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Synopsis 

    The modernization of naval ships requires continuous advancements in technology to ensure adaptability, 

sustainability, extended range, and reliability. In response to these challenges, the naval shipbuilding sector has 

adopted key technology trends, particularly in the fields of automation and the design of integrated, smart 

cyber-physical systems. As part of this development a research in the performance evaluation of a previously 

developed novel Energy Management and Control System (EMS) is performed, to ensure the smooth 

operational capabilities of naval vessels, addressing the necessity of designing high-performance ships for all 

operating conditions. 

This paper aims to build upon the developments by exploring the potential benefits of integrating different 

multi-objective optimization algorithms into the EMS of naval ships. The traditional focus on fuel cost savings 

in current energy management systems may not fully handle the versatility of naval vessels, as each mission 

entails distinct operational requirements. The ability to adapt to a wide variety of missions in a continuous 

changing world underscores the importance of developing more sophisticated integrated control algorithms 

with multiple optimization goals. Yet, complexity can have an impact in terms of performance, and simplicity 

can be of great importance when choosing the most optimal optimization algorithm.  

The proposed review is focusing on the performance comparison between four optimization algorithms: 

Lagrange-multiplier, Nelder Mead, interior point and active set and analyses the performance in terms of cost 

and computing time when optimizing shipboard energy production in a hybrid propulsion plant with a hybrid 

power supply. It considers the trade-off between multiple and conflicting operating goals, including fuel 

savings, maintenance costs, noise, and IR of on-board assets. To ensure equitable comparisons, a previously 

developed model of an Offshore Patrol Vessel, as published in INEC 2020 with title “Multi-objective 

optimization and Energy Management: adapt your ship to every mission” has been employed for testing and 

benchmarking purposes. Simulation results under varying operational profiles highlight the applicability, 

validity, and advantages of different EMS algorithms compared to conventional rule-based strategies currently 

in use. 

  Keywords: Energy Management; Hybrid propulsion; Multi-objective optimization; Algorithms performance 

1. Introduction

The introduction of increasingly smart automation systems and advanced user interfaces has facilitated more 

precise operational information onboard, enabling integrated system configuration management advice. Using data 

from interconnected management systems such as the Integrated Mission Management System (IMMS), Signature 

Management System, and Integrated Platform Management System (IPMS), ships can achieve optimized 

behaviour and performance tailored to their holistic operational demands. 

For instance, selecting the optimal propulsion plant configuration across various operational conditions can 

lead to reductions in signatures (including noise and Infra-Red (IR)), Life Cycle Costs (LCC) (including 

maintenance and fuel consumption), and exhaust emissions. Additionally, new objectives with respect to the ship’s 

operational mode, like optimized route planning or just-in-time arrival can be implemented, considering the most 

efficient route. 

Optimization is particularly applicable to systems where operational choices exist regarding power generation, 

distribution, and/or consumption with more than one type of source like combination of a diesel generator with a 

battery device, e.g. hybrid power generation and propulsion plants. In such systems, power can be generated from 

different sources/storage devices and can be used to propel the vessel through various means, allowing for 

flexibility in energy generation, distribution, and consumption. Each mission's specific optimization goals and 

priorities and load profile influence these choices, determining the vessel's optimal operating point. 
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As previously mentioned (Mitropoulou, et al., 2020) , current technology enables momentary automated 

optimization of electric power generation, primarily focused on fuel savings (Breijs & Amam, 2016) (Geertsma, 

Negenborn, Visser, & Hopman, 2017) (Kalikatzarakis, Geertsma, Boonen, Visser, & Negenborn, 2018). The 

significant value of such optimization algorithms has been demonstrated through various project results, indicating 

the potential for further gains by incorporating multiple optimization goals. Building upon this, efforts have been 

made to optimize ship operation towards minimal total cost of ownership (TCO) by accounting for battery lifetime 

in the control system (Mitropoulou & Elling, 2018).  

For this paper in order to conduct the performance comparison between the four different optimization 

algorithms: Lagrange-multiplier, Nelder Mead, interior point (Lagrange-based), and active set (Lagrange-based), 

and analyse the performance in terms of cost and computing time, tests were conducted on all four aforementioned 

algorithms. These tests were applied across three sailing scenarios, entailing differing power demands and 

limitations, as well as diverse weight factor configurations. Notably, the Lagrange multiplier algorithm is currently 

employed in our existing Rhodium Energy Management System (EMS). Our objective is to distinguish and analyse 

the differences between the Lagrange method and the newly tested approaches, thereby informing and directing 

our future research and development efforts. It is important to acknowledge a minor deviation in this analysis: we 

incorporated nonlinear models in the constraints (specifically pertaining to the battery and electrical motor). 

Consequently, we employed numerical implementation to approximate the optimal solution point, as opposed to 

traditional analytical resolution techniques involving matrix calculations. 

Section 2 provides a description of the studied system, focusing on a single system to illustrate the proposed 

EMS and demonstrate its feasibility. 

Section 3 outlines the optimization objectives and constraints considered. 

Section 4 discusses how to integrate multiple conflicting objectives into a single optimization goal, with 

different solution methods described. 

Section 5 presents case studies comparing the proposed solution method to a baseline, demonstrating its 

validity. 

Finally, conclusions, discussions, and results on dynamic profiles are provided in subsequent sections. 

2. Description of the system 

The research work puts emphasis on several optimisation strategies for the Energy Management System. The 

optimisation strategies are selected in the way that they can be adapted to every configuration of the power plant 

and propulsion plant. This research case focuses on previously adapted single line model (Mitropoulou, et al., 

2020) which is presented in Figure 1. 

The single line consists of the following objects: 

• Main engines (ME) 2x each 9.1 MW nominal power and connected to its own shaft and propeller 

• Diesel generators (DG) 4x each have rated power of 2.45 MW 

• Battery banks (BB) 2x each with a capacity of 1 MWh with a maximum discharge/charge rate of 5C, 

resulting in 5 MW. 

• Electric motors (EM) 2x each with a rated power of 3 MW with power take in (PTI) and power take off 

(PTO) capability. 

Figure 1 represents the single line divided into three segments: propulsion, DC distribution and AC distribution. 

Going from the top of the diagram, which is the propulsion section consists of the main engines, gearboxes with 

the clutches, electric motors, with a capability of the power take in and power take out, and controllable pitch 

propellers. The middle position of the single line consists of the DC distribution network, which includes diesel 

generators connected to rectifiers and then to the DC switchboards. These switchboards supply power to several 

rectified auxiliary loads. The efficiency of all converters are taken into account including a factor of the power 

flow direction, which means that power is delivered or absorbed. The bottom section illustrates the low-voltage 

AC distribution and corresponding AC auxiliary loads. 

For the fare comparison and following aforementioned developments the control diagram is kept as well the 

same aboard the vessel, which is depicted in Figure 2. This study centers on the energy management system (EMS), 

represented as the tertiary control loop. Information is transmitted from the EMS to both the primary control layers, 

namely the converters, governors, and active voltage regulators (AVRs), and the secondary control layers, 

including the power management system (PMS), propulsion control system (PCS), and battery management 

system (BMS). The PCS provides inputs to the main propulsion system, such as power and speed set points for 

the ME and PTI, as well as pitch control for the propeller. In instances where the motor operates as a shaft generator 

(i.e., PTO), it receives its power and speed set points from the PMS. Inputs for the PCS are derived from lever 

position, autopilot data, and dynamic position (DP) information, culminating in a virtual shaft speed set point. This 

set point, along with actual shaft power feedback from the PCS, is provided to the EMS. 
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The EMS provides power setpoints to the batteries and  PTOs, diesel generators receive power and speed 

setpoints. Positioned one control level below the EMS, the PMS is tasked with distributing power setpoints based 

on load demand. In its turn, the PMS provides the auxiliary power feedback to the EMS. One level above the EMS, 

the integrated mission management system (IMMS), which consist of the mission planning and signature 

management systems. These systems translate operational modes into weight factors, as well as constraints and 

provides them to the EMS. In addition, supplementary information, including load prediction profiles, is supplied 

by various third-party applications through a high-level control system like integrated platform management 

system (IPMS) to the EMS. 

 
Figure 1: Single line diagram 
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Figure 2: Control diagram 

3. Definition of the optimization problem 

This section describes the optimisation goals that are implemented in the different algorithms. As mentioned 

in the research (Mitropoulou, et al., 2020), this continuation of the previous work utilises the same operational 

constrains, goals for the optimisation and total objective function. In the further subsections, the operational 

constrains, the goals for the optimisation and the objective function will be briefly explained.  

One thing must be kept in mind, sometimes different or even conflicting goals are defined. They consist of the 

following: Fuel consumption, life cycle cost (LCC), Noise and Infra-red signature (IR). The importance of the 

goals is defined by the weight factors. These weight factors are an input to the system from the user or the IMMS 

system and closely depend on the mission and operational requirements.  

3.1.         Model set-up and constraints 

3.1.1.  Fuel Consumption 

In order to optimize the system with respect to fuel consumption, we consider the fuel consumed by the main 

engines (MEs) and diesel generators (DGs). Additionally, we represent the batteries with a virtual fuel 

consumption. This approach is focusing on optimizing the equipment's set points for the current moment, without 

considering past or future states. Batteries, however, inherently manage energy storage over time, meaning the 

energy they store must have required fuel used for charging in the past. Moreover, charging the battery now incurs 

a fuel cost, but it can save fuel in the future by discharging instead of using the DGs or MEs for power generation. 

Therefore, we account for a virtual fuel cost when using the batteries. 
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a.  Auxiliary DG               b. ME  

Figure 3: Auxiliary DG (left) and Main engine (right) fuel maps (in g/s) 

 

Fuel consumption for the DGs and MEs is determined by using fuel maps, illustrated in Figures 3(a) and 3(b), 

respectively. The DG fuel map is divided into five regions, and the ME map into four, each delineated by black 

bounding boxes. These maps feature isolines representing fuel consumption rates (in grams per second). To 

estimate consumption from these maps, we fitted polynomial functions to each region. This process yielded a 

function,  

 

𝑓𝑓𝑢𝑒𝑙,𝑐𝑜𝑚,𝑟𝑒𝑔 = ∑ ∑ 𝑎,𝑐𝑜𝑚,𝑟𝑒𝑔,𝑗,𝑘𝑛𝑗𝐾

𝑘=0
𝑃𝑘𝐽

𝑗=0 ,   (1) 

  

where 𝑎,𝑐𝑜𝑚,𝑟𝑒𝑔,𝑗,𝑘 are the coefficients for the polynomial for component 𝑐𝑜𝑚 operating in region 𝑟𝑒𝑔. 

Furthermore 𝑛 is the speed of the component and 𝑃 its power output. Also, 𝐽 and 𝐾 are the degrees of the 

polynomial in the speed and power respectively.   To integrate the battery's fuel cost, we use two equivalence 

factors, 𝐸𝑞𝑐ℎ𝑎𝑟  and , 𝐸𝑞𝑑𝑖𝑠𝑐  which represent the expected future fuel savings per unit of energy charged into the 

battery now, while estimates the fuel previously consumed to charge each unit of energy. Different use cases were 

simulated with different equivalent factors and from these cases the better battery utilization was at lower Eq 

factors.  

 

 
a) Efficiency    b) Equivalent fuel consumption 

Figure 4: Battery efficiency and equivalent fuel consumption. 

The battery's fuel cost is determined by multiplying the energy charged or discharged by the respective equivalence 

factor, depending on whether the battery is charging or discharging. Figures 4(a) and 4(b) show the battery 

efficiency and the resulting equivalent fuel consumption using 𝐸𝑞𝑐ℎ𝑎𝑟 =  𝐸𝑞𝑑𝑖𝑠𝑐 = 0.025, which because of 

simulations proved to be optimal value for the best battery utilisation.   

To determine the total fuel consumption of the system, we sum the fuel consumption of each individual component. 

3.1.2.  LCC 

Regarding the LCC goal of the optimization, the focus was primarily on the main engines (MEs), diesel 

generators (DGs), and batteries, as these components were identified as the most critical contributors to the overall 

cost. The LCC for the MEs and DGs was modelled by incorporating a fixed operational cost, along with a cost 
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component that varies linearly with the speed of the respective ME or DG. This relationship can be expressed as 

follows for any given ME or DG. 

𝑓𝐿𝐶𝐶,𝑖 = 𝑎𝑓𝑖𝑥𝑒𝑑 + 𝑎𝑠𝑝𝑒𝑒𝑑𝑛 𝑖𝑓 𝑃 > 0,     (2) 

 

where the coefficients are given by 𝑎𝑓𝑖𝑥𝑒𝑑  and 𝑎𝑠𝑝𝑒𝑒𝑑  . 

The Life Cycle Cost (LCC) of the battery was modelled with higher complexity due to the several factors that 

affect its lifetime. Battery degradation is influenced by the amount of power drawn from it and its current State of 

Charge (SoC). Additionally, discharging the battery when its SoC is low leads to greater damage. This relationship 

is depicted in Figure 5, which illustrates the LCC model for the battery. It is important to highlight that, for the 

purposes of this model, we assumed that charging does not significantly contribute to battery damage. The LCC 

of battery 𝑖 were modelled using: 

 

𝑓𝐿𝐶𝐶,𝑖 =   
∆Damage𝑖arpl3600 

∆𝑡
+ 𝑎𝑓𝑖𝑥𝑒𝑑  𝑖𝑓 𝑃𝑖 ≠ 0,

 (3) 

 

here ∆Damage𝑖 is the damage incurred by the discharging of the battery, 

arpl is a coefficient representing the replacement costs of the battery and 

𝑎𝑓𝑖𝑥𝑒𝑑  is a fixed cost for operating the battery. Furthermore, ∆𝑡 is the 

aforementioned time at which the system is expected to operate with the 

given operational values. To calculate the damage incurred by the 

discharging the battery at certain SoC levels, the following model is used. 

𝐶𝑇𝐹(𝐷𝑜𝐷) = ∑ 𝑎𝑖𝐷𝑜𝐷−𝑖4
𝑖=0 ,       

(4) 

 

where 𝐶𝑇𝐹(𝐷𝑜𝐷)) are the current number of cycles to failure depending on the depth of discharge 𝐷𝑜𝐷 and 𝑎𝑖 

are model coefficients. The EMS keeps track of the current 𝐷𝑜𝐷 and calculates the new expected 𝐷𝑜𝐷 using the 

currently calculated settings. The damage to the battery, is calculated using: 

 

𝐷𝑎𝑚𝑎𝑔𝑒 =
1

𝐶𝑇𝐹(𝐷𝑜𝐷)𝜀
,       (5) 

 

where 𝜀 is a factor based on the current charge rate or current discharge rate of the battery (Li, et al., 2017) .  The 

previous level of degradation of the battery is continuously monitored, and the expected new degradation is 

calculated based on the current operating conditions of the battery. The degradation difference (∆Damage) is then 

determined by subtracting the old degradation value from the new degradation estimate. 

3.1.3. Noise  

The noise optimisation goal was modelled for both the main engines and the diesel generators. Due to the lack 

of availability of maps on the engine noise relative to speed and power, an assumption of the maps was generated, 

and they were based on expert inputs as shown in Figure  6(a) and Figure  6(b) for the ME and DG noise, 

respectively. The main assumption is that the MEs contain resonance frequencies and thus produce the highest 

noise levels at 500 and 900 rpm at 95 dB. The noise generation at the lowest and highest speed (400 and 1000 

rpm) are the lowest, which is about 20 dB lower. Furthermore, there is another dip in noise output at 750 rpm, 

with a reduction of about 10 dB compared to the peak value. These values are then further scaled based on power 

output, which means more power relates to higher noise output. The same assumptions were made for the diesel 

generators, where the values were scaled for the different speed envelopes of the DGs. 

Figure 5: Battery lifecycle cost 

function 
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a) ME    b) Aux DG  

Figure  6: Noise maps 

 

As with the fuel consumption, the produced noise was approximated by component 𝑐𝑜𝑚 using a polynomial 

as presented: 

 

𝑓𝑛𝑜𝑖𝑠𝑒,𝑐𝑜𝑚 = ∑ ∑ 𝑎𝑐𝑜𝑚,𝑗,𝑘
𝐾
𝑘=0

𝐽
𝑗=0 𝑛𝑗𝑃𝑘,     (6) 

 

here 𝑛 and 𝑃 are the speed and power of the component and 𝑎𝑐𝑜𝑚,𝑗,𝑘 are the coefficients for the polynomial utilised 

to model the component's noise. These results were obtained with approximations similarly as for the fuel maps.  

     The overall system noise was obtained by taking the maximum of the modelled noise output on all main engines 

and diesel generators in this system. So that, the resulting noise of the system is the noise output of the loudest 

component. 

3.1.4. IR 

As previously mentioned in the previous paper (Mitropoulou, et al., 2020)  the infrared goal is considered being 

produced by the main engines only. The model map of the IR output for a ME is based on speed and power and 

was generated using a high fidelity model (Kalikatzarakis, Geertsma, Boonen, Visser, & Negenborn, 2018). The 

resulting model map was approximated using a polynomial function 

and was separated into two regions, which is given in Figure 7. This 

resulted in a modelled IR output of ME 𝑖 operating in region 𝑟𝑒𝑔 

given by function: 

𝑓𝐼𝑅,𝑖,𝑟𝑒𝑔 = ∑ ∑ 𝑎𝑗,𝑘,𝑟𝑒𝑔
𝐾
𝑘=0

𝐽
𝑗=0 𝑛𝑗𝑃𝑘,    (7) 

 

here 𝑛 and 𝑃 are the speed and power output of the main engine, 

respectively. Furthermore, 𝑎𝑗,𝑘,𝑟𝑒𝑔 are the coefficients of the 

polynomial in region 𝑟𝑒𝑔.  

Figure 7: Main engine IR map 

3.1.5.  Total objective function 

To incorporate these goals of fuel, LCC, noise and IR together the following approach is utilised. This is 

because calculated goals output values in different domains. As an example, fuel consumption is calculated in 

grams per second, where noise levels are outputted in decibels. Therefore, for the better comparison of the different 

objectives, these are normalised. The normalisation is followed by multiplication of each objective by a weight 

factor. The weight factors can take a value within [0-1] and sum up to 1. Resulting in a total objective function 

which is obtained by summing each normalised and weighted goal. As it can be observed below, the total objective 

function is given by: 
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               𝑓𝑜𝑏𝑗(𝑥) = 𝑤𝑓𝑢𝑒𝑙
𝑓𝑓𝑢𝑒𝑙

𝑓𝑓𝑢𝑒𝑙
𝑛𝑜𝑟𝑚 + 𝑤𝐿𝐶𝐶

𝑓𝐿𝐶𝐶

𝑓𝐿𝐶𝐶
𝑛𝑜𝑟𝑚 + 𝑤𝑛𝑜𝑖𝑠𝑒

𝑓𝑛𝑜𝑖𝑠𝑒

𝑓𝑛𝑜𝑖𝑠𝑒
𝑛𝑜𝑟𝑚 + 𝑤𝐼𝑅

𝑓𝐼𝑅

𝑓𝐼𝑅
𝑛𝑜𝑟𝑚,     (8) 

 

here, 𝑓𝑓𝑢𝑒𝑙 , 𝑓𝐿𝐶𝐶 , 𝑓𝑛𝑜𝑖𝑠𝑒  and 𝑓𝐼𝑅 are calculated as described above and depend on the decided control values 𝑃𝑀𝐸 , 

𝑃𝐷𝐺 ,𝑛𝐷𝐺, 𝑃𝐸𝑀, and 𝑃𝑏𝑎𝑡). The normalization factors 𝑓𝑓𝑢𝑒𝑙
𝑛𝑜𝑟𝑚, 𝑓𝐿𝐶𝐶

𝑛𝑜𝑟𝑚,𝑓𝑛𝑜𝑖𝑠𝑒
𝑛𝑜𝑟𝑚 and 𝑓𝐼𝑅

𝑛𝑜𝑟𝑚 are computed as follows. A 

baseline is calculated for a given set of inputs. This set is the control inputs, when the battery is not used, and the 

propulsive power is generated as much as it can be possible by the MEs. The DGs generate power to support the 

electric loads and a minimum number of DGs is utilised. The electric motors are used in motoring mode when the 

main engine, which shares a shaft with the electric motor, is unable to provide sufficient propulsive load on its 

own. In situations where any of the electric motors demand additional power, the diesel generators would increase 

their output to supply the load. This baseline configuration establishes the initial values for various optimization 

goals. These baseline values are then used as normalization factors, allowing each objective to be measured as a 

relative increase or decrease from the baseline. This normalization ensures that different objectives are comparable 

on a common scale. 

4. Optimisation algorithms 

Four algorithms were investigated in this paper. The main purpose of the investigation was performance and 

total cost. The optimisation algorithms are listed below with a brief introduction. 

4.1. Lagrange multiplier 

The Lagrange multiplier algorithm is a method used for solving constrained optimization problems.  It works 

by creating a Lagrangian function, which combines the original objective function with the constraints, each 

multiplied by a Lagrange multiplier. This function is then analyzed by taking its derivatives and setting them to 

zero to find critical points. Solving these resulting equations provides values that meet both the gradient of the 

original function and the constraints simultaneously. By evaluating the original objective function at these critical 

points, one can determine the maximum or minimum values within the given constraints. This algorithm is 

extensively used across various scientific fields due to its efficiency in addressing optimization problems that 

involve constraints. 

4.2. Interior-Point Algorithm 

Interior-point algorithms are advanced optimization techniques grounded in principles of convex 

optimization and numerical analysis. These methods solve constrained optimization problems by iteratively 

refining solutions within the feasible region's interior. They use barrier functions to ensure constraints are fulfilled 

throughout the process. Using sophisticated numerical methods and linear algebra, interior-point algorithms 

navigate complex, high-dimensional solution spaces. Their robustness and efficiency make them invaluable for 

optimizing complex systems under constraints, applicable in several fields such as engineering, economics, and 

finance. 

4.3. Active-Set Algorithm 

The active-set algorithm is a specialized numerical optimization method designed for solving nonlinear 

constrained problems, particularly those with a few active constraints compared to the total set. It iteratively 

converges on solutions by concentrating computational resources on the active constraints that are binding or 

nearly binding. This approach aims to minimize a quadratic approximation of the objective function. During the 

process, the algorithm updates the active set based on any newly identified constraints that are violated. 

Convergence is achieved when criteria like optimal conditions or specific tolerances are met. The strength of this 

algorithm lies in its ability to exploit the sparsity of active constraints, making it well-suited for problems with a 

limited number of such constraints. However, it may struggle with large-scale problems or dynamically changing 

constraint sets, often necessitating the use of alternative methods like interior-point algorithms or sequential 

quadratic programming. 

4.4. Nelder-Mead Algorithm 
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The Nelder-Mead algorithm, also known as the simplex or downhill simplex method, is a technique for 

nonlinear optimization, particularly effective for smooth but potentially non-convex objective functions. It starts 

by forming a simplex in the parameter space, typically centered around an initial guess of the optimal solution. 

The algorithm iteratively evaluates the objective function at each vertex of the simplex and adjusts the simplex 

through operations like reflection, expansion, contraction, or shrinkage to explore the parameter space and improve 

the solution. Convergence is achieved when the objective function meets a predefined tolerance level or when the 

simplex’s size sufficiently decreases. While the Nelder-Mead algorithm is appreciated for its simplicity and 

independence from gradient information, it can converge slowly, especially in high-dimensional or poorly 

conditioned scenarios, and it does not guarantee finding a global optimum. Despite these limitations, its flexibility 

and effectiveness across a wide range of optimization problems have led to its widespread use. 

5. Simulation & Evaluation 

5.1. Simulation 

Simulations were conducted in Matlab to compare the energy-saving performance and computing time of the 

aforementioned four algorithms. All simulations were performed on a Windows 10 system running on a laptop 

equipped with an Intel i9 processor. The ship model used in the simulation is based on a previously developed 

model of an Offshore Patrol Vessel. We defined three scenarios, representing different missions from low to high 

energy requirements in order to test the algorithms. These settings are derived from previous work and correspond 

with those presented in the paper published by RH Marine, Damen, and TNO (Mitropoulou, et al., 2020). The 

normalization factors of the cost function are used to obtain the equivalent cost for different aspects and remain 

consistent across all scenarios and have been defined based on the parameters provided in the table.  

The specifications of each scenario are listed in Table 1, including the ship's current state (initial state for 

optimization, such as ship speed, shaft speed, and State of Charge (SoC) of the battery bank), power demands and 

certain properties (e.g., the battery's equivalent charge and discharge factors). 

 

Table 1: Current ship states and demands for three scenarios 

 
A notable feature of our testing methodology is that the on/off statuses of the main engines (MEs) and 

diesel generators (DGs) are not directly modified within the algorithms. Instead, these statuses are pre-configured 

in a comprehensive list or table that includes all possible component combinations. Initially, we assess whether 

each configuration meets the demand requirements. Among the feasible configurations, we then select the one that 

minimizes operational costs. This approach enables us to explore more efficient combinations of operational states 

(e.g., all MEs and DG1 are on, while the other DGs are off) for each algorithm. 
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A benchmark solution is used for the performance comparison, which is not optimal but meets the power demands, 

based on the experience and knowledge from previous projects and sailings. In this benchmark, the battery power 

is always set to 0, which means batteries are manually turned off when we do not use EMS. The results of all 

algorithms are compared to the benchmark and the difference percentages are calculated.  The total power of all 

main engines is, theoretically, the sum of the demand for shaft power and losses.  

 

 

 

 

 

Table 2: Benchmark outputs for three scenarios 

 
Due to the possibility of applying weight factors, tests are conducted not only with multiple scenarios but 

also with various combinations of weight factors. For the two-objective cases, the weight factor combinations 

range from 0.1 for fuel and 0.9 for LCC to 0.9 for fuel and 0.1 for LCC. A detailed example is provided for a 

weight factor combination of 0.5(50%) on fuel cost and 0.5(50%) on LCC, which is also defined as the OPEX 

mode. For the four-objective case, the weight factor combinations change in two patterns. In one pattern, fuel 

and LCC are paired and share the same values, while IR and noise are also paired and vary in the same manner. 

The other pattern involves a fixed weight factor set (0.1, 0.2, 0.3, and 0.4). One detailed example is given 

below for the balance mode (25% weight on each aspect). 

It is noted that for the four-objective case, simulations were conducted using only the interior-point, 

active-set, and Nelder-Mead methods. The Lagrange method was not employed because it requires manual 

calculation of the derivatives of both the cost function and constraints. This process can be particularly 

challenging  with nonlinear objective functions.   
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Table 3: Output of power sources using three algorithms in the OPEX weight-factor setting (50% on fuel, and 

50% on LCC) of the two-objective case in scenario 1 

 

 

 

 

  

  
Scenario 1 

  
 

Scenario 2 

         Figure 8:  One example of two-objective case - OPEX (weight factor 50% fuel 50% LCC) 
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Table 4: Output of power sources using three algorithms in the balance weight-factor setting (25% on fuel, 25% 

on LCC, 25% on IR, 25% on noise) of the four-objective case in scenario 1 

 

 

 

  
Scenario 1 

  
Scenario 2 

Figure 9: One example in four-objective – balance (weight factor 25% fuel 25% LCC 25% IR 25% noise) 
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5.2. Evaluation 

The simulation results indicate that the Nelder-Mead method outperforms the Lagrange and two other methods 

in terms of cost in most cases. However, in certain scenarios, such as the two-objective case in scenario 1 with 

weight factors of 0.1 for fuel and 0.9 for LCC, the Nelder-Mead solution is not the most cost-effective (with 

interior-point and/or active-set methods performing better). Nevertheless, it seems that consistently performs better 

than the Lagrange method in all other cases. The improvement in cost efficiency between the Lagrange and Nelder-

Mead methods ranges from approximately 1% to 8% across the tested cases. 

The average computational time of the Nelder-Mead method is the longest in most cases. Occasionally, the 

interior-point method has the longest computational time (e.g., in scenario 5 with only the fuel objective), but this 

is not common. Although the Nelder-Mead method takes longer than the Lagrange method, the computation time 

remains within the acceptable limits for the EMS system's maximum desired calculation period of 60 seconds. 

One limitation of the Lagrange method during this test is its case/model specificity. Particularly, when the cost 

function, equation, or constraints change, the derivatives must be updated accordingly. This becomes difficult with 

nonlinear models, as significant additional work is required due to its limitations in handling nonlinear cases. The 

fuel map used in this test comprises different regions, each with distinct coefficients or even different polynomials 

of varying orders. The Lagrange method cannot automatically switch among these regions, necessitating additional 

effort to specify the settings. In contrast, the Nelder-Mead method does not rely on derivatives, thereby reducing 

the need for additional work when introducing new cases, factors, or models. This makes it more adaptable for 

future changes.   

 

 

Table 5: Total cost and computation time of the four algorithms with different weight factor combinations in two-

objective optimization case of scenario 1 
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Table 6: Total cost and computation time of the four algorithms with different weight factor combinations in 

two-objective optimization case of scenario 2 
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Table 7: Total cost and computation time of the four algorithms with different weight factor combinations in two-

objective optimization case of scenario 3 

 
 

Table 8: Total cost and computation time of the four algorithms with different weight factor combinations in 

four-objective optimization case of scenario 1 

 
 

W_fuel W_LCC 
Reference 

cost 

Lagrange Interior point Active set Nelder Mead 

Total cost Comp. 

time 
Total cost Comp. 

time 
Total cost Comp. 

time 
Total cost Comp. 

time 

0.1 0.9 1.1611 1.1532 

(99.32%) 
0.1509 1.1529 

(99.29%) 
0.3986 1.1552 

(99.49%) 
0.2217 1.1489 

(98.95%) 
1.2543 

0.2 0.8 1.4341 1.4239 

(99.29%) 
0.1459 1.4226 

(99.20%) 
0.3728 1.4270 

(99.50%) 

 0.2270  1.4191 

(98.95%) 

 1.4445 

0.3 0.7 1.7071   1.6946 

(99.26%)  

0.1654  1.6923 

(99.13%) 

 0.4438   1.6986 

(99.50%) 

 0.2144  1.6920 

(99.11%) 

 1.1543 

0.4 0.6 1.9802   1.9653 

(99.25%)  

0.1477  1.9620 

(99.08%) 

 0.3877   1.9667 

(99.32%) 

 0.2111  1.9519 

(98.57%) 

 1.0586 

0.5 0.5 2.2532   2.2359 

(99.23%)  

0.1522  2.2317 

(99.05%) 

 0.3690   2.2354 

(99.21%) 

 0.2198  2.2266 

(98.82%) 

 1.3616 

0.6 0.4 2.5262   2.5066 

(99.22%)  

0.1466  2.5015 

(99.02%) 

 0.3580   2.5057 

(99.19%) 

 0.2133  2.4977 

(98.87%) 

 1.5435 

0.7 0.3 2.7993   2.7773 

(99.22%)  

0.1507  2.7712 

(99.00%) 

 0.3176   2.7748 

(99.13%) 

 0.2211  2.7700 

(98.96%) 

 1.3979 

0.8 0.2 3.0723   3.0480 

(99.21%)  

0.1473  3.0409 

(98.98%) 

 0.2859   3.0447 

(99.10%) 

 0.2214  3.0314 

(98.67%) 

 1.9626 

0.9 0.1 3.3453   3.3186 

(99.20%)  

0.1459  3.3106 

(98.96%) 

 0.3073   3.3145 

(99.08%) 

 0.2216  3.2139 

(96.07%) 

 2.2189 
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Table 9: Total cost and computation time of the four algorithms with different weight factor combinations in 

four-objective optimization case of scenario 2 

 
 

 

Table 10: Total cost and computation time of the four algorithms with different weight factor combinations in 

four-objective optimization case of scenario 3 

 
 

6. Conclusions & Recommendations  

Based on our findings, overall, Nelder Mead has the best performance in terms of the total  cost optimization 

in the majority of cases, compared to the Lagrange multiplier and other two variants. Though in some cases, e.g. 

the two-objective case with weight factors of fuel and LCC as 0.1 and 0.9 combination, the solution of Nelder 

Mead is not the best cost wisely (interior-point and/or active-set is better), it is always better than the Lagrange. 

The improvement percentage between Lagrange and Nelder Mead is around 1-8% according to the cases tested. 

The average computational time of Nelder Mead is longest in the most cases. Sometimes interior-point is the 

longest (only fuel objective, scenario 3) but this is not common. Though the time is longer than the Lagrange, this 

duration still remains within the acceptable bounds for the EMS system's maximum desired calculation period (60 

seconds). 

One limitation of the Lagrange that became apparent during this test is that it is case/model specific. Especially, 

when the cost function or the constraints change, the derivatives need to be re-formulated. And when there are 

nonlinear models, more work needs to be performed additionally, such as linearization of non-linear models since 

Lagrange is limited in non-linear cases. The fuel map used in this test has different regions. In each region, different 

coefficients or even different polynomials with different orders are used. The Lagrange multiplier method cannot 

switch automatically among these regions and additional work needs to be done to specify the settings. On the 

Weight factor  Interior point  Active set  Nelder Mead  

W_fuel W_LCC W_noise W_IR Total cost Time (s) Total cost Time (s) Total cost Time (s) 

0.45 0.45 0.05 0.05 1.2703 0.2067 1.2703 0.0396 1.2305 1.2104 

0.40 0.40 0.10 0.10 1.2324 0.2046 1.2324 0.0409 1.2140 1.1614 

0.35 0.35 0.15 0.15 1.1944 0.2191 1.1944 0.0398 1.1746 1.1896 

0.3 0.30 0.20 0.20 1.1565 0.2192 1.1565 0.0418 1.1479 1.1852 

0.25 0.25 0.25 0.25 1.1185 0.2107 1.1185 0.0409 1.0975 0.9684 

0.20 0.20 0.30 0.30 1.0806 0.2272 1.0806 0.0396 1.0502 1.3762 

0.15 0.15 0.35 0.35 1.0426 0.2060 1.0426 0.0401 1.0059 1.4648 

0.10 0.10 0.40 0.40 0.9563 0.3456 1.0047 0.0414 0.9405 0.9165 

0.05 0.05 0.45 0.45 0.8306 1.4590 0.9581 0.0392 0.8410 1.2540 

 

Weight factor  Interior point  Active set  Nelder Mead  

W_fuel W_LCC W_noise W_IR Total cost Time (s) Total cost Time (s) Total cost Time (s) 

0.45 0.45 0.05 0.05 2.2149 0.3393 2.2185 0.1332 2.2067 1.1457 

0.40 0.40 0.10 0.10 2.1981 0.3022 2.2015 0.0973 2.1816 1.0650 

0.35 0.35 0.15 0.15 2.1813 0.3160 2.1845 0.0802 2.1481 1.1828 

0.30 0.30 0.20 0.20 2.1320 0.9050 2.1674 0.0765 2.1100 1.0269 

0.25 0.25 0.25 0.25 1.9339 1.6661 2.1502 0.0809 1.9897 1.4031 

0.20 0.20 0.30 0.30 1.9247 0.8518 2.1330 0.0767 1.8488 1.4996 

0.15 0.15 0.35 0.35 1.6018 1.6396 2.1156 0.0751 1.6499 1.5007 

0.10 0.10 0.40 0.40 2.0973 0.2426 2.0983 0.0736 1.4883 1.2462 

0.05 0.05 0.45 0.45 1.2992 1.5984 2.0810 0.0757 1.3108 1.3184 
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contrary, Nelder Mead does not use derivatives and thus does not require for much additional work when new 

cases or models need to be used, which makes it more general for future changes. 

Considering the current results, our conclusion is adopting a hybrid approach: executing multiple algorithms 

simultaneously, either across separate cores in a centralized system or on distinct computers in a distributed setup, 

would be optimal. This would utilize the strengths of each method, aiming for the best outcome. Given the 

computational power we would have, this strategy is feasible.  

As an alternative methodology, when one algorithm is used, in order to minimize the risk, one could consider 

enhancing the Lagrange or the other two methods with a high-level pre-configuration layer. This layer would 

determine specific operational regions and the on/off status of the MEs and DGs. Such an approach could align 

closely with the expectations of on board crew who have predefined requirements. This would allow to perform 

optimizations within these set parameters, potentially fulfilling stakeholder’s needs more effectively. 
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