = Xu' = 70 < X2 < 100 < X)3' < 284
Table |— System | calculated results
System Number of nodes
X natural
number frequency 50, 70 20, 40 15, 60, 100
rad/s rad/s branch rad/s branch rad/s branch
0 0 0 0 0
1 1719 0 0 1
2 2408 0 1 1
3 40-14 0 2 1
4 59-93 1 2 1
5 64-71 [ 2 2
6 99-996 2 2 2
7 199-4 2 2 3

2.2 Single Branch Point Systems with Common Branch Frequencies

(Tuned Systems)

It follows from the general inequality expressed in equation
(2) that when an eigenvalue of a branch is common with that
of another branch, then the system zero lying between them
takes theircommon value. Also, if a value of X; is repeated I times
and X is the next value and is repeated S times, then X counts
(r 1) times and X (S 1) times among the system eigenvalues
and there is one eigenvalue strictly between them.

A system (System 11) synthesized to illustrate the above
properties is shown in Fig. 3. It has three branches with natural
frequencies of 70 rad/s, three branches with natural frequencies
of20 rad/s and two branches with natural frequencies of 50 rad/s.
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As expected, this predicts two repeated natural frequencies

at 20 rad/s and 70 rad/s with a single natural frequency at
50 rad/s. For comparison of the predicted results to actual
theoretical values, the natural frequencies and normal elastic

curves have been computed by a matrix method and are shown
in Table Il. It can be observed that the natural frequencies of the
complete system fall within the predicted ranges and it may also
be observed that extra nodes are introduced into the branch arms
as previously predicted. The normal elastic curves of the 20, 50
and 70 rad/s natural frequencies of the complete system are of
interest in that only those branches having these particular
branch frequencies resonate. The remaining branches and the
branch rotor remain stationary and these are sometimes referred
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Table 11— System 11 calculated results

Number of nodes per branch

X System natural 50, 70 20, 40 10, 20 20, 70 50, 70 15, 60, 103

number frequencies rad/s rad/s rad/s rad/s rad/s rad/s
branch branch branch branch branch branch

0 0 0 0 0 0 0 0

1 10-401 0 0 1 0 0 0

2 16-487 0 0 1 0 0 1

3 20 0 1 0

4 20 0 1 0

5 23 083 0 1 2 1 0 1

6 40-071 0 2 2 1 0 1

7 50 0 0

8 59-966 1 2 2 1 1 1

9 64-708 1 2 2 1 1 2

10 70 1 1 1

1 70 1 1 1

12 99-998 2 2 2 2 2 2

13 271-969 2 2 2 2 2 3

to as tuning fork nodes. The node counts as shown in Table Il This may be expressed in a general form

for tuning fork nodes were obtained treating the branch point
rotor as a true zero and ignoring its sign. These nodes illustrate
the conceptoftuning whereby the designer can tune out particular

branch motions by arranging for identical branch natural Ali o - 0 0 0 0 0 Hi 0

f ies. .

requencies o A2i..0 O 0 0O 0 ¢, O

3.0 systems with two branch points
The stiffness matrix of the two branch point system shown in

Fig. 4 may easily be shown to be of the form presented on the

facing page. o o .. Aml O o O o Hm O
o o .. 0 Am+i2o O o O umt+l
o o ... 0 O Am+22 ... O 0O umt2
o o .. 0 (0] (0} Ap2 O 0O v
o o .. O (0} (0} o An—2 (n-2 Un-2
mT 2 .. 0] 0] o m-T2onl O
0O O .. 0 Um+TI »pr Un-T2 O @n

240 Trans.I.Mar.E., 1974, Vol. 86



Properties o Branched Torsional Systems Having One, a More, Branch Points

The Vibrational
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The Vibrational Properties of Branched Torsional

where the second suffix denotes reference to the branch point to

which the branch arms are fixed and AN~2 Hn-2, un_2 are of the
form:
(koL + NU)  —Ail o . O (0]
o L+ /cay —kae .. O o
An- .
0] O O “ariL (1L Ak
—kolL (0]
*n-2 = | >n-2 =
0 Al

/o being the number of link rotors excluding the branch point
rotors and the suffix L denotes reference to the link arm.

Aii, Ai2 (i= 1...p) and H (/= 1..in) are of the form
previously obtained for single branch point systems, ui (/ = m + 1
... p)is of the same form as m,

tfn-1 = A " Asij
i=1
and
N2
In — y ks2:.
( I, 1
1-1

where 2?1 and S2 refer to the branch shaft sections adjoining
branch points | and 2 respectively and ATI, TV2 are the number
of shafts adjoining branch points 1 and 2 respectively. The
inertia matrix B may also be partitioned in the form:

O O Bh2 O (0]
O O (0] b~ O
O o (0] (0] n

where brn~1 bnare the inertias of the first branch point and the
second branch point rotors respectively.

It has been proved in (2) that the following relationship
applies between the eigenvalues AX = X'BX and the eigenvalues
of the equations given by AX = XBix (/ = 1, 2 n—2),
namely:
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Vo= 0;0" X, < X2; X! A X2' A X3;
X2A X3 A X4J...Xn 4~ Xn_3 5% Xn_2*
A3 ~n2 A X2+ 78
On-1
1 n . An-1 n (4)
Bno A Ani o An2 + P70 o L
On-1 ~ On

It is apparent from examination of the stiffness matrix that
the sub-matrices A1l . . . Ap,2are the stiffness matrices of the
individual branches considered fixed at the branch points and
the sub-matrix An-2 is the stiffness matrix of the link considered
fixed at both ends. Thus for the system shown in Fig. 4, if the
individual branch eigenvalues and link eigenvalues are arranged
in ascending order Xi, X2. . . X12then the bounds of the eigen-
values X' of the total system will be as predicted by equation (4)
above.

In order to illustrate the type of bounds given by the above
criterion, the system (System 1Il) shown in Fig. 5 was synthesized.

Branch frzquzncizs

Fig. 5— System Il11—Single link two branch point system

and link natural frequencies arranged in
letting X represent tne natural frequencies

The branch
ascending order and
are:

Xi = X2= X3= X4= 10; X5= Xj = X7 — 20;

Xs = 30; Xy = ald= 50; Xn = Xi2 — 70

The natural frequencies of the complete system may therefore
be predicted by equation (4) to lie in the ranges:

Tram.l.Mar.E.. 1974. Vol. S6
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V. = 0;0s? X, 10; 10 < X2 ~ 10; 10 ~ X3 < 10;

10 < X4~ 20; 10 X5'" < 20; 20 sg X6' ~ 20;

20 N~ X7' < 30; 20 sj X8 < 50; 30 * X9'~ 50; 50 < X10' < 70;

50 sS Xji' < 70; 70 X12' 80-7; 70 5? X13' ~ 268

In addition, more precise information about the location of
the system eigenvalues may sometimes be obtained by considering
the system as a set of subsystems each with one branch point.
Both branch points of the system are clamped and then released
in turn, using the results of the previous section at each stage.
The order in which the clamps are released will not affect the
final result provided it is remembered that occasionally one of
the eigenvalues of the subsystem with one branch point released
will also become an eigenvalue of the whole system, with both
branch points released.

A detailed discussion of when this occurs is given in
reference (2). Two specific cases will be given in this paper. If a
subsystem has a tuning fork mode in which the link arms are at
rest, then that eigenvalue will be an eigenvalue of the final system
after releasing the second branch point clamp. Alternatively, if
we have two identical link arms, one of whose eigenvalues is not
an eigenvalue of any of the branch arms, then these links vibrate
in antiphase. The symmetry of the identical links at all frequencies
assures cancellation of various terms in the system matrix and
gives rise to the corresponding subsystem eigenvalue becoming
an eigenvalue of the final system.

To illustrate these points we return to System Ill shown in
Fig. 5. The natural frequencies of subsystem A will be in the
ranges:

0 < Xt'< 10; 10 < X2'< 30; 30 < X3 < 50; X4 = 50;

50 < X5'< 70; X6' = 70; 70 < X7' < 80-7 (5)

Remembering that X4' and X6' are tuning fork modes in
which the link arm is at rest, we can say that these are also
natural frequencies of the whole system, with both branch points
unclamped. The remaining natural frequencies of subsystem A
together with those of the branches to the left of the clamped
branch point can now be arranged in ascending order:

V, 10; 10; 10; X2'; 20; 20; 20; X3'; X5; X/

(assuming 10 < X2' < 20)

Applying the results of section 2.2 we obtain:

0,V < Xj' < 10; X2* = X3 = 10; 10 < X4" < X2';

X2' < X5' < 20; X6' = X/ = 20;20< V < X3y

X3 < Xio' < X5; X5 < Xi2t < X7, X7' < Xi3 < 268 (6)

together with:

X, = 50; X, =170
Substituting the required ranges from equation (5) into
equation (6) we see that the predicted ranges are now:
X0 = 0;0< X,'< 10; X2 = X3 = 10, 10 < X4' < 30,
10 < X5 < 20; X6" = X7* = 20; 20 < X8 < 50; X9' = 50;

30 < XI0' < 70; X,,' = 70; 50 < X12° < 80-7; 70 < XI3' < 268

If we had assumed that 20 < X2' < 30 we would obtain the
same result. Similarly, beginning with subsystem B and applying
the same rules would also give the same ranges.

The natural frequencies and nodes per link and branch arms
derived by a computer matrix procedure are shown in Table Il
and it can be seen that the calculated values lie within the
predicted ranges.
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or More, Branch Points

Branch frequencies
0j 20 rad/s

70rad/s

Fig. 6—System IV—Two link two branch point system

As a further illustrative example, a two branch point system
(System V) with two link arms, has been synthesized to have the
branch and link natural frequencies shown in Fig. 6. The natural
frequencies of the branch and link arms arranged in ascending
order are:

Xi = X2 = X3= X4= X5= 10; Xfi = X7 = X8 =

N9 = MO = 30; xI1 = xi2-m50; X]3= xid= 70

The natural frequencies of the complete system may therefore
be predicted to lie in the ranges:
0;0 < X,”< 10; 10 < X2s; 10; 10 s;

Xo' = X3~ 10;

10 < X4"~ 10; 10 < X5"< 20; 10 ™~ X6"< 20;

20 X/ < 20;20 < X8 ~ 30; 20 < X9 < 30;

30 s? Xio' < 50; 30 < Xu' < 50; 50 < X)2' < 70;
50 < XI3"< 70;70 < X14"< K\; 70 sg Xx15" < K2

where K\ and K2 can be calculated from the stiffnesses and
inertias and are found to be K\ = 80-7 and K2 = 268.

Using the arguments referred to above we may improve on
these inequalities and conclude that there will be three natural
frequencies at 10 rad/s, two at 20 rad/s, one at 30 rad/s, at
50 rad/s and at 70 rad/s. Our improved predictions become:

X0 =

0,0 < X,)< 10; X2 = X3 = X4' = 10,

10 < X5 < 20; 10 < X6' < 20; X7 = X8 = 20;

20 < X9' < 50; Xio' = 30; 30 < Xn'< 70; X,20 = 50;

50 < X,3 < 80-7; X,4 = 70; 70 < X15 < 268

The calculated natural frequencies and nodes shown in
Table IV agree with these predicted ranges.

As for the case of single branch point systems, an extra node
is introduced into a branch arm immediately a branch natural
frequency is exceeded. Hence the next highest system natural
frequency adjacent to a branch natural frequency will have an
extra node in the branch arm compared to the system natural
frequency below it. Any other natural frequencies of the system
appearing between branch and link frequencies will introduce in
turn additional nodes into the link arms. The normal elastic
curves at the natural frequencies of the system caused by common
branch frequencies and common link arm frequencies are of
special interest. At these nodes ofvibration only branches and/or
links having a common frequency vibrate and the remaining
branches and links remain stationary.
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Table IIl— System llIl calculated results

Number of nodes per branch

a System natural 10, 20 10, 20 10, 20 50, 70 50, 70 10, 30

number frequencies rad/s rad/s rad/s rad/s rad/s rad/s
branch branch branch branch branch link

0 0 0 0 0 0 0 0

1 2-457 0 0 0 0 0 1

2 10 0 0 0

3 10 0 0 0

4 10-2 1 1 1 0 0 1

5 18-67 1 1 1 0 0 2

6 20 1 1 1

7 20 1 1 1

8 29-9 2 2 2 0 0 2

9 41-97 2 2 2 0 0 3

10 50 0 0

n 64-48 2 2 2 1 1 3

12 70 1 1

13 261-737 2 2 2 2 2 3

Table IV—System IV calculated results

Number of nodes per branch
System natural

X' frequencies 10, 20 10, 20 10, 20 50, 70 50, 70 10, 30 10, 30
number rad/s rad/s rad/s rad/s rad/s rad/s rad/s rad/s
branch branch branch branch branch link link
0 0 0 0 0 0 0 0 0
1 3-414 0 0 0 0 0 1 1
2 10 0 0 0 0 0
3 10 0 0 0 0 0
4 10 0 0 0 0 0
5 10-42 1 1 1 0 0 1 1
6 18-741 1 1 1 0 0 2 2
7 20 1 1 1
8 20 1 1 1
9 29-83 2 2 2 0 0 2 2
10 30 1 1
n 43-14 2 2 2 0 0 3 3
12 50 0 0
13 64-49 2 2 2 1 1 3 3
14 70 0 1 1

15 262-041 2 1 1 2 2 3 3
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The number of nodes per branch and link arm are shown in
Tables IIl and IV for the systems shown in Figs. 5 and 6
respectively and it can be seen that the node counts are as
predicted with the exception of the last natural frequency of
the two link system. In this case examination of the normal
elastic curves showed that the amplitudes of the 10, 20 rad/s
branch arms were a factor of 1010 down on the amplitudes of
the other branches and links. Rounding errors at these extremely
small amplitudes (effectively zero) would account for the
incorrect nodal count.

CONCLUSIONS

A comprehensive study of the vibrational properties of
multi-branch, one or two branch point torsional systems has
been presented, which should help to provide the designer with
an appreciation of the vibrational properties of general torsional
systems in terms of the natural frequencies of the individual
branch and link arms. The ranges have been established within
which the system natural frequencies fall and the conditions for
multiple natural frequencies demonstrated. Modal analysis in

Discussion

Mr.D. H. L. Inns contributed to the discussion by writing
that the appearance of the paper, and the erudite treatment of the
subject displayed in its presentation came as a welcome surprise.

The natural frequency analysis of branched torsional systems
was a specialized area within a specialized discipline and must
inevitably be of limited interest to the majority of marine engin-
eers. This, however, in no way detracts from the increasing
importance of the subject, and was no excuse for the lack of
attention it had received hitherto, as least in published work. The
authors were accordingly to be commended for their courage in
probing the mysteries of the branched system, and recognition of
the value of their work was a credit to the selectivity of the
Institute. It was predictable that this paperwas destined to become
a well-thumbed reference of the future, if only as a basis for
argument of the finer points ofthe subject.

The branched torsional system was not a novelty, since, in its
simplest form, typified by the conventional geared steam turbine
marine propulsion installation, it had been studied for many
years and well documented in published literature.

In its more general and complex configurations, however, it
had achieved wider importance only in the last 15 years or so.
This situation had resulted from the rapidly increasing adoption
of branched arrangements of marine oil engine machinery. The
obvious advantages of multiple medium speed oil engine arrange-
ments geared to a single propeller, in terms of low height
compactness of machinery layout, lower capital cost and flex-
ibility of operation and maintenance, had been appreciated for
larger powered vessels, particularly the special purpose fast
vehicle ferries, also cruise and container ships. Similarly, branched
installations had become popular in smaller vessels such as
trawlers, where all the power requirements were provided by
single-engine multi-purpose power units, driving through reduct-
ion gearing to the propeller and having power take-offdrives for
trawl winches and auxiliary power generators.

It was significant that the authors had chosen to devote this
paperexclusively to the detailed study of branched system natural
frequencies. In practical application, the ultimate object of
torsionalvibration analysis was the estimation ofactual vibratory
torque and stress levels in the components of the system. To this
end, most recent work had tended to concentrate on developing
forced-damped or frequency response techniques, which involved
the discrete application of exciting torques and damping, thereby
achieving the required object in a single process. This approach
had been made possible and, indeed, encouraged by the avail-
ability of the high-speed digital computer to cope with the
associated volume of calculation. These developments, however,
appeared to neglect natural frequency analysis, presumably in the
belief that such preliminary work had been rendered unnecessary
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terms of the nodes per branch and
established.

The information presented should enable a designer to m ake
effective decisions regarding optimizing designs to avoid
dangerous resonant conditions.

link arms has also been
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by the forced-damped technique. Contrary to this view, the two
processes were essentially complementary; the natural frequency
analysis providing the basic understanding of the general struct-
ure of the vibration characteristics of a system and directing
attention to the areas ofinterest, both resonantand non-resonant,
requiring estimation of actual vibratory magnitudes. At Lloyd'’s
Register of Shipping in-house computer capabilities had been
developed for both natural frequency and forced-damped analysis
of branched systems, and no case was investigated without an
initial natural frequency survey.

By the same token, natural frequency analysis, although an
essential preliminary, was insufficient in itself to establish the
relative severity of vibratory conditions, even for resonances. In
practical terms, the natural frequencies must be expressed as
harmonic multiples of machinery speeds in order to locate the
positions of potential resonant criticals in relation to operating
speed ranges. The significance of such criticals, in turn, depended
on the likelihood of the associated modes of vibration being
excited by predictable sources of vibratory torque, and the
subsequent estimation of relative severities. This aspect detracted
somewhat from the claims made by the authors in their final
conclusions.

The general laws defining the distribution of natural
frequences of complete branched systems in relation to the
individual clamped, or “noded”, branch or subsystem frequencies
had been clearly expressed in the paper. In this context it was
gratifying to note that the authors had avoided reference to the
clamped branch frequencies as “anti-resonant natural frequen-
cies” ;an unfortunate term used by some previous writers.

As implied in the paper, these points basically were markers
on the frequency scale bounding the regions of possible
occurrence of true natural frequencies of the system.
They also coincided with the asymptotic points arising in
the “residual torque” curve, when the conventional Holzer process
was applied to the solution of branched systems. The clamped
branch fiequencies were certainly not “natural frequencies”,
except where there was a multiplicity of branches having identical
clamped frequencies, and the corresponding modes then involved
excitations and motions in those branches only. Neither were
these frequencies necessarily “anti-resonant” conditions, except
in cases where there was a particular application or distribution of
imposed excitations. It was assumed that the authors had dwelt
on the clamped branch frequencies solely as a means of presenting
a clear theoretical treatment of the generalized natural frequency
analysis, and they would not advocate a preliminary invest-
igatory survey ofthe individual branch characteristics in practical
applications, as a separate exercise, prior to evaluation of the
natural frequencies of the complete system.
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It was well known that if Nbranches, which were identical or
scaled versions of one another, were joined at a common point in
a system, these would be sets of multiple natural frequencies
repeated (n—l) times. The corresponding (n 1) particular modes
ofvibration involved motions of these branches only and in some
anti-phase configuration; were linearly independent; and should
obey the rules of orthogonality. It was regrettable that the authors
had not presented detailed nodal shapes for the examples treated,
so that the above characteristics of these “tuning-fork” modes
could be clearly demonstrated. As a further point, since these
multiple frequencies and modes ofsystems having joined identical
branches were usually recognizable and separately predictable
without consideration of the remainder of the system, it was
customary in practical analysis to lump together the identical
branches, in order to obtain the frequencies of the rest of the
modes which involve motions of all elements in the system and
with the branches vibrating in-phase. This principle applied also
for multiple identical links between junction points, so that,
effectively, the apparent complexity of systems IIl and IV in the
paper may be reduced to simple straight-chain systems to obtain
all natural frequencies other than those of the tuning-fork variety.
It was also advantageous in providing an unbroken progressive
nodalcount in the modes extracted; a feature which was obviously
notachieved in the paper.

System Il cannot be dealt with so easily, as it had the unusual
feature of dissimilar joined branches variously having common
clamped-mode frequencies, and therefore must be treated as a
complete system. However, apart from the extreme unlikelihood
of such branches occurring in practical arrangements, it also
raised the question of numerical accuracy. Since the examples have
been synthesized “in reverse”, to produce systems having desired
exact natural frequencies, it was queried whether they were
actually expressed as rational systems of inertias and stiffnesses.
The required mass-elastic systems would have to be quoted to an
extremely high order of numerical accuracy to produce exact
equality of frequencies. In practice, if it were suspected that such
equalities existed in a system, it would be expedient to unbalance
deliberately the branches very slightly in order to obtain identifi-
able separate modes differing minutely in frequency. Such un-
balancing was not unrealistic, since in practical systems even
“identical” branches were never precisely so, and it may be safer
in the overall analysis to make this assumption.

Regarding the adoption of the matrix approach in the paper
it was agreed that this resulted in an elegant and concise
presentation ofthe theoretical aspectsofbranched system analysis.
It was also demonstrably a viable method for practical computat-
ion. However, it should not be forgotten that there were alter-
native and equally effective forms of treatment. The systems
selected as examples had understandably been restricted in size,
consistent with satisfactorily illustrating the particular features
under discussion. The mostcomplex case, system IV, for example,
has only 16 inertias. At the same time it was clear that an “all-out”
solution has been carried out, evaluating all the natural frequen-
cies ofthe system in each case. These two aspects of the work were
not characteristic of practical torsional vibration analysis. Typical
branched machinery arrangements may require analysis of
systems having up to 100 inertias. Sim ilarly, in practice, acomplete
solution was not necessary since it was normally sufficient to
obtain frequencies and modes in a limited frequency range,
determined on the basis of shaft speeds and the highest likely
orders of harmonic excitation. Thus the full matrix array, typi-
fying practical requirements, was both laborious to set up and
uneconomical to process, unless some reduction procedure,
taking account ofthe essentially tridiagonal formatofthe problem
was resorted to. The requirement for evaluation of modes in a
limited frequency range also appeared to create problems in the
m atrix solution technique. Scanning and iterative processes would
seem to be necessary, together with infallible means for identi-
fication of modes in sequence, to ensure that none within the
range had been overlooked.

The point of these remarks was that the matrix approach to
torsional frequency analysis apparently suffered from as many
problems as were experienced in other methods, such as the
conventional Holzer process. The latter method, even in its
accepted form,was an effective tool for branched system frequen-
cy analysis, particularly when means were devised foi overcoming
automatically the irritating appearance of asymptotic conditions
in the residual torques, The computer capability at the contri-
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butor’'s Society for routine branch system analysis was, in fact
based on the Holzer concept with many modifications, including
the complete elimination of the residual torque asymptote
problem. The initial adoption of the Holzer approach was largely
influenced by the fact that this method fitted in so well with the
other aspects of overall torsional vibration analysis and to provide
continuity with pre-computer days. As a routine computing tool
this facility had given satisfactory service over the past twelve
years; in the very rare event of its failure, it was always possible
to obtain the “failed” modes by re-arrangement of the branches.

In summary, the authors had produced a valuable contribu-
tion to the understanding of torsional vibration theory, raising
many intriguing topics. Their introductory intentions had been
largely fulfilled, even though they had omitted to mention“ nested”
branch systems and the generalized “loop” configuration— after
all, these are encountered only once in a lifetime. All things
considered, it would be less than charitable to suggest that their
concluding claims were slightly over-optimistic.

Mr.C. Gray wrote that the increase in complexity of marine
diesel propulsion wunits and other diesel-powered machinery
installations during recent years had led to the development of
improved methods for calculating torsional vibration. These had
been mainly for final check calculations of a proposed arrange-
ment of engines, dampers, couplings, gears, shafting and other
components. The present paper, on the other hand, described a
combined-system analysis which should enable the designer to
make an improved initial selection of suitable components, and
the contributor was sure designers of marine machinery especially
would welcome this kind ofapproach.

Recent work atBICER | on computer programs for torsional
vibration calculations had been described in Reference (1). The
computational techniques used in these programs differ from those
of the paper in a major respect, namely that they eliminated all
large matrices by evaluating the overall characteristics of the
individual branches separately, then combining them in the form
ofa connexion matrix, the size of which depended on the number
ofbranches instead ofthe number of masses.

In the early stages of design calculations some lumping to-
gether of adjacent masses was acceptable, whereas for final
calculations it was desirable to include all the masses separately.
Could the authors’ methods be extended to systems with many
masses, or was there a practical limit?

The authors used the term “natural frequency of a branch”
to describe the frequency at which an individual branch was in
resonance with the branch point clamped. Mr. Gray believed the
meaning would be more readily understood if this was called the
“anti-resonant” frequency of the branch, since this term was well
known in connexion with dynamic vibration absorbers.

reference
and Edwards, A. J. May 1974, “Torsional
vibration calculations of installations with coupled
multiple engines.” Diesel Engineers and Users Assoc-
iation publication No. 361.

1) Gray, C.

Mr.R. H. Salzman stated Dr. Dawson and Mr. Sidwell had
skilfully presented a detailed account of the torsional vibratory
characteristics of branched systems which should be ofsignificant
value to marine designers and serve as a guide in the deter-
mination of natural frequencies using hand calculations.

The authors had mentioned that for tuned systems with three
or more branches, numerical difficulties may be encountered in
the frequency analysis when certain digital techniques were used.
The Jacobi rotation method was a procedure that the contributor
had successfully employed in analyzing such systems. In order to
use the Jacobi technique equation (1) must be transformed into
the following symmetric form:

(€)(Y)= <©2(Y)where

(c) = (a1vB) (A) (I1/VB) and (x) = WB) (A"

It was the opinion of the contributor that the concept of
tuning described in the paper may be somewhat obscure to the
reader. For example, the analysis of system |l given in section 2.2
indicated that for, the tuned modes, those branches having
frequencies of 20, 50, or 70 rad/s would resonate with the remain-
ing branches tuned-out. In practice, such vibration could only
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Table V
Crankshaft 0 240-62 930-63 1074-65 1958-73 2869-48 3422-3 3716-59
Camshaft 0 2379-22 3926-75
Complete System  240-60 930 08 1074 41 1843-51 1962-23 2379-67 2869-89 3422-31 3716-70

occur if the tuned branches had stimulation torques directly ap-
plied to them.In geared-turbine systems (1) tuned vibrations rarely
occur since the tuned branches usually have no sources of
excitation. However, in symmetric diesel propulsion systems tuned
modes of vibration may occur if the engines fire out-of-phase
with one another.

The general theory in the paper had brought to Mr.Salzman's
mind a useful technique employed in the frequency analysis of
large symmetric systems. The procedure involved using dynamic-
ally equivalent in-line mass-elastic models to determine the tuned
and untuned natural frequencies of the actual system. The tuned
modes may be found from a frequency analysis ofone ofthe tuned
branches of the overall system with a “dummy” inertia placed at
the branch point whose value should be sufficient to create a node
at that point (about ten times individual branch inertias). The
untuned resonant frequencies may be determined by analyzing an
equivalent system consisting of "untuned” and “tuned” sections.
The “untuned” portion was simply the untuned branch of the
actual system. The “tuned” portion was composed ofthe follow-
ing transformed mass inertias /'j and torsional stiffnesses K'\
derived from the actual system of Ntuned branches with Minertial
masses INand m—1 torsional stiffnesses K\ per branch:

If = n/jforj =
K{ = nkifori =

1,m
1 m—1

A considerable reduction in computing time may be realized
if the above technique was utilized inlieUof performing an overall
analysis ofthe actual system.

Professor B. Downs wrote, saying the authors had effect-
ively used their synthesis technique to establish systems whose
analysis made a valuable contribution to the designer’s appreci-
ation of the vibrational behaviour ofcomplex systems. The use of
m atrix notation and computer library suites ofeigenvalue routines
should present no problems to the younger generation of engin-
eers but suffered the disadvantages of operating in a math-
ematical domain which conveys little appreciation of the physical
situation. The comments of Lagrange on his method of writing
equations of motion based on energy conceptscame to mind “The
methods which T present here require neither constructions nor
reasoning ofgeometrical or mechanical nature, but only algebraic
operations proceeding after a regular and uniform plan. Those
who love analysis will view with pleasure mechanics being made a
branch ofitand will be grateful to me for having thus extended its
domain” .

Simple physical reasoning would lead to some of the authors’
findings and perhaps shed a little more light on the problem for
the more intuitive designer, Mechanical vibration must always
involve motion in which one part of a system vibrates against
another part or the same system. In this motion, the balanced
inertia forces or torques were transmitted through the stressing of
the intervening material. In the case ofasingle branch point system
with Nbranches each having a branch pointclamped frequency of
ojn, the first of these N branches oscillating at frequency « nand
amplitude A] may oscillate against the second branch with
amplitude A2 (counterphase) in a balanced torque situation in
which the branch point was nodal and the remainder of the system
was at rest. This was the first of the multiple “tuning fork”
frequencies and A\ and A2may both be multiplied by any scalar
M. The remainder of the (n 1) tuning fork frequencies may be
regarded as branch 1 with amplitude Ai vibrating against
branches 3 to Nwith amplitudes A3to AN. Combinations of these
modes may exist simultaneously with arbitrary scaler multipliers.
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mode Ix M

gave amplitude M1 XAl on branch 1and M1 XA2 (c.p.)
on branch 2

e.g.

mode 2x (-M i)
gave amplitude -M 1 XA1 on branch 1and —M 1| xXA3
(c.p.) on branch 2 superimposed gave M| XA2 (c.p.) on
branch 2 and M| XA3 on branch 3, whilst branch 1was
stationary. The vibration of branch 2 against branch 3 was
therefore not independent of the (n—l) modes at the
repeated frequency wnwhich involved motion of branch 1.

In a two branch point system vibration ofa limb attached to
the L.H . branch point against a limb attached to the R.H . branch
point requires torque transmission through thelink and the branch
points were no longer nodal so that tuning fork frequencies of this
type did not occur.

Tuning fork frequencies would arise in a multi-link two
branch system when one or more of the links had equal natural
frequencies when both branch points were clamped. The link arms
did not need to be identical, as the authors suggested. Anti-phase
vibration of two links would occur with the branch points nodal
and theremainder of the system stationary. Again, there would be
(n—l) modes for N links having the same double clamped
frequencies and these modes might occur simultaneously in
varying amplitude combinations as described earlier for the arms
of a single branched system.

Mr. J. Rjce said that working for an engine builder, he
welcomed the paper in which the occurrence of the natural
fiequencies of branched systems had been formalized. The
technigue was to some extent used by his company as for instance
in thejudging the 1land 11l node frequencies which occurred when
a tuned damper was fitted to reduce Il node resonance peaks in
simple engine systems. With the possibility of building multi-
engined geared installations it was felt that the more formalized
approach would be ofconsiderable assistance.

The following practical example may be ofinterest. A recent
case of governor malfunction was eventually traced to resonance
in the camshaft of the branched system shown in Fig. 7. Table V
shows the lower natural frequencies of the chain drive/camshaft
branch, crankshaft and line shafting and the complete system.

It would have been ofvalue both for prediction purposes and
checking to have had a knowledge of the interlacing of the
frequencies as presented by the authors in their paper.

Fig. 7
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Turning now to the predictions for system IV in the figure,
the contributor would be pleased to have the following point
clarified. Although the logic leading to the improved predictions
was in order, these improved predictions seemed to be matched by

Authors’ reply

Dr. B. Dawson and Mr. J. Sidwell wrote in reply that they
wished to thank all the contributors for their interesting comments
and additional observations regarding the vibrational character-
istics of branched systems.

Mr.D.H.L.Inns brought outvery clearly the two aspects of
vibration analysis required for a complete study of the vibrational
problem namely:

i) anatural frequency analysis;
ii) aforced reponse analysis.

As so ably pointed out, the significance ofresonant criticals
was dependent on the likelihood of the associated modes of
vibration being excited by predictable sources ofvibratory torque
and the relative severities. The same point was made by
Mr. Salzman, who pointed out that unless a stimulation torque
was present the tuned modes would notin fact resonate. Thus for
acompleteunderstanding of the torsional vibrational properties of
a complex system, both a free and forced vibration analysis was
desirable, and the authors acknowledged that in view of this they
were a little over enthusiastic in the concluding sentence of their
conclusions.

The authors agreed completely with Mr. Inns’ remarks
concerning the use of the term “anti-resonant” frequency. They
appreciated, however, that this term had frequently been used in
previous literature in connexion with branched systems, and that
some engineers would recommend the use of this term. Indeed,
Mr.C. Gray had made thecomment thathe would have preferred
the authors to have used the term in the paper. Also in reply to
Mr. Inns, whilst it was true that the authors had dwelt upon
the determination of the clamped branch frequencies in order
to present the theory of eigenvalue distribution, they also con-
sidered that it would be advantageous to work out the separate
branch frequencies. This:

a) would indicate the limits for the frequencies of the
complete system in terms of the separate branch fre-
quencies and hence help to identify search ranges,
assuming a search technique was being utilized;

b) it would give the designer an appreciation of how
alteration of particular branch components affected the
overall system frequencies.

This line of reasoning was supported by the contribution
from Mr.J. Rice who considered it would have been ofvalue both
for prediction and checking purposes to have had a knowledge of
the interlacing of branch frequencies when dealing with the
practical example he presented ofa governor malfunction.

Both Mr. Inns and Mr. R. H. Salzman had referred to the
use of a dynamically equivalent model when dealing with
symmetrical systems and naturally the authors recommended this
method since it did reduce considerably the amount of comput-
ational time required to solve a problem. In general, however
when dealing with symmetrical systems the authors recommended
that as well as creating a dummy inertia at the branch point of the
tuned branches, the same procedure should be followed for the
“untuned” branches. The total set of tuned and untuned branch
frequencies obtained would immediately indicate the bounds on
all the eigenvalues of the complete system thus helping both for
prediction and checking purposes.

In regard to Mr. Inns’ point regarding the numerical
accuracy of the synthesis procedure the Inertia and Stiffness
values were synthesized and the values produced to the accuracy
ofthe computer. This degree of accuracy was required in order to
generate particular identical frequencies for the different branch
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an equalnumber ofpoorer predictions. Thus, referring to the two
predictions, although X'sis very much improved the prediction for
V g had changed from 20<X'9<30 to 20<X'9”50. Were the best
ofboth sets of predictions to be used ?

systems, so that the predictions identical
eigenvalues could be illustrated.

Most of the contributors had made comments on the matrix
method ofsolution used in the paper. Perhaps a few comments on
this aspect of the paper may be pertinent although the choice of
method had little relevance to the aims and objective of the paper.

The matrix approach adopted for solution of the examples
had one great virtue, namely that it was extremely simple to
program even forthe mostcomplex branched systems.All thatwas
required from the user was the setting up of a stiffness and mass
m atrix and routine library programs may then be used for the
eigenvalue and eigenvector solutions. No search problems were
encountered and multiple and pathologically close eigenvalues
presented no problems. Naturally like most numerical pro-
cedures numerical difficulties may be encountered for particular
sets of data although these difficulties may be overcome by the use
of special techniques such as the one indicated by Mr. Salzman.
The authors, however, acknowledged that the matrix eigenvalue
method used in the paper did have limitations, particularly:

of the theory for

1) in relation to the size of computer required for systems
with a large number of inertias (for marine systems the
numberofinertias might be well over 100);

2) in respect to the determination of only a few select
frequencies within a specified frequency range;

3) as expressed so eloquently by Professor B. Downs
“operating in a mathematical domain which conveys
little appreciation ofthe physical situation”.

The particular choice of method of solution depended on a
number of factors and each company would normally have a
favourite method, the choice of which may have been dictated by
previous history, or size of available computer, or indeed it may
have been a purely arbitrary decision. It was however, obvious
that if only a small store digital computer was available a matrix
eigenvalue solution would not be a feasible method for the sol-
ution of a large order system. In this case the Holzer method or
m atrix transfer method as described by Mr. Gray were suitable
alternative procedures.

Returning to Professor Downs’ comments on physical
reasoning the authors felt that he had highlighted a very
important point, and found his intuitive reasoning regarding the
various systems interesting and illuminating. It was agreed comp-
letely that physical reasoning should always be used in the
engineering field together with a mathematical approach, since it
would sometimes shed a little more light on the problem than
directly apparent from the mathematics. System IV in the paper
was a case that illustrated this point quite effectively. It was clear
from the system matrix that if the link arms were identical,
cancellation of certain terms would occur and would cause the
subsystem natural frequency to become a system natural
frequency (X'lo—30). Professor Downs quite rightly pointed out
by physical reasoning that this would also be the case when the
link arms were notidentical but had one natural frequency (with
both branch points clamped) in common. This result was more
obscure and hence more difficult to predict in the mathem atical
analysis.

The point referred to by Mr. Rice regarding the improved
predictions (by logical reasoning) apparently leading to poorer
predictions for some eigenvalues was an interesting observation.
In fact the final set of predictions were an improvement on the
original set, and this may be explained as follows: the first pre-
diction for system IV gave 20 < X'8< 30 ;20 ~ X'9< 30;
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30 < X10 < 50 ;30 ~ X'n ~ 50. For the improved predictions
the authors knew that one of X's or X'9 had become 20. The
authorsdid not know which one so they called it the lowest X's. In
this case X's and X'Q originally had the same range so there was
no deterioration in the range of X'9so far. It was also known that
one of X'9, X'jo, X'n had become 30. The authors did not know
which one, so that if X']J0=30 was chosen, one of the remaining
ones X'9, must cover the total original range of both X'9and X')O
ie. 20 < X'9< 50. This was an improvement on the original
prediction since one value was now tied down to 30 while the other
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covered the original total range. One cannot combine the two
predictions without knowing which one of X*9, X"i0 had taken the
value 30. Similarly, one of X*n and X*n would take the value 50
and again the remaining one covered the total original range of
the two.

In conclusion, the authors would like to say that they felt the
value of the paper had been considerably increased by the contri-
butions, especially in relation to its value to practising marine
engineers, and they would like to express their gratitude to the
contributors for their interest.
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