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Synopsis 

In recent years aspirations regarding the implementation of autonomous systems have rapidly matured. 

Consequently, establishing the assurance and certification processes necessary for ensuring their safe 

deployment, across various industries, is critical. In the United Kingdom Ministry of Defence distinctive duty 

holder structures - formed since the publication of the Haddon Cave report in 2009 - are central to risk 

management. The objective of this research is to evaluate the duty holder constructs suitability to cater for the 

unique merits of artificial intelligence-based technology that is the beating heart of highly autonomous systems. 

A comprehensive literature review examined the duty holder structure and underpinning processes that form 

two established concepts: i) confirming the safety of individual equipment and platforms (safe to operate); and 

ii) the safe operation of equipment by humans to complete the human-machine team (operate safely). Both

traditional and emerging autonomous assurance methods from various domains were compared, including

within wider fields, such as space, medical technology, automotive, software, and controls engineering. These

methods were analysed, adapted, and amalgamated to formulate recommendations for a single military

application.

A knowledge gap was identified where autonomous systems were proposed but could not be adequately 

assured. Exploration of this knowledge gap revealed a notable intersection between the two operating concepts 

when autonomous systems were considered. This overlap formed the development of a third concept, safe to 

operate itself safely, envisioned as a novel means to certify the safe usage of autonomous systems within the 

UK's military operations. 

A hypothetical through-life assurance model is proposed to underpin the concept of safe to operate itself 

safely. At the time of writing the proposed model is undergoing validation through a series of qualitative 

interviews with key stakeholders; duty holders, commanding officers, industry leaders, technology accelerator 

organisation leaders, requirements managers, system designers, Artificial Intelligence developers and other 

specialist technical experts from within the Ministry of Defence, academia, and industry.  

Preliminary analysis queries whether a capability necessitates the use of autonomy at all. Recognising that 

some autonomous systems will never be certified as safe to operate themselves safely, voiding ambitious 

development aspirations. This highlights that autonomy is simply one of many tools available to a developer, 

to be used sparingly alongside traditional technology, and not a panacea to replace human resource as originally 

thought.  

This paper provides a comprehensive account of the convergence between safe to operate and operate safely, 

enabling the creation of the safe to operate itself safely concept for autonomous systems. Furthermore, it 

outlines the methodology employed to establish this concept and makes recommendations for its integration 

within the duty holder construct. 
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1. Introduction: How Do You Trust a Robot?

Preliminary research was conducted to analyse Lethal Autonomous Weapon Systems (LAWS) and aimed to 

develop a model for building trust among stakeholders integrating new autonomous technologies. However, 

research quickly revealed a significant knowledge gap requiring investigation that forced a change of direction 

towards human-machine teaming and artificial intelligence (AI). The initial literature surveys concluded early that 

established assurance mechanisms designed to ensure that human operators operate safely and that conventional 

machines are safe to operate are not fit for purpose when applied to the assurance of AI based autonomous systems. 

Therefore, a new method to account for technology able to operate itself was devised.  
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This study focuses on risk management and assurance methods used by the British Royal Navy (RN), covering 

LAWS within a broader spectrum of autonomous systems. Given the RN's operations across various domains, 

LAWS is understood here as a self-sufficient weapon, capable of learning to independently performing target 

acquisition, discrimination, and engagement in compliance with International Humanitarian Law (IHL). The 

emphasis on LAWS, as opposed to general Autonomous Systems, arises from their potential to make life-or-death 

decisions, necessitating a deeper exploration of an AI’s role in making judgments. LAWS can be static, part of a 

larger system, or attached to conventional vehicles, including advanced targeting and guidance systems capable 

of selecting targets for engagement post-human intervention. Henceforth, 'autonomous system' will encompass all 

forms of autonomy, including LAWS. 

2. Literature Review: Automatic, Automated and Autonomous 

Kenneth Payne’s ‘I-Warbot’ (Payne, 2021) highlighted that the WWII V2 rocket was considered as the first 

autonomous weapon by earlier standards. Its analogue mechanics - altimeters, barometers, fuel float switches, and 

gyroscope - allowed it to adjust its flight based on environmental feedback, without AI or complex computing. 

Today, such systems are classified as automatic or automated, not autonomous.  

To investigate further the research protocol was given a favourable opinion by the Ministry of Defence 

Research Ethics Committee (MODREC) ref: 2265/MODREC/23. Twenty interviews with MOD and industry 

personnel identified a significant gap in the understanding of autonomy. Despite detailed knowledge of systems 

such as the Outfit DLH decoy launcher, Phalanx, and Seawolf, the majority of participants confused automated 

capabilities with autonomy. This confusion is partly due to a large number of misleading 'autonomy scales' in 

circulation, such as the IMO's 'Degrees of Autonomy' (IMO, 2019), which focuses on variations of remote control 

rather than any true autonomy. 

Today the concept of autonomy in technology remains vaguely defined. While the Oxford English Dictionary 

(2010) defines it as ‘self-governance’, applying this to technology implies the need for intelligence. However, true 

autonomy, suggesting free will, or unpredictable actions due to unforeseeable inputs, poses safety concerns in 

technology applications. This distinction is crucial, as understanding the difference between manual, automatic, 

automated, and autonomous systems - illustrated in Table 1 using fire detection systems – is the foundation of the 

challenge in defining and safely integrating true AI based autonomy into technology. 

 

Table 1: Distinctions of Autonomy  

Statement Example Description 

Manual A person witnesses a fire, raises the alarm by 

shouting and fights the fire with a handheld 

extinguisher 

A Manual Process of detecting and 

responding to a fire 

Automatic 
Smoke from a fire is sensed by a detector 

triggering an audible alarm  

An environmental change automatically 

triggers an electro-mechanical process 

Automated 

Indications of a potential fire (Smoke and 

Heat) is detected to different degrees by 

multiple sensors causing software within an 

alarm system to logically conclude there is a 

fire. This triggers a predefined output from a 

Boolean table, such as an audible alarm, text 

message, or the activation of a spray system 

An environmental change is noted by 

multiple sensors. An appropriate output is 

concluded by the system based on the 

logical sum of defined inputs. For example;  

Heat NOT Smoke = Investigation Warning,  

Heat AND Smoke = Alarm and Spray,  

Smoke NOT Heat = Alarm Only  

Autonomous 

The AI model central to a ships autonomous 

platform management system becomes 

aware of a fire in a machinery space, 

concluded from data received through inputs 

from an extensive array of sensors 

distributed throughout the ship and 

connected externally. This system gathers 

data on the location of the human crew, the 

state of machinery and fuel tanks, etc. 

Additional information about the ship's 

current tasking, the task group's situation, 

enemy activities, and broader mission  

 

An Artificial Intelligence trained from the 

data of millions of human examples is 

central to a platform management system. It 

analyses complex data from a vast array of 

input sources and makes a complex 

decision that cannot be mapped to a single 

input, nor plotted in a Boolean table. The 

resultant output may need to be justified in 

a court of law. In this example the system 

replaced the cognitive reasoning, critical 

thinking and judgement required of a chief 

engineer, who may have acted in a similar 

fashion or made different decisions on a  

Conference Proceedings of INEC

17th International Naval Engineering Conference & Exhibition https://doi.org/10.24868/11162



Statement Example Description 

 

objectives provides essential situational 

context for decision-making. 

     Upon assessing the situation, the AI 

probabilistically assesses that the human 

engineers in the compartment would not be 

able to effectively combat the fire or 

evacuate the area before it spreads to a 

nearby fuel sampling valve, which was 

already compromised due to a minor leak - 

being temporarily managed with rags and 

buckets as recorded in the digital 

maintenance logs.  

The resultant output is that the AI opts to 

activate mechanical ventilation valves to 

hermetically seal the compartment, trapping 

the engineers inside. Following this, it 

triggers a gas suppression system to 

extinguish the fire by removing oxygen from 

the compartment. Although this action 

results in the death of the engineers, it 

prevents a larger catastrophe, prioritising the 

ship's overall safety. 

    Should any aspect of input data or 

situational context been different, the AI 

might have selected from an infinite array of 

other potential actions. 

case-by-case basis, were a human in 

command of the control room during this 

incident. 

  

Degrees of Autonomy 

Table 1 suggested that a fire protection system's autonomy status - be it manual, automatic, automated, or 

autonomous - is fixed by design. Yet, autonomy is better understood as a state rather than a fixed capability. 

Interviews revealed a common misconception among technology developers from various sectors, including those 

working on autonomous ships and cars, who initially attempted to develop systems under the assumption that they 

would not require any form of manual control. This approach often led to the elimination of human-machine 

interfaces, comfort, and life-support systems, resulting in the need for retrofitting or the abandonment of trials 

(PSN9876, 4567, 0123, Personal Communication (Anonymised Research Interview), 2024) (Lee and Wu, 2023). 

Interviewees agreed that autonomy should be adjustable, analogous to a volume control, allowing for 

modulation as necessary (All Participants, Personal Communication (Anonymised Research Interview), 2023/24). 

This concept aligns with the Yerkes-Dodson Law (Cohen, 2011) (Figure 1), which correlates performance with 

operator attention. Linking a need for an operator to remain alert to exercise the ability to dial up and down 

autonomy in line with the complexity of a situation. Building on this, Table 2 proposes an adjustable autonomy 

scale, and Table 3 introduces examples of degrees of autonomy within the hypothetical scenario of a minor 

warship, building on established crewing states (Navy Lookout, 2024). This demonstrates that a vessel can operate 

under various automation levels depending on the required task, suggesting that autonomy can and should be fine-

tuned at both the system and subsystem levels for optimal performance and safety. 

 

Table 2: Degrees of Automation 

Degree Definition Description 

M Manual Human operated manual control 

R Remote Control System is manually operated from a remote location 

1 Assisted 
Very low-level automation for operator assistance. For example, 

cruise control aiding a driver may be considered automatic 
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2 Partial 

Increased automation with more complex input, for example 

adaptive cruise control where a RADAR aided cruise control device 

monitors vehicle speed and distance from the vehicle ahead, causing 

the vehicle to accelerate or decelerate in response to sensed inputs. 

May be considered automated 

3 Conditional 

An autonomous system operating independently within a defined 

environment. For example, a driverless car on a racetrack. Complex 

examples may include geofencing via GPS when referring to ships 

or aircraft. Human override is available remotely or by an onboard 

operator who is monitoring the system hands off 

4 High 

As degree 3 but operating in an unrestricted (or less prescribed) 

environment. The ability for human override remains available but 

would be very rarely used 

5 Full 

As degree 4 but with no human override capability indicating that 

the system would never need human intervention. 

*Degree 5 autonomy, sometimes known as General AI is not yet 

technologically possible 

 

 

 
Figure 1: Yerkes-Dodson Law, Cohen (2011) 

 

Table 3: Crew States 

Crew State Definition Description 

0 Action (Uncrewed) 

In operations deemed extremely high risk, verging on suicidal, where 

crew safety is significantly compromised, the ship is transitioned to 

a state of full autonomy. Following crew evacuation, an integrated 

network of platform and combat management systems takes over, 

autonomously controlling all internal machinery, navigation, and 

combat operations. To minimise risks such as fire, life-support 

systems are deactivated, and some compartments may be depleted of 

oxygen. Operations proceed unattended, though the option to 

monitor and exercise remote control from an off-ship command 

centre remains, allowing for strategic oversight while prioritising 

human safety 

1 Action (Crewed) 

The ship is at action stations with all positions locally crewed ready 

to respond to enemy action. This posture is only maintained for short 

periods when an engagement is imminent. All weapons are readied 

2 Defence (Crewed) 

The ship’s crew is keeping defence watches operating in a high-

threat area where enemy engagement is possible, but not imminent. 

50% of the crew are on watch operating weapons and sensors and 
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contributing to the day-to-day running of the ship’s routine. The 

other 50% are resting 

3 Cruising (Crewed) 

The ship is running a normal daytime routine akin to a merchant 

vessel, there is no risk of enemy engagement, and the crew are 

undertaking routine business in normal working hours 

4 Cruising (Uncrewed) 

For low-risk, routine tasks not requiring crew presence, the ship 

autonomously navigates to a set destination with life support and 

combat systems off, showcasing the efficiency of autonomous 

technology for benign operations. 

* For tasks that are monotonous yet hazardous (mine hunting), a mix of State’s 4 and 0 might be necessary. The 

ship methodically scans areas at slow speeds with SONAR. It is crucial to understand that autonomy is a state, not 

a fixed capability, and thus, the autonomy level should be adjustable to regain control as operational risks or 

environmental conditions change. 

 

3. Safe to Operate and Operating Safely (The Duty Holder Construct) 

The RN manages risks associated with the operation of technology by aligning with legislation from the UK's 

Health and Safety Executive (HSE) and wider bodies. Compliance is optional but mandated where possible by the 

Secretary of State. Procedures for adhering to this guidance (including deviations for military gain) when operating 

warships, weapons and equipment are detailed in Defence Safety Authority Book 2 - Defence Maritime 

Regulations (DSA02-DMR) (Defence Maritime Regulator, 2023). Specific guidance is then percolated through 

subordinate internal publications. The approval to depart from legislation and take risks for military gain, once 

thoroughly identified, is owned and authorised by Duty Holders, whose seniority dictates the severity of risk to 

life that may be tolerated. 

Risk management involves a network of HSE, IMO and specific International Standards Organisation (ISO) 

regulations, tailored to equipment, scenarios, and environments. Military operations often require deviations from 

standard guidelines; therefore, deviations are managed internally by duty holders who strive to keep risks 'as low 

as reasonably practicable' (ALARP) (Defence Maritime Regulator, 2016). 

Duty holder facing organisations throughout defence (Defence Maritime Regulator, 2018) administer safety 

management and ensure equipment and services meet safety standards, reporting non-compliance as required. 

They also curate policy for the safe use of equipment that does not fall under civil regulation, such as weapons and 

bespoke submarine operations. Specifically, platform and equipment authorities ensure equipment is safe to 

operate by defending safety compliance arguments in safety cases, achieving certification from the Naval 

Authority, which sets maritime compliance rules and standards by translating civil regulations to policy and 

accrediting curated policy where civil regulations do not exist. 

Training authorities ensure personnel are well-trained, equipped and vetted to undertake the safe operation 

(Operating Safely) of equipment, with unit or platform Commanding Officers (COs) ensuring adherence to training 

and legislation, making their platform a human-machine team under a single command. 

This model, pairing humans and machines in two distinct silos parallels civilian systems, in the United 

Kingdom (UK) vehicles in use on public roads are regulated by design standards and Ministry of Transport (MOT) 

testing, resulting in an MOT Certificate, and drivers are trained, examined and accredited by the Driver and Vehicle 

Licencing Agency (DVLA), resulting in a driving licence, to form human-machine teams as road users, safety 

assured by their combined certification. 

For military gain, exceptionally, platforms may operate non-compliant with COs managing minor risks. Major 

risks escalate up the duty holder chain of more senior risk holders for approval. Immediate, unconsented, deliberate 

but justifiable breaches may be taken, but fall under the CO's accountability no matter the risk to life. 

While effective for conventional technology and human resource management, this system struggles with 

autonomous systems due to unpredictable AI model behaviours that are akin to human unpredictability. An 

Autonomous systems' model training and outputs, comparable to human actions, require analysis from data 

scientists which is beyond the capabilities of training authorities optimised to train humans and not validate 

training data. A third concept must therefore be created. 

4. Conclusions: Operating Itself Safely – The Third State 

As the degrees of autonomy that were detailed in Table 2 increase the two statements of safe to operate and 

operate safely begin to converge, as depicted in Figures 2, 3 and 4. Figure 4 depicts a system that has been tuned 

up to fourth degree autonomy. It therefore requires specialist assurance to ascertain its ability to operate itself 

safely.   
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Figure 2: A manual system with separate agencies defining the assurance of machine aspects and human aspects. 

(x-Axis scale as per Table 2) 

 

 
Figure 3: A second degree system (partial autonomy – automated) utilises separate agencies defining the 

assurance of mechanical aspects and human aspects but working much closer together. 

 

 
    

Figure 4: A fourth degree system (high autonomy), the two statements have converged and created a third in the 

overlap. This third space deals with the unique data science aspects of autonomy and AI model training data, 

outside of the scope of traditional equipment authorities or training agencies.  

Autonomy is the sum of AI, Machine Learning (ML), and Data Science (DS) (Ministry Of Defence, 2022) 

This research has concluded that AI and ML demand specific assurance beyond the standard practices of training 

people and risk assessing to certify machinery. ML's reliance on training data necessitates extensive validation via 

DS, a process far removed from traditional human operator training scopes. Given the unpredictable nature of 
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decision-making in ML and AI, traditional equipment authorities cannot assess these systems using the usual 

Software Integrity Level (SIL) certification (International Standards Organisation, 2023). 

However, the new third concept is not a replacement, a fundamental need for assurance of traditional hardware 

and software remains as an AI model sitting within an autonomous system consisting of normal hardware and 

software complements, rather than replaces, these components.  

Additionally, even if a system achieved full autonomy, eliminating the need for constant human operation, 

personnel involved in the systems infrastructure or potential emergency intervention would still require training 

through established human training methods. 

5. Output: Assuring a System is Safe to Operate Itself Safely 

Assuring an autonomous system is a thorough and expensive process, which has previously deterred 

development progress beyond the conceptual stage (Thomas, 2022). Typically, unless a critical safety function 

necessitates autonomy – something unachievable by human or automated means – the system is unlikely to reach 

production or prove its viability past testing (Thomas, 2022). Autonomous systems, as decision-making entities 

mimicking human cognition, often become far more expensive than the human alternative. Continuous investment 

in autonomy must acknowledge the inherent safety limitations; achieving an acceptable ALARP safety level is 

challenging, given the absence of human-like accountability mechanisms. 

Autonomous systems span three levels, as outlined in Table 4. This tiered structure introduces further 

complexity, as each level might function independently as an autonomous entity, necessitating individual 

assurance at each level, further multiplying the effort required to complete the assurance process (Safety of 

Autonomous Systems Working Group, 2022). 

 

Table 4: Autonomous System Levels 

Level Definition Description 

3 System 
The ‘platform’ representing the final autonomous system as a 

product. Directly interacts with the environment 

2 Architecture 
System software that hosts the AI model(s), operating software, and 

hardware at component level  

1 Computation 

Individual processes that translate inputs into outputs. Complex 

systems typically contain billions of computations across multiple 

architectures 

 

The National Institute of Standards and Technology (NIST) (2023) study informed the AI Risk Management 

Framework (RMF) and underscored the need to consider AI-specific risks alongside conventional ones, due to 

their potential to affect a wider audience with more significant implications. In 2020, The Artificial Intelligence 

High Level Expert Group created the Assessment List of Trustworthy AI (ALTA) framework; allowing developers 

to self-assess their products during development, focusing on wider social and political aspects. ALTA addresses 

seven areas to assure a system is operating itself safely; these include human agency, analysing AI's impact on 

human behaviour; oversight, defining human interaction and training requirements; technical robustness, 

enhancing system resilience against unforeseen events and threats; privacy, ensuring data collection complies with 

human rights laws; explainability, clarifying the reasoning behind unusual decisions; and also addresses diversity, 

societal & environmental wellbeing, and accountability to ensure broad, responsible AI application  (High Level 

Expert Group on Artificial Intelligence, 2022). 

An autonomous system's integration within an organisation involves scrutinising every aspect of the 

TEPIDOIL1 framework across the three levels detailed in Table 4. This comprehensive assessment encompasses 

the implications of AI-specific risk factors and the traditional assurance processes for human and non-AI system 

elements (Ministry of Defence, 2009). This ensures a holistic evaluation of the system's operation, highlighting 

the need for a coordinated approach to manage both conventional and AI-related risks effectively. 

Assurance for deployment in specific environments initially permits only interim accreditation. Full operating 

itself safely status follows extensive operational use, with reliability proven through consistent documentation and 

the verification of expected outcomes. 

Whilst deployed, autonomous systems can be comparatively assured to humans. Both process inputs; training, 

experience and judgement for humans is similar to programming and environmental interaction for an autonomous 

system. Inputs inform outputs that are subject to scrutiny. Therefore, the unpredictability of unknown responses 

 
1 'Training, Equipment, Personnel, Information, Doctrine, Organisation, Infrastructure and Logistics 
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to novel situations means full safety assurances are unattainable. However, through repeated satisfactory 

performance, a basis for reliability trust may be established. 

Assurance efforts should therefore focus on verifying training data and monitoring real-time responses to 

ensure the expected results. This approach can be delivered by way of a multilayer assurance model (Table 5) that 

encapsulates the system within its components, the organisation, and the wider operational context. 

 

Table 5: Assurance Layers of Autonomous Systems 

Layer Definition Description 

-2 Computation Identify and assure all computations, where reasonably practicable. 

-1 Architecture 
Define the system architecture, assure traditional hardware and 

software using established methods. 

0 Platform (System) 

Establish system boundaries, set requirements for operators and 

interacting agents to ensure they operate and interact with the system 

safely, conduct risk analysis for traditional system aspects to ensure 

traditional hardware and software components are safe to operate.  

1 System of Systems 

Identify the intended and unintended nodes in the wider system of 

systems, including other autonomous systems, traditional systems, 

and humans that may interact with this platform within the 

operational environment. 

2 
Operating 

Environment 

Define the operating environment, identify sources of live data, 

potential sources of shared live data, and actively feed this back to 

training data creators for curation and reissue, to optimise the system 

for operations in a specific environment. 

2a Data 

Assure and validate training data, secondary sources and third-party 

(shared) validation data, ensure data validation and curation tools are 

reliable. Assure the integrity of the simulated training environment. 

3 Deployment 
Implement live monitoring of operations, analyse returned data, and 

update assurance activities based on continuous feedback. 

4 Real World Impact 

Evaluate the system's impact on real-world communities, 

considering social, political, and economic influences in the 

operating environment. 

 

This broad assurance model illustrates the extensive scope of examination required to assert system safety. 

Extending across the system's lifecycle (Table 6), this new approach diverges from the traditional CADMID2 cycle 

and reflects a requirement to assure wider than typical system boundaries. 

 

Table 6: Through Life Assurance of Autonomous Systems 

Step Definition Description 

1 Prepare 

Prepare the organisation to receive an Autonomous System prior to 

procurement by setting the highest-level capability requirements, 

terminology, and definitions. Engage stakeholders to outline 

required governance before embarking on a typical engineering 

procurement cycle 

2 Cartography 

Map requirements and broader considerations for the entire system 

of systems, considering the intended operating environment and 

context 

3 
Global Risk 

Assessment 

Assess known and predicted risks in 3-dimensions, factoring 

controllability and orientation of an operator during a state change. 

An appropriately instructed Generative Pre-Trained Transformer 

(GPT) may be used to risk assess a vast combination of scenarios and 

environmental variables 

 
2 Concept, Acceptance, Design, Manufacture, In-Service, Disposal 
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4 Go/No Go 

Answer a series of Go/No-Go questions to determine the costs and 

feasibility of continuation of the project. What is also considered is 

whether the system (and which aspects) needs to be autonomous 

given the cost 

5 
In Service 

Monitoring 

Active monitoring during systems development, model training, and 

deployment 

6 Disposal 
Outline a disposal and emergency withdrawal plan that adheres to 

ethical guidelines and considers data security aspects 

 

The impact and influence of each layer must be considered within every step. When the system initially deploys 

with interim accreditation as safe to operate itself safely, Step 5 shall enact a feedback loop to Step 2 to enable the 

system to work towards full accreditation. This accreditation is based on the consistent safe performance of the 

system and may be withdrawn at any time. 

Disposal at Step 6 is more complex than simply shutting the system down and dismantling it for disposal. The 

data must be sanitised for security and recycled into training data stock to inform the next generation of systems 

that will operate in the environment. 

6. Summary  

Autonomous systems fall outside the traditional UK MOD categorisations of being either 'safe to operate' or 

'operating safely' due to AI's distinctive characteristics. They necessitate a third categorisation, operating itself 

safely, to meet their unique requirements. Despite the buzz around autonomy as a solution to global industry 

challenges, the complexity, and costs of integrating AI into LAWS or safety-critical systems have been 

underestimated. The expense of rigorous and widespread risk management and the additional costs for curating 

and validating training data greatly surpass those of existing manual or automated systems. Care should be taken 

to avoid the creation of an autonomous assurance cottage industry where it is not required. 

Autonomy – misunderstood and often confused with automation – has been ambitiously presented as a 

complete solution, which has misled stakeholders regarding the capabilities of new systems. It is crucial to 

recognise autonomy as a state rather than a capability, ideally employed as a safety mechanism, battle override or 

emergency sub-system, activated only in critical situations, such as the incapacitation of an operator. These states 

require assurance of their safe self-operation outside of the scope of traditional agencies, demanding further 

development of the methodologies proposed in this paper for their readiness.  

Whilst further research and development into autonomous systems is vital for technological progress, 

procurement of systems intended to be autonomous as the rule and not the exception, for widespread application 

and implementation today, is deemed unviable at this time. 
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