THE DESIGN AND DEVELOPMENT OF PROPELLERS FOR HIGH POWERED MERCHANT VESSELS

L. Sinclair, C.Eng., M.R.I.N.A., M.I.Mech.E. (Member)* and

A. Emerson, M.Sc., C.Eng., M.R.I.N.A.† Mr. Sinclair

In the last five years there has been a continuous increase in the power carried on the
shaft of a single screw vessel. This has posed a number of quite serious problems not
the least of which is the increasing weight of t

IMPRODUCTION

The propeller of a single screw vessel works in a wake

stream which varies considerably around the disc and this means

that quite large unbalanced hydrodynamic forces are developed

which under certain cond

high-powered merchant ships that have emerged:

A) The relatively slow mammoth tanker, or bulk carrier,

of ever increasing size. In this case the low speed/

length ratio leads to a very full hull form and an

unfavourable flow into the propeller, with wide fluctuations in wake.
B) The moderately large fast cargo, or container, ship of

ever increasing speed. The high speed/length ratio
requires a fine hull for minimum resistance with
possibly more favourable flow to the propeller. How-
ever in this case the draught usually restricts the
diameter and incr

The object of the present paper is to reconsider the propulsion, powering and propeller problem for these two special types of vessel in the light of information and techniques now available. It is also hoped to give some

A—LARGE TANKER AND BULK CARGO VESSEL
Increase in Size and Power
There has been a considerable increase in the size of these
vessels from the standard ship of 12 000 dwt during the war
years to the mammoth variety now cont

^{*} Chairman, Stone M anganese M arine (Research) Ltd. t Reader in Ship Hydrodynamics, Dept, of Naval Architecture, University of Newcastle upon Tyne, and Director. Stone M angan ese Marine (Research) Ltd.

FIG. 2

The *The Design and Development of Propellers for High Powered Merchant Vessels*Design and Development of Propellers for High Powered Merchant Vessels

The Design and Development of Propellers for High Powered Merchant Vessels

^Fig . 3*— Curves showing reduction in propeller efficiency and propulsive coefficient with increasing ship size*

From these estimates of effective horsepower, using an iterative process, it has been possible to produce curves of shaft horsepower for these ships which have been plotted in Fig. 2 for both single and twin screw installa

Large Diameter Slow Turning Propellers

Until recently, the increasing size of vessel had not been

matched by a commensurate increase in the size of propeller.

This was in part the result of Diesel engines being develop

FIG. 4—*Effect of rev/min on propeller efficiency and Q.P.C.*

reduction in rev/min and a corresponding increase in propeller diameter and propeller weight (see Table II).

Single or Twin Screws
It is clear from the above that a single screw should be
retained with increasing ship size while keeping rev/min to a
minimum but there must be some upper limit to this because
presumably there is a

Ship Deadweight		a	$\mathbf b$	$\mathbf c$	d	e
		100 000	200 000	300 000	400 000	500 000
70 rev/min	SHP Diameter, ft Weight, tons	21 511 30.2 44.0	35 594 33.8 $70-0$	47952 36.0 93.0	58 967 $37 - 8$ 113.0	69 461 39.2
90 rev/min	SHP Diameter, ft Weight, tons	23 163 26.8 36.5	38 542 $29 - 7$ 58.5	52 3 29 31.6 78.0	64 836 33.0 95.0	76993 34.3 112.0
110 rev/min	SHP Diameter, ft Weight, tons	24 580 23.9 31.5	41 456 26.8 51.5	57 048 28.8 70.0	71 318 $30 - 1$ 87.0	84 896 $31 - 2$ 103.5

TABLE II-SINGLE SCREW

 $Fig. 5$

maximum horsepower that can be delivered to the propeller
will be seen to be about 48 500 ship at 110 rev/min with a
sq.p.c. of 0.615. Reference to Fig. 2 will then show that with
this power and q.p.c. (the iteration proc

in Table III and clearly indicate the advantages for twin screw
as size and power increases.
In summarizing this, it would appear from this approach
that using the maximum weight of propeller at present avail-
able, a slig

Triple Screws
As will be seen from the foregoing, at around 250 000
dwt reconsideration of the shaft configuration is necessary as
there may well be a case for changing from single to twin
screw. If a change is contemplate

The 300 000 ton vessel has therefore been considered in detail using the curves already provided. Approximate solutions had previously shown that a reasonable distribution of power would be 50 per cent on the centreline an

Limiting Weight tons	Single screw			Twin screw for same deadweight		
	Max. shp for 110 rev/min	Q.P.C.	Deadweight for 16 Knots	Shp at 70 rev/min	O.P.C.	Propeller Weight tons
60	48 500	0.615	245 000	47 200	0.671	43.4
70	56 800	0.597	298 000	54 100	0.661	$50-0$
80	65 500	0.582	356 000	61 400	0.651	$56 - 8$
90	73 600	0.568	415 000	68 600	0.643	64.4
100	82 100	0.557	479 000	76 000	0.635	69.8

TABLE III

Again it will be noted that if a limiting propeller weight
is stipulated a considerable saving is made by changing to twin
screw. The gain is even more marked for the triple screw
installation and the total propeller weigh

ment and the curves shown in Fig. 6 have been prepared from this work.

Tandem and Contra-rotating Propellers

In comparison with two wing screws, the propeller pair

on the centreline (tandem) may be expected to show a gain in

overall efficiency because of the frictional wake and because of

Fig. 6*— Total power required for mammoth tankers with one, tzvo or three propellers — Details of the five tankers are shown in Table I all at the uniform speed of 16 knots*

the forward propeller of the contra-rotating pair, the forward
propeller ending to smooth out the wake inequalities.
The relatively low speed tanker causes the propeller to
have a low pitch-ratio and the rotational energy

Controllable Pitch Propeller has made a rather
The propeller has propeller and the Trans controllable pitch propeller has made a rather strangic curry into the large merchant ship field during the
part from the mean there

^Fig . 7*— Estimated performance with controllable pitch propeller*

thetical vessel having four engines driving a single propeller
through a gear-box. The fixed pitch propeller curve is super-
imposed on four straight lines representing the torque output
from one, two, three or four power

well known but it is only fair to point out that some penalty,
although possibly a small one, might be incurred. This results
from diminishing propeller efficiency coupled possibly with
the engine operating with higher spe

Overlapping Propellers
In an interesting new stern arrangement suggested by Pien
and Strom-Tejsen⁽⁴⁾, the centrelines of twin screws are placed
about 35 per cent of the propeller diameter from the centreline
of the ship

normally very high in this region. If the extreme angles of incidence are nearer to the mean angle for which the camber of the section must be designed, the tendency to both face and back cavitation should be reduced. Simi

Ducted Propellers
At the high propeller loading associated with the large
single screw tanker there is a considerable incentive to try to
improve the performance by all possible means. Reducing
rev/min and increasing the

(B)—FAST CARGO OR CONTAINER VESSEL
As mentioned in the introduction to this paper, this type
of vessel differs from the bulk carrier by virtue of its increasing

FlG. 9*— Power estimation— single and twin screw high speed cargo vessel*

speed with a relatively small increase in length and virtually no
change in draught. This imposes a heavy loading on the pro-
peller with relatively low efficiency. Because of the restricted
draught it is impossible to re

Single or Twin
At the moment the sort of ship that is under consideration
is the fast vessel, possibly for containerized cargo. A typical
vessel may have a length b.p. of about 680 ft, a beam of about
95 ft on a draught o

Triple Screws
As an additional exercise a triple screw installation was
considered using one third of the power on each shaft. This
would lead to an overall q.p.c. of 0.803 and would require a
centre propeller weighing 1

that the propeller diameter would be retained at 21 ft as this
is appropriate to the draught, and there would seem adequate
beam to give reasonable cover, even with the triple screw
arrangement.

Table V summarizes the results.

FIG. 10

Tandem and Contra-rotating Propellers
In this case as compared with the tanker, the diameter of
the propeller is restricted by draught and this means a heavily
loaded propeller with low efficiency as well as a difficult ca

The Design and Development of Propellers for High Powered Merchant Vessels

FIG. 11

in Fig. 11 in the cavitation tunnel at Newcastle, and the marked absence of cavitation at the operating condition will be noted.
It must be emphasized that these data represent only the start of this investigation and it i

Controllable Pitch Propellers and Other Devices

The controllable pitch propeller has begun to infiltrate

into this class of ship but here again the reasons are concerned

with considerations other han propeller efficienc

PROPELLER PERFORMANCE WITH INCREASING SIZE
In dealing with vessels of very large power it would be
difficult to avoid making some remarks on the influence of
cavitation on performance and also of propeller excitation
parti

Cavitation
Cavitation tunnel is now increasingly used as an aid
to design and with the possible exception of the U.K., cavi-
tation tunnel testing is part of the normal routine design
process. This is primarily due to the

FIG. 13

The Design and Development oj Propellers for High Powered Merchant Vessels

FIG. 14

will be seen from these data that although substantial back
cavitation was present on the model, in fact, little evidence
of this was shown on full scale although face erosion of a minor
order was experienced.
Work is ther

FIG. 16-Wake distribution-Single screw vessel

would seem better to use the uniform stream to represent local
conditions as this permits easier and more accurate control
of water speeds.
Cavitation tunnel tests in a simulated field on a small
model sometimes give frigh

Varying Wake Stream and Blade Number
Perhaps the most important obstacle in way of the develop-
ment of the single screw vessel to higher powers is the con-

Fig . 15*— Circumferential wake distribution*

^Fig . 17—*Fluctuation of propeller thrust and torque working in a varying wake stream*

siderably varying wake stream in which the propeller works.
A wake variation diagram is shown in Fig. 16 for a typical
tanker having an open water stern. The considerable changes
of velocity involved, produce marked change

- a) The cavitation problem is considerably more difficult to resolve as compared with a propeller working in a uniform stream.
- b) The propeller becomes a considerable source of excitation of the various manifestations of hull and shafting vibration.
- *c)* Very severe cyclic forces are induced in the propeller with the result that the fatigue, or more properly the corrosion fatigue resistance, becomes the most im-

portant criterion on which a propeller material must
be based. See Fig. 17. Beacuse of this wake variation and the asymmetric
nature of the flow, the centre of threats is marginaly
this can be assumed the flow, the centre

FIG. 18-*Effect of the number of blades on the dynamic performance*

-
- CONCLUSIONS

It is difficult to draw clear conclusions from a paper such

1) Twin screws and possibly even triple screws with a

use of relatively low rev/min might be successfully

applied to the large tanker if power req
	-
	-

ACKNOWLEDGEMENTS

This paper is published with the permission of Stone

Manganese Marine Ltd. and is concerned generally with work

from the Company's research programmes. Some of the pub-

lished information is the produc

Tank. The authors would like to express their appreciation of 'the close co-operaition received from these two establishments.

-
- REFERENCES

1) S.M.M. Newsletter No. 11. October 1965. "Large

Diameter, Slow-running Propellers".

2) MORGAN, W. B. 1960. "The Design of Contra-rotating

Propellers Using Lerb's Theory". Trans. S.N.A.M.E.,

Vol. 68, p. 6.
-
-
- and Manufacture for Merchant Ships". *Trans.I.Mar.E.*,
Vol. 55, p. 148.
4) PIEN, P. C., and STROM-TEJSEN, J. 1967, May. "A Proposed New Stern Arrangement". Naval Ship Research
and Development Centre Report 2410.
5) VAN MAN
-
- Speed Cargo Vessels: A Theoretical Design Study".
Trans. N.E.C.I.E.S., Vol. 83, p. 75.
VAN MANEN, J. D., and WERELDSMA, R. 1960. "Propeller
Excited Vibratory Forces in the Shaft of a Single Screw
Tanker". International Shi

Discussion

MR. C. A. LYSTER, B.Sc. said that Fig. 10 showed the
stern arrangement of a container ship fitted with, as far as was
known, the first contra-rotating propellers tested in the United
Kingdom designed and tested at his comp

which carried the aft propeller of the contra-rotating pair. The second dynamometer, the more unusual one, operated on the tubular outer shaft which carried the forward propeller of the c.r. pair. The drive for this was br

Fig. 19

Fig. 20

The direction of rotation can also be selected at will so that
the two propellers could be driven at the same or different
rates of rotation in the same or opposite directions. Most fore-
seeable variations of the c.r. or

The drive, necessarily, brought in from off centre and passed
through a trunnion-mounted spur differential gear-box where
the shaft speed was changed and the resulting reaction force
balanced to give a measurement of torqu

Fig. 22

the other apparatus. This apparatus had worked well through-
out the tests.
This apparatus had worked well through-
out the tests the paper was written the results for the container
ship with four stern arrangements had b

MR. P. W. AYLING said that the paper provided an inter-
esting assessment of the limitations to be placed on the con-
ventional single screw arrangement. But, he was disappointed
that the various possible alternatives were

Work carried out in the U.S.A. on an articulated model
of a Series 60, 0-7 block coefficient form, indicated that about
50 per cent of the total vertical excitation and nearly all the
brizontal excitation was pressure tran

The Design and Development of Propellers for High Powered Merchant Vessels

It was doubtful, however, whether harmful hull resonances
could be avoided by changing the blade number since, in the
main, they were not predictable with the required degree of
accuracy. Sooner or later it would be necess

Da, J. W. ENGLISH questionel the authors' approach in the spectral range map
fraing the spect of the large tanker, probably with conventional strong
the spectrom. An alternative and probably with conventional approach wou

MR. W. McCLIMONT, B.Sc. (Member) said that reference was made at a number of points to the problems connected

with the increasing weight of propellers. In spite of the statement that "the propeller manufacture has stated that he is ibuilder", the observation was made elsewhere that "presumably" here is a limit to the size of prop

To him the most interesting part of the paper began under
the heading "Propeller Performance with Increasing Size".
Perhaps the fact that there were $8\frac{1}{2}$ pages on propulsive
efficiency and $2\frac{1}{2}$ pages on cavita

all calculated or did they derive from model tests?
The very severe cyclic forces which were induced in the
propeller might be increased in light ship conditions and almost
certainly multiplied in heavy seas. Work on actua

MR. J. F. BUTLER, M.A. (Member of Council) said that
he had done a little homework into the material about fast
cargo ships, and the economics appeared quite startling.
In the case of the fast cargo or container ship, the

triple screw of £26 500 per year. Capitalizing this, taking interest and amortization at $12\frac{1}{2}$ per cent, one got the equivalent of capital savings of £86 000 and £212 000. In addition, the lower horsepower with mult

lations would represent capital savings of £53 000 and £130 000
respectively, taking a rate of £23 per horsepower to cover the
engine, installation and associated plant. Against this the
extra cost of propellers and shaft

screws, the horsepower per shaft would be only 27 000 and
for the triple screw it would be only 16 000. In the case of a
fast cargo ship the corresponding figures would be 19 000 and
11 600. Admittedly to get those efficie

They had been shown a very nice picture of the ideal
stern arrangement for a ship. Surely this was only one ideal.
The ideal for the ducted arrangements would be to have a big
hole in the hull below the water line where on

MR. A. STEEL said that the paper cast a highlight on
problems which were as new as tomorrow because the powers
talked about were those that they were just moving into. They
had been asked to revise long-held ideas about th

He was putting a few simple points forward as a naval
architect. The comparison in the paper where twin was shown
as being advantageous was associated with a reduction of
revolutions from 110 single screw to 70 twin screw.

50 000 shp on the centre and a mere 8000 or 9000 on each
wing.
From experience on only one triple screw ship, he was
left with some suspicion about this mode of propulsion; Mr.
Sinclair would probably be aware of the vesse

that had been a long time ago. In the light of this he would like some assurance that there were no inherent difficulties with triple screw arrangements. In connexion with the very large tanker, he presumed that

physical space existed within the hull for satisfactory triple
screw or twin screw installations. The dimensions of the hulls
were quite considerable when one went up to such high dead-
weights. Presumably the trend was de

the relevant propellers would be useful. He would also like
to have seen relevant diameters given for Fig. 6, though he
did not see how that could readily be done because it was
already a complex and ingenious diagram.
Wit

With regard to room inside the hull with multiple
screw installations, while that might be available in the tankers
he doubted whether the same situation obtained with the
second class of ship, particularly the container s

Because of the large modular nature of the cargo in a
container ship, the machinery needed to be right aft. Higher
or powers meant finer forms and larger machinery, and, therefore,
phywers meant finer forms and larger mac

DR. F. ØRBECK said that the general view had been held
for some time that to minimize propeller excitation, and its
effect, one ought to use generous clearances and, in addition,
the tendency had been towards more blades o

torsional and axial vibration of the main engine shafting, the bending vibration of the tail shaft, the lateral vibration of the rudder, and the hull, and local vibration of the after end of the ship, often most troubleso

FIG. 23-Torsional vibration stress versus engine rev/min-*Records taken on sea trial*

were viewed with considerable mistrust, which he could well understand. As to the torsional vibration, it was possible with that arrangement to reduce the stress in the intermediate shaft at full speed from about 2500 lb/

Orbeck, F. Recent advances in Computer Calculations of Torsional Vibrations wth examples of some Practical Consequences. North East Coast Institution of Engineers and Ship-builders, Trans., 1963, Vol. 79.

a bending moment vibration. On the other hand, the frequency was far more favourable because the resonance peak would be much further away from the running range and the dynamic amplification would only be 1.22 , with th

MR. R. NORRBY waid that the choice of one or two pro-
pellers was based on safe mancuviring, propeller carsing propulsive efficiency, handling of the propellers and propulsive performance. Regarding reads in the Swedish S

-
- † O'Brian, T. P. Contra-rotating Propellers for Large Tankers.

International Marine Design and Equipment, 1967.

*Williams, A:"Jämförande undersökningar betr. en- och

tvapropellerdrift för handelsfartyg" (Comparison betw

types. A shipowner in the U.S.A. was planning c.r. pro-
peller propulsion on three cargo barge carriers with 36 000
hp each†. Experience from these vessels would show whether
the c.r. propeller system was yet sufficiently

-
-
-
-

From a transponsive transponent that the relation between horse-
pumps. The authors' statement that the relation between horse-
power and rev/min for f.p. propeller on a tanker was indepen-
ent of draught was too simple.

TABLE VI—INFLUENCE OF HUB SIZE ON PROPELLER EFFICIENCY
Design speed 16-5 knots

Hub diameter ratio, per cent: 20	25	30	35	40
propulsive/ η propulsive at 20 per cent: 1.000 0.994 0.988 0.985 0.981				

The maximum expanded blade area ratio his company had
made for a fully reversible c.p. propeller was 82 per cent.
For an f.p. propeller with the same margin against cavitation,
the blade area ratio had to be increased by

[†] "Contra-rotating propellers and 36 000 bhp medium-speed
engines proposed for unique U.S. cargo barge ships". The
Motor Ship, September 1967.
"Periodically unmanned engine room in medium-speed engined
French cargo li

-
-

TABLE VII—CRASH STOP TIMES

Ship	dwt	Power. bhp	Initial speed, knots	Stopping time, seconds	Comments
m.s. Andorra	12 000	12 000	19.8	183	c.p. propeller, single screw, ballast
m.s. Azuma	13 150	15 000	22.0	160	c.p. propeller, single screw. ballast
m.t. Esso Fawley	16 700	10 080	$17 - 0$	199	c.p. propeller, single screw, ballast
m.s. Columbia- land	24 850	11 400	15.8	240	c.p. propeller, single screw, ballast
m.s. Holtefiell	35 500	12 600	15.5	366	c.p. propeller, single screw. ballast
m.t. Sinclair Venezuela	51 300	2×8400	16.5	286	c.p. propeller, twin screw. ballast
m.s. Nuolia	72 500	17 600	17.0	420	c.p. propeller, single screw. ballast
m.s. Nikkala	72 500	17 600	16.3	426	c.p. propeller, single screw, full load
tanker	18 000	not published	$15-0$	534	f.p. propeller, single screw. full load
tanker	33 000	not published	15.0	558	f.p. propeller, single screw. full load
tanker	35 000	not published	16.3	582	f.p. propeller, single screw. full load
tanker	47 000	not published	16.6	560	f.p. propeller. single screw. full load
tanker	48 500	not published	15.8	630	f.p. propeller, single screw, full load
tanker	65 000	not published	17.0	690	f.p. propeller, single screw. full load

investigation^{**} into the stopping of a single screw 100 000
dwt tanker showed that the c.p. propeller offered the shortest
stopping time and head reach both for Diesel and steam
stropping time and head reach both for Die

^{**} Hooft, J. P., and Van Manen, J. D. 1967. "The effect of pro-
peller type on the stopping abilities of large ships". Paper to
Royal Institution of Naval Architects.

combined with an ordinary rudder. Soon it would probably not

be unusul to equip large ships with nozzle rudders.

The full scale observations made on cavitation patterns

confirmed that the model tests in a simulated wak

MR. G. A. SKELTON, M.B.E. (Member) said there seemed
to be a misprint in regard to displacement for vessels (a) and
(b) in Table I. Were the block coefficients, a to e, 0.81 , 0.82 ,
 0.83 , 0.84 and 0.85 ? If these could be written in the form:

$$
Cb = \frac{Deadweight \; tons \; \times \; 17}{LBP \; \times \; B \; \times \; H} \; + \; 0.491
$$

the constant 0-491 could be varied to suit any class of vessel built. From this type of approximation hydrostatic curves could be arrived at closely in preliminary estimating.

From Table II, analysing the Q.P.C. of a 100 000 dwt ship and assuming:

Q.P.C. =
$$
\frac{\text{e.h.p.} \times 1.30 \times 0.95}{\text{s.h.p.} \times 0.98}
$$

correlation factor = 0.95
shaft efficiency = 0.98

the Q.P.C. equalled 0.8, 0.744 and 0.7 for 70, 90 and 110 rev/
min respectively. This showed that the flexibility of the large
Diesel engine could not be fully used because when using 70
rev/min against 110 rev/min there

$$
Q.P.C. = x - \frac{\sqrt{L} \times N}{3333}
$$

If one substituted $x = 0.83$, making Ayre's formula equal
to Emerson's, then the ratio of diameter to L.B.P. equal
0.0342 was constant. If one analysed Table I one found the
ratio of D/L varied from 0.35 to 0.0238 which

$$
D = \frac{53.3 \text{ D.H.P.}^{0.2}}{N^{0.6}}
$$

Now if the combined Ayre's and Doig's formula:

Q.P.C. = 0.83 -
$$
\frac{\sqrt{\frac{53.3 \times D.H.P.^{0.2}}{N^{0.6}} \times N}}{3333}
$$

one arrived finally at the following equation:

Q.P.C. =
$$
0.83 - \frac{D.H.P.^{0.1} \times N^{0.1}}{456}
$$

It was regretted that the hull efficiency, thrust deduction
factor and the relative rotative efficiency were missing from
the paper. Would the authors care to state a figure of the grip
pressure that was needed on the prop

Correspondence

MR. J. N. WOOD (Associate) wrote that the authors had
apparently passed over what was probably the most promising
form of propulsion for this class of vessel—ducted screw, more
popularly known as the Kort nozzle.
Mr. Wood

efficiency of 11 per cent at a Bp of 53.2. It was probable that
the use of the rudder type would show an even bigger improve-
ment. It should be noted that while propeller loading was the
major factor determining the pr

Scales in ft
Helm angle $2 \times 45^{\circ}$

Fig. 24—*Comparison between model fitted with Kort rudder and same model with balanced rudder*

accelerating flow "ironing out" irregularities had the effect in a
nozzle application in that wake variations in the nozzle mouth
of up to 80 per cent were reduced to less than five per cent
at the plane of the propeller.

in this application and the authors were wise to mention them.
However, his own principals had recently supplied a nozzle
to a bulk carrier in Canada. The vessel concerned was of
25 000 dwt and the propeller which was of

Authors' Reply

In reply to the discussion the authors said that it was
originally intended that the paper should be one dealing with
large single screw ships and in particular with slow running
propellers for tankers. However, as power i

that there would be a number of further small gains when
advantage was taken of the reduced cavitation and improved
flow to reduce the blade area, particularly of the after propeller,
by detailed change in design and perha

field was now common practice on both naval and merchant
ship propellers. In applying this treatment, however, care must
be exercised to avoid the risk of singing, a manifestation of
blade vibration always associated with

A built-up propeller had the initial disadvantages of greater weight and less efficiency. Apart from ease of transport there did not seem to be sufficient compensatory advantages because the individual blades on a large pr

requirements for deadweight and speed fit the particular engine
available did not commend itself for the purpose of the paper.
Although in practice a propeller must be designed to fulfil
specified requirements of speed, po

With reference to Dr. English's remarks regarding the propulsive coefficient of very large ships, while it was agreed that little full scale data were available, information on vessels up to 200 000 tons dwt did not lead o changes in the elements of hull efficiency on larger vessels
whether single, twin or triple screws. If, however, the reason-
able estimates made for these were incorrect, this would not
necessarily invalidate the qualitati

In reply to Mr. McClimont, the limiting size of propellers
was more a practical rather than a theoretical question. At
present provision was being made for manufacturing propellers
of 36 ft diameter and 80 tons finished we

^Fig . 25—*Proposed arrangement of Stone-Milton stern gear (Patent No. 34 984/65)— 30 000 shp at 80 rev/min*

problem, which was based on the idea of separating the bend-
ing moment on the shaft from the torque. By efforts of this
kind it was possible to ease the effect of the steadily increasing
propeller weight.
The questions of

ing forces had alterdy been discussed in the reply to Mr. They is the same spectral and so in the crustal and some the relations of the same spectral and so in the crustal designation case and population results and so in

however, the question of c.p. propellers only arose in connexion with the fixetible use of a number of smaller engines. Comment-
ing very briefly on Mr. Norrby's discussion, controllable pitch propellers
propellers were he

The components of hull efficiency used in the paper were as follows:

TABLE IX

	Tankers		Fast cargo ships		
	Central propellers	Wing propellers	Central propellers	Wing propellers	
Taylor wake	0.45	0.20	0.28	0.15	
Thrust deduction fraction	0.18	0.18	0.18	0.14	

The relative rotative efficiency was in all cases taken as 1.0.
It was difficult to quote a grip stress necessary when

fitting the bore of the propeller to the shaft as this varied with
the length of the boss and position of the lightening chamber.
There were also differing opinions on what was desirable and
what was possible. A general f

Marine Engineering and Shipbuilding Abstracts

No. 5, May 1968

New Russian High Speed Craft

A Soviet engineer named Viktor Podorvanov has just developed a new kind of vehicle for amphibious use, applying the well-known Magnus effect which has been tried out for thin
threw well-known Magnus effect which has been

the vessel becomes airborne. This phenomenon must be taken
into account in the designing of the hull and superstructure
which must tend towards an aircraft shaping and in the pro-
vision of a vertical stabilizer and an air

New Soviet "cylinder vehicle" invention

the "cylinder vehicle" does not come into contact with such obstructions when it is moving at high speed and at low speed it simply rolls over them.—*Hovering Craft and Hydrotoil*, July 1967, Vol. 6, pp. 6-8.

Experience with Alclad Aluminium in Deep Sea Buoyancy Sphere

Alclad aluminium alloys are commonly used to minimize
the likelihood of perforation by corrosion in aggressive environ-
ments. They consist of a relatively thick core of one alloy and
relatively thin layers of a second al

German Nuclear Powered Research Vessel

Otto Hahn is in her final stages of testing at the
yard of her builders, Kieler Howaldswerke and it is expected
that this large (564-ft loog) ore carrier will be at sea by sum-
mer 1968. Primarily designed as a research s

boiler room aft of the propulsion machinery compartment and
will drive Otto Hahn at 8.5 knots. Two auxiliary condensers
are provided for port operators, The generators.
As in the main turbines, the main condenser must have

with its large resistance to flow can be eliminated, the out-
put of the reactor circulating pumps can be reduced to a frac-
tion of that formerly required and the external pressurizing
system is eliminated. The core of t

Diamond Electro-plating of Bearing Surfaces

The chief properties of diamond which make it ideal for
use in bearings are its extreme hardness, high wear resistance,
ability to support heavy loads, low coefficient of friction and
good thermal conductivity, properties

present results of preliminary tests on the wear resistance of
synthetic diamond electro-plated surfaces sliding on steel.
Soviet-produced high strength synthetic diamond of 50-63
micron size, designated ASP5, was used in

Stabilizer Fin Control System

Four Muirhead-controlled Denny-Brown AEG stabilized
fins are fitted to *Queen Elizabeth* 2, launched from John
Brown's shipyard on Clydebank last September.
The latest features have been incorporated in this installa-
tion

Schematic diagram of the Muirhead ship stabilizer control system for Queen Elizabeth 2

its associated fin angle ship speed control) is selected on the fin- switching unit (see schematic diagram). Following normal Multra practice, functions represent-

ing $S\phi$, ϕ , ϕ , ϕ , are developed from the roll angle ϕ and added in proportions determined by the ship's characteristics.
Briefly, $S\phi$, takes care of any permanent list in the ship; ϕ controls very slow rolling, ϕ is the predominant term in normal

rolling and ϕ becomes significant in more rapid movements.
In the fin angle ship speed control, the 60 Hz signal is
passed to a Linvar and attenuated by an amount depending on
the ship's speed so that the fins receive

selected and then through individual switches to each fin
compartment. Here, the signal is locked off by a signal from the fin
transmitter unit for the individual fin and enters a phase sensi-
tive detector in the D-696-C

Computer System on Board Queen Elizabeth 2

An advanced computer system, based on a Ferranti Argus
400 data processor is to be installed. It will be the most
sophisticated computer system to be used on board a merchant
ship.
The computer system to be used on board

mation on weather conditions will be fed into the computer
on punched tape prepared by operators from received weather
forecasts. The computer will then calculate the best speed
and course to be taken for minimum fuel con

point. This win cause the various some 1200 tons of fresh water from sea water per day to be
operated with maximum efficiency and economy.
The Argus 400 computer system utilizes micro-miniature
circuitry and the version on

Marine Radar Simulator

The techniques of flight simulation have now been applied
to a marine radar simulator developed as a training aid for
ships' officers, pilots and helmsmen, Designed in the U.S.A. by
the Link Group and known as CART (Collis

Sea-link

There has been a considerable growth, recently, of seagoing
tug and barge operations, particularly on the high-cost United
States and Canadian West Coast route and the open-sea San
Francisco-Hawaii service.
The word and th

Diagramatic illustration of the Sea Link arrangement

cannot separate from each other longitudinally and they must
muove laterally together. Hence relative yaw, surge and sway
must be prevented, Briefly, vertical relative motions are allowed
but horizontal relative motions a

Semi-submersible Freighter for Container Cargo

K. W. Baldock, of Freighters Ltd, Moorabbin, Australia,
has proposed a scheme for the transport of pre-loaded con-
tainer-carrying barges in a ship incorporating a new type of
tubular hull.
In this C.L.A.S.S. (Container-Li

or hoop frames and longitudinally-stressed shell plating. The
lower half of the hull is of double-wall construction to allow
the trim and draught to be adjusted as the loaded barges are
taken aboard or discharged. Fuel, wa

Underkeel Clearance

It is of considerable commercial importance to limit the underkeel clearance required for a vessel operating in depths of water of the same order as the draught to the minimum compatible with safety, so that the allowable

In still water, when the ship's motion is unaffected by
waves, the underkeel clearance required for a given tanker can
be calculated with an accuracy sufficient for practical purposes.
The factors that have to be taken int

- 1)
- 2)
- 3)
-
-

5) the nature of the bottom.
Squat, which depends on a number of factors, including 1) the accuracy with which the depth of a given sea
area can be established;
2) the accuracy with which the depth of a given sea
area can be established;
2) the couracy with which tidal height can be predicted
for any give

When all the above considerations have been taken into
account, it is the custom of the author's company. Shell
International Marine Ltd, to allow a final underkeel clearance
of two foot for maneuvring reasons.
Knowledge

Girodin Axial-piston Drive Mechanism

Disposition of the cylinders of a reciprocating machine
around and parallel to the driven or chiving haft has inherent advantages, such as compactness, convenient cylindrical altape
of the machine, weight reduction and el

marine propulsion are tabulated; the largest of these develops 15 000 hp at 265 rev/min. - Bastide, M. P. Nouveautés Techniques Maritimes, 1966, pp. 147-161; Jnl B.S.R.A., November 1967, Vol. 22, Abstract No. 25 926.

New Bolnes Engine

More than 17 years have elapsed since N.V. Machinefabriek
Bolnes, introduced their L type engine, a medium speed two-
stroke of crosshead design. Developing 50 bhp/cyinder, these
but the range was soon to be augmented by

Section through the new Bolnes engine

degree of security against turbocharger failure. Moreover, flexible operation over the entire range of loads and speeds is assured. Blowers and intercoolers are of Brown, Boveri manufacture.
Effective segregation of combus

Laser Modulation for Communications

The application of the laser to communications is an attractive proposal for several reassons. First, the extreme provides a directional system subject to little spreading and diffraction losses. The same quality affores

Multi-purpose Reefer with Maierform SV Bow

Schlichting-werft of Lübeck-Travemünde recently handed
over the last in a series of three multi-purpose reefers construc-
ted to the order of Norddeutsche Kühlschiffreederei Harmstorf
and Company, Hamburg. The lead ship, P

thre-hatch vessels have been constructed in accordance with
the rules prescribed by Germanischer Lloyd for the classifica-
tion $+$ 100 A4E $+$ MC $+$ KAZ. The religierating installation
was classed by Lloyd's Register. T

Metalliding

A technique of diffusing atoms of one material into the surface of another, thereby obtaining surface properties radically different from those of the bulk material, has been developed by the General Electric Co. The techn

Liihesand

formation of extremely hard surfaces for bearings and dies, the
solving of difficult problems of lubricating certain metals, and
the creation of decorative finishes on base metals.
Metalliding is a high-temperature electr

Russian Research Ships

At the VEB Mathias-Thesen-Werft, Wismar, a contract
for five oceanographic and meteorological research ships is ad-
vancing towards completion with three units already in service,
another launched and the final vessel unde

K6Z. 57/80 Diesel engines, built under licence by VEB Halberstadt, each rated at 4000 bhp at 225 rev/min. These units have exhaust gas superchargers which are F.W. cooled, as are the cylinder heads and fuel injectors, whil

Study of the Law of Crack Propagation

A general form of the mathematical function in the crack-propagation law for specimens of both infinite and finite width was determined by means of dimensional analysis. The exact function of the latter type was then deter

General arrangement of research ships

As one-compartment ships for water-tight integrity, the hull below the second deck is divided by nine transverse bulk heads into the following main watertight compartments:

- 1) fore peak and chain locker;
- 2) magazine, bow thrust unit etc;
- 3) hold;
- 4) fuel tanks, accommodation etc;
- 5) forward stabilizing tanks, gyro compass compartment, accommodation etc;
- 6) auxiliary engine room and accommodation;
- 7) main engine room, workshops, service tanks etc;
- 8) after stabilizing tanks, pump room, fuel tanks, refrigerated store rooms etc;
- 9) fuel tanks, rocket store etc;
- 10) after peak and steering gear compartment.

Above the second deck the hull space is principally devoted to accommodation and laboratory and research quarters and the same applies to the superstructure decks. An essential feature for research vessels is an ability to

proceed and remain manœuvrable at slow speeds. This has been achieved by the provision of an active rudder powered by a 300 hp motor and two bow thrust units each powered by a 190 hp motor. The rudder can be put over to 90

aluminium alloy sheet, tested at 78° F and low cyclic load rates.—*Yang, C. T., Trans. A.S.M.E., Jnl of Basic Engineer-*
 ing, September 1967, Vol. 89, pp. 487-495.

Deceleration of an Unbalanced Rotor through a Critical Speed

The problem of a single-degree-of-freedom rotor de-
celerating slowly through its critical speed is solved by an
energy approach; a closed solution is obtained. A small dis-
continuous downward jump of rotor speed across

Magnetic Method of Measuring the Wall Thickness of Steam **Generator Water Tubes**

The reliability and accuracy of different non-destructive
methods for measuring the wall thickness of boiler tubes dur-
ing overhauls are compared and the magnetic method is
recommended as the most reliable, convenient and —*Schamberger, J., Strojirenstvi, February 1967, Vol. 17, pp. 138-139; Fuel Abstracts and Current Titles, July 1967, Vol. 8, p. 80.*

Torsional Vibration Analysis of a Hydrodynamic Split Torque **Transmission**

The steady-state torsional vibration for one mode of an engine transmission system was analysed and the analysis was verified by experimental data. The engine transmission system included a Diesel engine, torque divider w

Dynamic Programming for Computing Optimal Plate Dimensions in Some Ship Structures

Research on automated optimization methods, using non-
linear mathematical programming applied to minimum cost
ship structures, is extended to discrete and integer variables
in the design of plate sizes for decks and long

Admiralty Pattern Dissolved Oxygen Meter

Tests carried out on a dissolved oxygen meter developed
by the Admiralty Materials Section to determine the instru-
ment's suitability for measuring low concentrations of dis-
solved oxygen in boiler feedwater are describe

Heat Transfer and Pressure Loss in Spiral Tubes

The influence of secondary flow on heat transfer and
pressure loss in helical pipe sections under conditions of in-
duced convection was investigated. Spiral tubes show a higher
heat flow than straight tubes.—Sclumidt, E.

Casting of Marine Propellers in Nickel-Aluminium Bronze

After reviewing the requirements of modern ships' pro-
pellers, the author describes in detail the procedures employed
at the Theodor Zeise Foundry, Hamburg-Altona, to cast a six-
bladed propeller, 8900 mm in diameter, for

in ships' propellers which, in addition to nickel-bearing and
nickel-free brasses, comprise alloy steels (stainless chromium or
chromium nickel gradus) used for special applications and cast
iron or cast carbon steel, used

Ultrasonic Pressure Gauge

The transit time of short ultrasonic pulses in solid rods
is used to measure pressures throughout the fluid range. Self-
excited regenerating circuits are used. Measurements to 3500
bar with an uncertainty of 0.3 bar and

Systems for the Control of Ship Motions

There are now a number of different types of system for
the control of the rolling motions of ships, from the simple
bilge keels to the sophisticated fin stabilizers. The choice of
an individual system depends to a large e

Influence of Mode of Loading on Fatigue Behaviour of 18-10 Stainless Steel

Study of changes occurring in the mechanical hysteresis
loop of a specimen during fatigue testing offers an extremely
sensitive means of detecting variations in mechanical properties
resulting from fatigue-induced structur

Mechanism of Inception of Hydraulic Cavitation

For the purpose of clarifying the physical nature of the
inception of hydraulic cavitation, distilled water saturated with
air at atmospheric pressure was injected as a free jet through
small nozzles into the same kind of

Proposed New Stern Arrangement

The trend of ship designs towards high speed and power
has led to increasing propulsive difficulties due to the problems
of cavitation and propeller-induced vibration. Consequently, in
the design of stern arrangement, cons

propeller interaction problem. It discusses the advantages and
disadvantages of single-screw and twin-screw arrangements
presently used. A new twin-screw arrangement is described.—
Pien, P. C. and Strom-Tejsen, F., May 196

Reciprocating Compressors with Non-Lubricated Cylinders and Labyrinth Pistons or Plastic Piston Rings

The authors describe the development of the labyrinth
piston compressor, tests on reciprocating compressors with
plastic piston rings, test results, comparative measurements,
design features and successful employment of no

Static and Dynamic Tests of Speed Governors for Diesel Engines

Static and dynamic tests dealt with in this paper have been
carried out on 14 speed governors for Diesel engines. The test
stand described permitted a constant main speed to be adjusted
between 500 and 1000 rev/min (static

Mechanisms of Wear in Misaligned Splines

Experimental results are presented on the wear behaviour of misaligned splines operating without lubrication and with either grease or oil lubrication, in various environmental

atmospheres. On the basis of the observed results, it appears
that protection from rapid wear stems from conditions which
inhibit oxidation of the stressed metal surfaces. This inhibition
process can be obtained by both p

Evaluating Mechanical and Corrosion Suitability of Materials

Fracture toughness, corrosion response and low cycle
fatigue characteristics of advanced high strength metals are of
critical importance in structural design and materials selection
for present and future high performance

Aspects of the Stork Large Marine Diesel Engine

Several types of large marine Diesel engine are now
available. Steady development resulting in an increase in mean
effective pressures and dimensions is going on. The paper
outlines the basic principles and characteristic

Patent Specifications

Cargo Ship for Carrying Loaded Barges

Fig. 1 shows the forward end of a cargo ship having a
hull (10) with the wheel house (11) at the forward end and
in the aft part of the ship, that is after the wheel house, the
vessel is divided into cargo holds (12), (13

of the wing tank (24) to the inner wall of wing tanks (25).
The vessel is provided with a main deck (26) having coaming (27) about a hatch for receiving a hatch cover (28) over each hold.
The cargo units or barges (29) ha

cargo carried by the barges (29) is shown at (34). It will be
noted in Fig. 3 that the bottom of the barges above the first
one stored in the vessel rests upon the pillars of the barge
immediately beneath it to prevent cr

Passive Stabilizers for Tankers

It is generally known that the sizes of newly designed
liquid cargo tankers are now over 100 000 dwt and because of
this increased cargo carrying capability, the structural require-
ments for vessels of this type are becom

the vessel (10). There is also one or more longitudinal bulkhead (12) which is oil-tight except as shown. The vessel shown has two such longitudinal bulkheads. At least one of the compartments (16) functions as a passive

the liquid in the tanks.—*British Patent No. 1 093 972 issued to J. J. McMullen Associates, Inc. Complete specification published 6th December 1967.*

Method of Raising Submerged Objects

This invention relates to a method of raising submerged
objects such as sunken vessels by the use of closed cell plastics
foam. Referring to Fig. 1, a salvage vessel (20) may be equipped
with a pair of tanks (21) and (22)

provide the necessary pressurization and metering of the three
components (23), (24) and (26) in the proper ratio for reaction
and expansion. Hoses (31), (32) and (33) lead to valves (34),
(35) and (36) near the mixing de

These abridgements are reproduced by permission of the Controller of H.M. Stationery Office. Full specifications are obtainable from the Patent Office, (Sale Branch), 25 Southampton Buildings, Chancery Lane, London, W.C.2,