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Synopsis 

This paper introduces a novel approach centred on unsupervised learning, specifically leveraging state-of-the-art 

Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM). The study aligns with the domain 

of predictive maintenance (PdM) and time series analysis for evaluating the health status of devices. 

The proposed methodology seeks to enhance current PdM practices by integrating machine learning (ML) into the 

conventional statistical framework. ML techniques are increasingly applied in the industrial sector, demonstrating their 

capacity to capture complex correlations that may elude human operators. 

Indeed, the management of scheduled maintenance in the naval sector is a complex challenge, primarily due to the 

diversity of devices and systems on board ships. These systems vary in nature, complexity, and criticality, making it 

challenging to adopt a standardized maintenance strategy. 

Solutions based on Condition-Based Maintenance (CBM) aim to perform maintenance based on the actual operational 

conditions of a system, rather than following fixed schedules. This approach relies on the use of sensors, continuous 

monitoring, and advanced diagnostics to assess the health status of components and predict failure times. 

However, despite advancements in this direction, there are still significant challenges to address. One of the main 

challenges is the heterogeneity of systems on board ships. 

Furthermore, approaching the predictive maintenance task for onboard ship equipment, a key challenge emerges when 

attempting to estimate the Remaining Useful Life (RUL) of a component given the scarcity of run-to-failure data. For 

such a reason, the developed model adopts a fully data-driven approach, where the failure characteristics (run-to-failure 

data) of the equipment are not pre-defined. 

Moreover, the framework encompasses data acquisition, data preprocessing, Health Index (HI) construction, and the 

prediction of remaining useful life grounded in the examination of a documented failure case related to maritime 

equipment. Indeed, the framework has been tested on data corresponding to an actual equipment failure, enabling a 

direct comparison with its application to data from normally functioning equipment without anomalies. 

The presented unsupervised approach serves a dual purpose: enabling real-time detection of potential failures and 

facilitating trend analysis of the device's health index. This dual functionality proves valuable in estimating the 

projected failure period. 

Keywords: Condition-Based Maintenance (CBM), Predictive Maintenance (PdM), Long Short-Term Memory, 

Remaining Useful Life (RUL), Run-to-failure Data. 

1. Introduction

Maintenance management in the naval sector poses unique challenges due to the diversity, complexity, and criticality 

of onboard systems (Coraddu et al., 2015). Conventional maintenance strategies often struggle to adapt to the dynamic 

operational conditions and varying maintenance requirements of maritime equipment. Condition-Based Maintenance 

(CBM) offers a more adaptive approach, relying on sensor data, continuous monitoring, and advanced diagnostics to 

assess the health status of components and predict maintenance needs based on actual operational conditions (Jardine et 

al., 2006). 
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However, despite advancements in CBM and predictive maintenance methodologies, significant challenges persist. 

One such challenge is the estimation of the Remaining Useful Life (RUL) of components, particularly in the absence of 

sufficient run-to-failure data (Zhang et al., 2021). Traditional approaches often rely on predefined models and 

assumptions, limiting their effectiveness in accurately predicting RUL. In this context, a data-driven approach becomes 

crucial, leveraging the available data to develop models that can adapt to the unique characteristics of maritime equipment. 

The proposed methodology encompasses a comprehensive framework for predictive maintenance, including data 

acquisition, preprocessing, Health Index (HI) construction, and the prediction of remaining useful life (Xia et al., 2020). 

By adopting an unsupervised learning approach, the framework aims to overcome the limitations of traditional 

methodologies and provide more accurate and reliable predictions of equipment health and failure times (Liao et al., 

2018). 

In this context, the predictive maintenance (PdM) has emerged as a critical strategy in industrial sectors, aiming to 

enhance operational efficiency, minimize downtime, and reduce maintenance costs (Wu et al., 2020). In the domain of 

maritime equipment, particularly in the naval sector, the reliability and performance of devices are essential to ensure the 

completion of task without failures. Indeed, the adoption of advanced predictive maintenance methodologies becomes 

crucial.  

This paper introduces a new approach focusing on unsupervised learning, leveraging Recurrent Neural Networks 

(RNNs), particularly short-term memory (LSTM), to address the challenges inherent in predictive maintenance of marine 

devices (Han et al., 2021). This approach advances beyond the supervised methods by offering a more flexible and 

adaptable solution for maritime applications where labelled failure data is often limited. 

Conventional and most widespread predictive maintenance systems are based on statistical concepts, which often are 

based on linear models and predefined relationships between variables. The bottleneck of these approaches is their 

limitations to capture complex, non-linear interactions and hidden patterns within the multidimensional data typically 

generated by industrial equipment not well known at priori. For instance, traditional methods might struggle to detect 

interdependencies between multiple sensor readings that collectively indicate an impending failure, especially when these 

relationships change over time or under different operating conditions. 

For such a reason, ML algorithms have proven to overcome this bottleneck by demonstrating the ability to capture 

complex correlations and patterns in the data, thus enabling more accurate predictions of equipment health and failure 

times (Zhao et al., 2023). The flexibility of ML models to adapt to evolving patterns in the data also makes them 

particularly well-suited for handling the dynamic nature of industrial processes and equipment behaviour.  

This study seeks to augment current PdM practices by harnessing the power of ML, particularly by means of time 

series analysis for evaluating the health status of marine devices. 

Furthermore, the effectiveness of the proposed approach is evaluated through real-world application to actual 

equipment failure data, enabling a direct comparison with traditional statistical methods.  

A detailed description of the actual methodology is reported in section 2, while the potential development by means 

of LSTM is shown in section 3 and the results were discussed and shown in section 4. Eventually, the conclusion and 

recommendations are shown in Section 6 discussing the implications of what is shown for the field of predictive 

maintenance in maritime applications. 

1.1. Maritime scenario criticalities 

In the maritime domain, predicting potential failures holds critical importance for safeguarding both personnel and 

assets, as well as ensuring uninterrupted operational continuity (Lazakis et al., 2017). 

Indeed, proactive failure prediction plays a pivotal role in ensuring the safety of crew members and passengers. By 

anticipating potential failures in critical systems such as propulsion engines can implement pre-emptive measures to 

mitigate risks of accidents at sea, thereby preventing potential loss of life and vessel operational capability (Ivankevich 

et al., 2019). Moreover, failure prediction methodologies are indispensable for preventing environmental catastrophes. 

Maritime accidents, such as oil spills or collisions, can have devastating consequences on marine ecosystems (Duffey 

& Saull, 2009).  From an operational point of view, predictive maintenance is essential to avoid costly downtime; in fact, 

unplanned equipment failures can result in significant financial losses for shipping companies due to interrupted 

operations and emergency repairs (Jimenez et al., 2020).  

In addition, another key aspect is the reduction of operational capacity, which is very important for the military sector 

where the ship must guarantee the best performance even in adverse scenarios. By accurately predicting potential failures, 

operators can schedule maintenance activities during planned downtime, optimising operational efficiency and reducing 

financial burdens (Dalzochio et al., 2023). Furthermore, failure prediction methodologies contribute to enhancing 

operational efficiency by enabling proactive maintenance and replacement of components before they fail. This approach 

minimizes the likelihood of unexpected downtime and optimizes vessel uptime, allowing for smoother and more efficient 

maritime operations (Makridis et al., 2020). 

Eventually, predicting potential failures in the maritime domain is essential for safeguarding lives and assets as well 

as optimizing operational efficiency. It represents a proactive approach to risk management that is critical for the 

sustainable and safe operation of maritime activities.  
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2. Statistical-based approach 

Condition-based Maintenance (CBM) is an advanced maintenance strategy that monitors the actual condition of an 

asset based on data-driven logic. The actual condition of the asset is continuously monitored by on-line detection of 

significant working parameters. The aim of CBM system is supports maintenance personnel by providing indications of 

performance decay in certain indicators that could result in imminent failure.  

Generally, the working principles is based on the comparison with average and base-line reference values in order to 

indicate that the equipment is deteriorating prematurely, thus increasing the probability of failure, or, conversely, that the 

equipment still has a good level of performance that may allow the maintenance personnel to assess whether to postpone 

a maintenance activity (Hart, 2011). 

In addition to online monitoring, a predictive maintenance approach leverages historical data of equipment health 

indices to anticipate the need for preventive actions, enabling effective planning and optimal resource management in the 

medium and long term. Indeed, this makes it possible to anticipate when it will be necessary to intervene with preventive 

actions, allowing more effective planning and optimal management of resources (Tan et al., 2012). The analysis 

implements a similar approach to the Stochastic Process Control or SPC method used for the control and prediction of 

complex industrial processes in steady state (Hjartarson & Otal, 2006). 

The analysis is based on periods of stationarity in the field data, discarding transient periods. In particular, the 

stationary flag is validated by means of stationary concepts such as the evaluation of kurtosis, skewness, and crest factor 

of the gathered sample data. If the evaluated statistical values are included within a certain threshold the sample is 

considered stationary and it is used for the condition-based monitoring task (Heywood & McGrail, 2015).  

The approach is based on baseline maintenance that involves comparing the current performance of a piece of 

equipment to a known baseline performance. The baseline is established by measuring the performance of the equipment 

when it is in good condition and using this as a reference point for future performance analysis. 

The goal of maintenance analysis based on baseline is to identify changes in equipment performance that may be 

indicative of potential failures or maintenance needs. By monitoring the performance of equipment over time and 

comparing it to the baseline, maintenance teams can identify deviations from normal performance and act before 

equipment failure occurs. 

The system accesses the baselines of the various diagnostic parameters, the baseline of each diagnostic parameter 

“DP” (“Diagnostic Parameter”) is defined in terms of an expected value “EV” (“Expected Value”) and an expected range 

“ER” (“Expected Range”, the standard deviation). Both values are expressed as a function of control parameter: primary 

parameter “PP” (“Primary Parameter”). 

Each DP diagnostic parameter is then associated with a dimensionless diagnostic index (DI), defined as: 

 

𝐷𝐼 =
|𝐴𝑉 − 𝐸𝑉|

𝐸𝑅
 (1) 

 

where “AV” (“Actual Value”) indicates the current value of the diagnostic parameter, understood as the average value 

over the sampling period T adopted for the diagnostic analysis. 

The diagnostic index DI is therefore always positive and has a value of 0 when the current value of the diagnostic 

parameter coincides exactly with the expected value, while it takes on values greater than 1 when the current value of the 

parameter deviates from the expected value by more than the expected range of variation of the parameter itself. 

Thus, values close to zero are interpreted as indicating a normal machine condition while values close to or greater 

than 1 are interpreted as an abnormal condition. 

Detecting anomaly signals is an essential part of any maintenance predictive system. An anomaly signal is an 

indication that the performance of a piece of equipment is deviating from its expected or normal behaviour. It is important 

to note that anomaly detection is not a one-time activity, but rather an ongoing process.  

Once the DI is known the trend analysis based on the DI time series could be performed. Significant divergence from 

this baseline indicates potential issues. For instance, an upward trend in vibration levels beyond the established threshold 

may signal mechanical wear or imbalance. Similarly, an increase in temperature readings might suggest overheating or 

lubrication failures. These deviations from normal behaviour, identified through trend analysis, enable maintenance 

personnel to proactively address emerging problems before they escalate into critical failures, ensuring sustained 

operational efficiency and reliability of the equipment (Mazidi et al., 2016). 

Eventually, maintenance predictive systems should be continually monitored and adjusted based on new data and 

changing conditions to ensure that anomaly signals are detected in a timely and effective manner. 

The proposed description of the statistics-based system is the workflow of the On-Condition Monitoring System 

(OCMS) developed by Fincantieri NexTech, Figure 1, one of the CBM tools available for industrial purposes, to 

summarize, the logical flow of information processing by the system, from the acquisition of field data at the lowest level 

to the trend analysis at the highest level, can therefore be described using the following diagram, to be interpreted with a 

bottom-up approach: 
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Figure 1. CBM system workflow 

3. AI-based approach 

In the realm of Artificial Intelligence (AI), the quest for efficient and robust anomaly detection methods remains 

pivotal, especially in the analysis of time series data across various industries, including finance, healthcare, and 

manufacturing (Pereira & Silveira, 2019). Various neural network architectures have been employed for time series 

analysis and anomaly detection. Convolutional Neural Networks (CNNs) excel at capturing spatial patterns, while Long 

Short-Term Memory (LSTM) networks are adept at modelling temporal dependencies. Autoencoders, another class of 

neural networks, provide a framework for unsupervised learning that can incorporate both these architectures.  

This section shown the autoencoder technique, a sophisticated deep learning methodology, elucidating its role and 

effectiveness in identifying anomalies within time series datasets. 

Autoencoders are particularly useful for anomaly detection due to their ability to learn compact representations of 

normal data.  At their core, are a class of neural network models designed for unsupervised learning tasks. They learn to 

compress data (encoding) into a lower-dimensional representation and then reconstruct (decoding) the data back to its 

original form (Githinji & Maina, 2023). The intrinsic power of autoencoders lies in their ability to capture the most salient 

features of the data in the compressed representation. When applied to anomaly detection, this characteristic becomes 

particularly advantageous. By training exclusively on normal data, autoencoders develop a sense of 'normality' that is 

encapsulated in the lower-dimensional space. Anomalies, or deviations from this normality, are then detected based on 

the reconstruction error; a higher error indicates a data point that significantly diverges from the learned representation of 

normal data. 

This section will further explore the intricacies of implementing autoencoders for anomaly detection in time series 

data, including the choice of architecture (e.g., LSTM autoencoders for handling temporal dependencies), the selection 

of appropriate loss functions, and the strategies for setting thresholds for anomaly detection. Practical considerations, 

such as handling variable-length sequences and ensuring model robustness, will also be addressed. Through this 

exploration, the autoencoder technique emerges not only as a powerful tool for anomaly detection but also as a testament 

to the versatility and adaptability of AI-based approaches in tackling complex data analysis challenges. 

3.1. Data Preparation 

The initial phase of proposed methodology focuses on the preparation of time series data for anomaly detection. This 

process encompasses fetching, preprocessing, normalizing, and structuring the data into a format suitable for ingestion 

by the LSTM-based autoencoder model. 

3.1.1. Fetching and Initial Preprocessing:  

The data is fetched from a designated database, comprising primary and secondary signals associated with specific 

equipment. In particular, the primary signal is the one that represent more the device behaviour. In detail, these signals 

represent two distinct features over the same time-period, essential for constructing a comprehensive view of the 

equipment's operational state. The fetched dataset spans a predefined interval, delimited by start and end dates, ensuring 

the relevance and timeliness of the data for anomaly detection tasks. The two features that represent the apparatus, one 
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representative of the load under which the systems are and the other the measure of vibration under analysis have been 

used.   

Upon retrieval, the dataset undergoes initial preprocessing to ensure data integrity and usability. This step mitigates 

the influence of spurious data, enhancing the model's focus on meaningful patterns. In the train scenario it is crucial to 

choose a dataset representative of the good health of the apparatus under examination; this has been done because the 

model must learn how a good health scenario behaves to be capable, in the test phase, to recognize any anomaly by the 

increasing of the reconstruction error in magnitude. 

Indeed, the model's ability to identify anomalies is based on deviations from the normal patterns it learned during 

training. This anomaly detection process does not require labelled data during the training phase but uses the learned 

representation of normal behaviour to flag deviations. Furthermore, the key difference between unsupervised and 

supervised approaches in this case lies in the use of the validation dataset. While the validation dataset is labelled, these 

labels are not used to train the model. Instead, the labels are only used to assess the model's performance in detecting 

anomalies. 

Eventually, the chosen training dataset is concerning vibrational record of a bearing in the alternator apparatus of the 

couple “Diesel Engine – Alternator” related to the percentage of Electric Load output, for sake of clarity the data has been 

reported in dimensionless format.  

Bearing vibration serves as a direct indicator of the mechanical health of the system, with increasing vibration often 

signalling developing faults or wear. However, vibration patterns can vary significantly under different operational 

conditions. This is where electrical load data become valuable. 

The electric load data provides context for the operational state of the diesel engine-alternator couple. By correlating 

the bearing vibration with the electric load, the model can learn to distinguish between normal vibration changes due to 

varying load conditions and abnormal vibrations that may indicate a developing fault. 

In Figure 2 was reported the entire dataset that has been used, the time series represent only the working day of devices, 

indeed, the entire dataset is composed of 95 day of recorder data. 

 

 
Figure 2. Bearing Vibration and Electric Load dataset. 

The entire dataset was split into two parts, so that one part could be used for network training and the remainder for 

benchmarking. In particular, the division of the database was done knowing that the device broke down around the 95th 

working day the, by observing the timeseries data, the first fault symptoms started to appear around the 65th working day. 

The broke time was the only data available. Eventually, the time window used for the training dataset is between the 

beginning, the day zero, and the 46th day. The training dataset have been shown in Figure 3. 
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Figure 3. Bearing Vibration and Electric Load in good health status. 

Those measurements represent the apparatus in a “good health” status, as no malfunctions were reported during this 

period. For such a reason this is have been used as data training set that will be fed to the autoencoder to learn how the 

bearing vibration behave in a good state of health. Instead, the benchmark is the data test represented in Figure 4 and it 

goes from 46th day and the day of failure, 95th day. 

 

 
Figure 4. Bearing vibration and Electric Load anomaly. 

It is notable the time representation of the anomaly as it is evolving in time; that the anomaly can be recognized, after 

approximately the 65th day, the bearing vibration begins to increase its peak activity (blue line). 
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3.1.2. Normalization 

A critical component of data preparation involves scaling the features to a uniform range to transform each feature to 

the [0, 1] range. This normalization facilitates the model's learning by providing data in a consistent scale, crucial for the 

effective training of deep learning models. 

3.1.3. Sequencing:  

To accommodate the LSTM autoencoder's requirement for sequential data, the normalized data is structured into 

sequences. Each sequence, or "lookback" window, reflecting one day of data sampled at 5-minute intervals. This 

structuring into sequences allows the model to learn from the temporal dependencies within the data, a key aspect of its 

capability to detect anomalies. In this way the model must learn how the time relation subsists between all the shifted 

sequences. 

3.2. Model Training 

With the data prepared, the next phase involves training the LSTM-based autoencoder model. This training process is 

executed over a max of 2000 epochs with a batch size of 128, employing a validation split of 30% to monitor the model's 

performance on unseen data. 

To enhance the model's learning efficiency and robustness, several strategies are employed: 

• ReduceLROnPlateau: This callback reduces the learning rate when a metric has stopped improving, enabling 

the model to fine-tune its weights more delicately as it approaches optimal performance. 

• ModelCheckpoint: Ensures the preservation of the model that achieves the lowest validation loss, safeguarding 

the most effective version of the model for future anomaly detection tasks. 

• Early Stopping: A custom callback checks for a stop condition after each epoch, allowing for dynamic 

termination of training based on specific criteria, ensuring resource efficiency, and preventing overfitting. 

 

For reference, and to show the quality of the model, in Figure 5 the trend of the loss and validation loss represented 

as epochs increases has been shown.  

 
Figure 5. Train Loss and Validation Loss 

It is possible to see, both training and validation loss decrease rapidly in the initial epochs, indicating that the model 

is learning effectively from the data. Moreover, the training loss (blue line with circle marker) continues to decrease 

steadily, showing the model's improving ability to reconstruct the training data. Indeed, the validation loss (red line with 

crossed marker) also decreases but starts to plateau earlier than the training loss. This is typical in deep learning models 

and suggests that the model is approaching its optimal performance on unseen data. The best performance, as indicated 

by the lowest validation loss, is achieved around the 30th epoch. This early convergence demonstrates the efficiency of 

our model architecture and training process. The early achievement of optimal performance (around the 30th epoch) 

highlights the effectiveness of training strategies, suggesting that further training may not yield significant improvements. 
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Figure 6. Health index of Trained Autoencoder 

In Figure 6 the y-axis represents the Health Index, which is derived from the reconstruction error of the autoencoder. 

Lower values indicate better reconstruction, implying "healthier" or more normal behaviour of the system. While, the x-

axis represents the time sequence of the training data, allowing us to visualize how the Health Index varies over time for 

known normal operating conditions. The red dashed line represents the anomaly threshold, set at the 99th percentile of 

the reconstruction errors observed in the training data. This threshold is crucial for distinguishing between normal 

operation and potential anomalies in future data. There are a few instances where the Health Index spikes above the 

general trend but remains below the threshold, these could represent natural variations in the system's behaviour that are 

still within normal operating parameters. 

3.3. Anomaly Threshold Determination 

The determination of an anomaly threshold is pivotal in distinguishing between normal and anomalous sequences. 

Following model training, the reconstruction error for each sequence is calculated by comparing the predicted output 

against the original input. This error reflects the model's ability to reconstruct the input data, with higher errors indicative 

of potential anomalies. 

The threshold for classifying a sequence as anomalous is set at the 99th percentile of the reconstruction errors observed 

across the training dataset.  

This threshold is chosen to identify the most significant deviations from the norm, capturing only the most pronounced 

anomalies. By focusing on these extreme discrepancies, the model effectively flags sequences that markedly diverge from 

the learned patterns of normal operational data, thus identifying potential issues or anomalies within the equipment's 

functioning. 

4. Results; Identify an anomaly and the RUL line trend. 

The proposed approach considers real-world application constraints. Indeed, for industrial applications, obtaining end-

of-life (EOL) data is often challenging. This difficulty arises primarily because the complexity of an apparatus can varies 

significantly within the variables under observation. Consequently, the variables that must be monitored encompass a set 

of machinery that manufacturers typically do not provide with detailed EOL dynamic curves. Secondly, the aim is to 

develop a holistic approach applicable to every system without requiring a priori knowledge of threshold locations. 

Moreover, as the system is used over time and more data are collected, thresholds can be adjusted based on empirical 

evidence. 

Following these observations, Remaining Useful Life (RUL) analysis was initiated through examination of trend 

patterns in the data. The objective was to identify any trends or dynamic changes in the sequence under analysis, 

determining whether the system was entering a degradation regime or experiencing sudden, severe degradation. This 

analysis was conducted using linear interpolation of the Health Index (HI) over the last n days. 

The purpose was to ascertain if anomalies could be detected before the HI effectively surpassed the established 

threshold, as shown in Figure 7. In particular, the figure shows the trend analysis assuming that the analysis was conducted 

the day before the first appearance of anomaly in the HI, i.e., the 64th day. 
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The RUL was interpolated for the last 11, 15, 19, and 21 days, and the intersection point of the trend line with the 

threshold was determined. Notably, each plot shows within the white box the number of days to reach the threshold value. 

Indeed, the mean RUL was assessed using these four RUL estimates. In this case, the estimated time to reach the danger 

zone is 212 days; this can be seen as a general indicator of the HI trend. 

The first symptom of anomaly occurred on the 65th day when the magnitude of vibration became visible (Figure 4). 

Examining the four graphs individually as the observation period window varies, it becomes evident that shorter 

observation periods yield more sensitive but unstable forecasts. Conversely, longer windows produce more stable 

forecasts but are unable to capture sudden threshold exceedances. For this reason, as a first approximation, an average 

assessment of threshold exceedances was chosen. 

On the 65th day, the system exhibited anomalous vibration magnitude, and the model detected this anomalous 

behaviour as the HI exceeded the HI threshold, as shown in Figure 8. A point of the HI crossed above the threshold, 

showing a value of 0.0041. Consequently, RUL interpolation showed a consistent drop in the time to intercept the 

threshold guard to 7.5 days, indicating that the system might be in a state of degrading performance. 

Moving forward in time, the behaviour of the HI validates the advanced degradation state of the system. Figure 9 

shows the prediction made at day 72, where the magnitude of the HI jumps to 0.07, with a clear upward trend indicating 

pronounced degradation in the apparatus's performance. Indeed, the prediction for the 11-day observation window is 

assessed as "already happened" for the intersection value between the HI threshold and the trend curve. 

To obtain definitive confirmation of the apparatus's new degradation state, HI prediction was carried out until the end 

of the data, where the apparatus reached definitive failure on the 92nd day. This is represented in Figure 10, showing that 

the system remains above the threshold throughout the period until the apparatus's failure. It is worth emphasizing that 

once the threshold has been reached, the interpolation of the last days of the RUL loses its informative significance, as 

shown for the 11-day observation window. 

In conclusion, this analysis demonstrates the effectiveness of the proposed approach in detecting and tracking system 

degradation over time. The method successfully identified the onset of anomalous behaviour and provided valuable 

insights into the progression of the system's health status, offering potential for early intervention and maintenance 

planning in industrial applications. 

 
Figure 7 - RUL fitting for last 11, 15 19, 21 days at 64th day. 

Proceedings of the International Ship Control Systems Symposium (iSCSS)

International Ship Control Systems Symposium (iSCSS) 2024 https://doi.org/10.24868/11149



 

 

 
Figure 8 - RUL fitting for last 11, 15, 19, 21 days at 65th day 

 
Figure 9 - RUL fitting for last 11, 15, 19, 21 days at 72nd day. 
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Figure 10 - RUL fitting for last 11, 15, 19, 21 days at near-end dataset. 

5. Conclusions & developments 

The research successfully implemented an LSTM-based autoencoder for anomaly detection in marine equipment 

sensor data. The model demonstrated the ability to identify developing faults in the bearing, as evidenced by changes in 

vibration patterns. The approach showed promise in handling data from different engine load profiles, suggesting potential 

adaptability to various operational conditions. 

While not extensively discussed in this paper, preliminary observations suggest that the proposed method may offer 

improved fault tracking capabilities compared to traditional statistical approaches. However, a comprehensive 

comparative study will be carried out to quantify these potential advantages. 

The results suggest that the proposed methodology has potential for enhancing predictive maintenance practices in 

maritime applications. By leveraging unsupervised learning techniques, this approach may be particularly valuable in 

scenarios where labelled failure data is scarce or unavailable. 

However, it is important to note the limitations of this study. Detailed comparisons with conventional methods were 

not performed within the scope of this paper. Future work should focus on conducting comprehensive comparative studies 

with traditional statistical methods and other machine learning approaches to quantify potential improvements in 

predictive accuracy. Additionally, expanding the range of fault types and operational conditions tested would further 

validate the method's generalizability. Investigating the integration of this approach with existing maintenance systems 

in real-world maritime operations is also an important area for future research. 

In conclusion, while this study demonstrates the feasibility and potential of the proposed unsupervised learning 

approach for marine equipment predictive maintenance, further research is needed to fully establish its comparative 

advantages and practical implementation challenges in real-world scenarios. 
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Synopsis 

This paper introduces a novel approach centred on unsupervised learning, specifically leveraging state-of-the-art 

Recurrent Neural Networks (RNNs), particularly Long Short-Term Memory (LSTM). The study aligns with the domain 

of predictive maintenance (PdM) and time series analysis for evaluating the health status of devices. 

The proposed methodology seeks to enhance current PdM practices by integrating machine learning (ML) into the 

conventional statistical framework. ML techniques are increasingly applied in the industrial sector, demonstrating their 

capacity to capture complex correlations that may elude human operators. 

Indeed, the management of scheduled maintenance in the naval sector is a complex challenge, primarily due to the 

diversity of devices and systems on board ships. These systems vary in nature, complexity, and criticality, making it 

challenging to adopt a standardized maintenance strategy. 

Solutions based on Condition-Based Maintenance (CBM) aim to perform maintenance based on the actual operational 

conditions of a system, rather than following fixed schedules. This approach relies on the use of sensors, continuous 

monitoring, and advanced diagnostics to assess the health status of components and predict failure times. 

However, despite advancements in this direction, there are still significant challenges to address. One of the main 

challenges is the heterogeneity of systems on board ships. 

Furthermore, approaching the predictive maintenance task for onboard ship equipment, a key challenge emerges when 

attempting to estimate the Remaining Useful Life (RUL) of a component given the scarcity of run-to-failure data. For 

such a reason, the developed model adopts a fully data-driven approach, where the failure characteristics (run-to-failure 

data) of the equipment are not pre-defined. 

Moreover, the framework encompasses data acquisition, data preprocessing, Health Index (HI) construction, and the 

prediction of remaining useful life grounded in the examination of a documented failure case related to maritime 

equipment. Indeed, the framework has been tested on data corresponding to an actual equipment failure, enabling a 

direct comparison with its application to data from normally functioning equipment without anomalies. 

The presented unsupervised approach serves a dual purpose: enabling real-time detection of potential failures and 

facilitating trend analysis of the device's health index. This dual functionality proves valuable in estimating the 

projected failure period. 

 

Keywords: Condition-Based Maintenance (CBM), Predictive Maintenance (PdM), Long Short-Term Memory, 

Remaining Useful Life (RUL), Run-to-failure Data. 

6. Introduction 

Maintenance management in the naval sector poses unique challenges due to the diversity, complexity, and criticality 

of onboard systems (Coraddu et al., 2015). Conventional maintenance strategies often struggle to adapt to the dynamic 

operational conditions and varying maintenance requirements of maritime equipment. Condition-Based Maintenance 

(CBM) offers a more adaptive approach, relying on sensor data, continuous monitoring, and advanced diagnostics to 

assess the health status of components and predict maintenance needs based on actual operational conditions (Jardine et 

al., 2006). 

However, despite advancements in CBM and predictive maintenance methodologies, significant challenges persist. 

One such challenge is the estimation of the Remaining Useful Life (RUL) of components, particularly in the absence of 

sufficient run-to-failure data (Zhang et al., 2021). Traditional approaches often rely on predefined models and 

assumptions, limiting their effectiveness in accurately predicting RUL. In this context, a data-driven approach becomes 

crucial, leveraging the available data to develop models that can adapt to the unique characteristics of maritime equipment. 

The proposed methodology encompasses a comprehensive framework for predictive maintenance, including data 

acquisition, preprocessing, Health Index (HI) construction, and the prediction of remaining useful life (Xia et al., 2020). 

By adopting an unsupervised learning approach, the framework aims to overcome the limitations of traditional 

methodologies and provide more accurate and reliable predictions of equipment health and failure times (Liao et al., 

2018). 

In this context, the predictive maintenance (PdM) has emerged as a critical strategy in industrial sectors, aiming to 

enhance operational efficiency, minimize downtime, and reduce maintenance costs (Wu et al., 2020). In the domain of 

maritime equipment, particularly in the naval sector, the reliability and performance of devices are essential to ensure the 

completion of task without failures. Indeed, the adoption of advanced predictive maintenance methodologies becomes 

crucial.  
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This paper introduces a new approach focusing on unsupervised learning, leveraging Recurrent Neural Networks 

(RNNs), particularly short-term memory (LSTM), to address the challenges inherent in predictive maintenance of marine 

devices (Han et al., 2021). This approach advances beyond the supervised methods by offering a more flexible and 

adaptable solution for maritime applications where labelled failure data is often limited. 

Conventional and most widespread predictive maintenance systems are based on statistical concepts, which often are 

based on linear models and predefined relationships between variables. The bottleneck of these approaches is their 

limitations to capture complex, non-linear interactions and hidden patterns within the multidimensional data typically 

generated by industrial equipment not well known at priori. For instance, traditional methods might struggle to detect 

interdependencies between multiple sensor readings that collectively indicate an impending failure, especially when these 

relationships change over time or under different operating conditions. 

For such a reason, ML algorithms have proven to overcome this bottleneck by demonstrating the ability to capture 

complex correlations and patterns in the data, thus enabling more accurate predictions of equipment health and failure 

times (Zhao et al., 2023). The flexibility of ML models to adapt to evolving patterns in the data also makes them 

particularly well-suited for handling the dynamic nature of industrial processes and equipment behaviour.  

This study seeks to augment current PdM practices by harnessing the power of ML, particularly by means of time 

series analysis for evaluating the health status of marine devices. 

Furthermore, the effectiveness of the proposed approach is evaluated through real-world application to actual 

equipment failure data, enabling a direct comparison with traditional statistical methods.  

A detailed description of the actual methodology is reported in section 2, while the potential development by means 

of LSTM is shown in section 3 and the results were discussed and shown in section 4. Eventually, the conclusion and 

recommendations are shown in Section 6 discussing the implications of what is shown for the field of predictive 

maintenance in maritime applications. 

6.1. Maritime scenario criticalities 

In the maritime domain, predicting potential failures holds critical importance for safeguarding both personnel and 

assets, as well as ensuring uninterrupted operational continuity (Lazakis et al., 2017). 

Indeed, proactive failure prediction plays a pivotal role in ensuring the safety of crew members and passengers. By 

anticipating potential failures in critical systems such as propulsion engines can implement pre-emptive measures to 

mitigate risks of accidents at sea, thereby preventing potential loss of life and vessel operational capability (Ivankevich 

et al., 2019). Moreover, failure prediction methodologies are indispensable for preventing environmental catastrophes. 

Maritime accidents, such as oil spills or collisions, can have devastating consequences on marine ecosystems (Duffey 

& Saull, 2009).  From an operational point of view, predictive maintenance is essential to avoid costly downtime; in fact, 

unplanned equipment failures can result in significant financial losses for shipping companies due to interrupted 

operations and emergency repairs (Jimenez et al., 2020).  

In addition, another key aspect is the reduction of operational capacity, which is very important for the military sector 

where the ship must guarantee the best performance even in adverse scenarios. By accurately predicting potential failures, 

operators can schedule maintenance activities during planned downtime, optimising operational efficiency and reducing 

financial burdens (Dalzochio et al., 2023). Furthermore, failure prediction methodologies contribute to enhancing 

operational efficiency by enabling proactive maintenance and replacement of components before they fail. This approach 

minimizes the likelihood of unexpected downtime and optimizes vessel uptime, allowing for smoother and more efficient 

maritime operations (Makridis et al., 2020). 

Eventually, predicting potential failures in the maritime domain is essential for safeguarding lives and assets as well 

as optimizing operational efficiency. It represents a proactive approach to risk management that is critical for the 

sustainable and safe operation of maritime activities.  

 

7. Statistical-based approach 

Condition-based Maintenance (CBM) is an advanced maintenance strategy that monitors the actual condition of an 

asset based on data-driven logic. The actual condition of the asset is continuously monitored by on-line detection of 

significant working parameters. The aim of CBM system is supports maintenance personnel by providing indications of 

performance decay in certain indicators that could result in imminent failure.  

Generally, the working principles is based on the comparison with average and base-line reference values in order to 

indicate that the equipment is deteriorating prematurely, thus increasing the probability of failure, or, conversely, that the 

equipment still has a good level of performance that may allow the maintenance personnel to assess whether to postpone 

a maintenance activity (Hart, 2011). 

In addition to online monitoring, a predictive maintenance approach leverages historical data of equipment health 

indices to anticipate the need for preventive actions, enabling effective planning and optimal resource management in the 

medium and long term. Indeed, this makes it possible to anticipate when it will be necessary to intervene with preventive 

actions, allowing more effective planning and optimal management of resources (Tan et al., 2012). The analysis 
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implements a similar approach to the Stochastic Process Control or SPC method used for the control and prediction of 

complex industrial processes in steady state (Hjartarson & Otal, 2006). 

The analysis is based on periods of stationarity in the field data, discarding transient periods. In particular, the 

stationary flag is validated by means of stationary concepts such as the evaluation of kurtosis, skewness, and crest factor 

of the gathered sample data. If the evaluated statistical values are included within a certain threshold the sample is 

considered stationary and it is used for the condition-based monitoring task (Heywood & McGrail, 2015).  

The approach is based on baseline maintenance that involves comparing the current performance of a piece of 

equipment to a known baseline performance. The baseline is established by measuring the performance of the equipment 

when it is in good condition and using this as a reference point for future performance analysis. 

The goal of maintenance analysis based on baseline is to identify changes in equipment performance that may be 

indicative of potential failures or maintenance needs. By monitoring the performance of equipment over time and 

comparing it to the baseline, maintenance teams can identify deviations from normal performance and act before 

equipment failure occurs. 

The system accesses the baselines of the various diagnostic parameters, the baseline of each diagnostic parameter 

“DP” (“Diagnostic Parameter”) is defined in terms of an expected value “EV” (“Expected Value”) and an expected range 

“ER” (“Expected Range”, the standard deviation). Both values are expressed as a function of control parameter: primary 

parameter “PP” (“Primary Parameter”). 

Each DP diagnostic parameter is then associated with a dimensionless diagnostic index (DI), defined as: 

 

𝐷𝐼 =
|𝐴𝑉 − 𝐸𝑉|

𝐸𝑅
 (1) 

 

where “AV” (“Actual Value”) indicates the current value of the diagnostic parameter, understood as the average value 

over the sampling period T adopted for the diagnostic analysis. 

The diagnostic index DI is therefore always positive and has a value of 0 when the current value of the diagnostic 

parameter coincides exactly with the expected value, while it takes on values greater than 1 when the current value of the 

parameter deviates from the expected value by more than the expected range of variation of the parameter itself. 

Thus, values close to zero are interpreted as indicating a normal machine condition while values close to or greater 

than 1 are interpreted as an abnormal condition. 

Detecting anomaly signals is an essential part of any maintenance predictive system. An anomaly signal is an 

indication that the performance of a piece of equipment is deviating from its expected or normal behaviour. It is important 

to note that anomaly detection is not a one-time activity, but rather an ongoing process.  

Once the DI is known the trend analysis based on the DI time series could be performed. Significant divergence from 

this baseline indicates potential issues. For instance, an upward trend in vibration levels beyond the established threshold 

may signal mechanical wear or imbalance. Similarly, an increase in temperature readings might suggest overheating or 

lubrication failures. These deviations from normal behaviour, identified through trend analysis, enable maintenance 

personnel to proactively address emerging problems before they escalate into critical failures, ensuring sustained 

operational efficiency and reliability of the equipment (Mazidi et al., 2016). 

Eventually, maintenance predictive systems should be continually monitored and adjusted based on new data and 

changing conditions to ensure that anomaly signals are detected in a timely and effective manner. 

The proposed description of the statistics-based system is the workflow of the On-Condition Monitoring System 

(OCMS) developed by Fincantieri NexTech, one of the CBM tools available for industrial purposes, to summarize, the 

logical flow of information processing by the system, from the acquisition of field data at the lowest level to the trend 

analysis at the highest level, can therefore be described using the following diagram, to be interpreted with a bottom-up 

approach: 
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Figure 11. CBM system workflow 

8. AI-based approach 

In the realm of Artificial Intelligence (AI), the quest for efficient and robust anomaly detection methods remains 

pivotal, especially in the analysis of time series data across various industries, including finance, healthcare, and 

manufacturing (Pereira & Silveira, 2019). Various neural network architectures have been employed for time series 

analysis and anomaly detection. Convolutional Neural Networks (CNNs) excel at capturing spatial patterns, while Long 

Short-Term Memory (LSTM) networks are adept at modelling temporal dependencies. Autoencoders, another class of 

neural networks, provide a framework for unsupervised learning that can incorporate both these architectures.  

This section shown the autoencoder technique, a sophisticated deep learning methodology, elucidating its role and 

effectiveness in identifying anomalies within time series datasets. 

Autoencoders are particularly useful for anomaly detection due to their ability to learn compact representations of 

normal data.  At their core, are a class of neural network models designed for unsupervised learning tasks. They learn to 

compress data (encoding) into a lower-dimensional representation and then reconstruct (decoding) the data back to its 

original form (Githinji & Maina, 2023). The intrinsic power of autoencoders lies in their ability to capture the most salient 

features of the data in the compressed representation. When applied to anomaly detection, this characteristic becomes 

particularly advantageous. By training exclusively on normal data, autoencoders develop a sense of 'normality' that is 

encapsulated in the lower-dimensional space. Anomalies, or deviations from this normality, are then detected based on 

the reconstruction error; a higher error indicates a data point that significantly diverges from the learned representation of 

normal data. 

This section will further explore the intricacies of implementing autoencoders for anomaly detection in time series 

data, including the choice of architecture (e.g., LSTM autoencoders for handling temporal dependencies), the selection 

of appropriate loss functions, and the strategies for setting thresholds for anomaly detection. Practical considerations, 

such as handling variable-length sequences and ensuring model robustness, will also be addressed. Through this 

exploration, the autoencoder technique emerges not only as a powerful tool for anomaly detection but also as a testament 

to the versatility and adaptability of AI-based approaches in tackling complex data analysis challenges. 

8.1. Data Preparation 

The initial phase of proposed methodology focuses on the preparation of time series data for anomaly detection. This 

process encompasses fetching, preprocessing, normalizing, and structuring the data into a format suitable for ingestion 

by the LSTM-based autoencoder model. 

8.1.1. Fetching and Initial Preprocessing:  

The data is fetched from a designated database, comprising primary and secondary signals associated with specific 

equipment. In particular, the primary signal is the one that represent more the device behaviour. In detail, these signals 

represent two distinct features over the same time-period, essential for constructing a comprehensive view of the 

equipment's operational state. The fetched dataset spans a predefined interval, delimited by start and end dates, ensuring 

the relevance and timeliness of the data for anomaly detection tasks. The two features that represent the apparatus, one 

Proceedings of the International Ship Control Systems Symposium (iSCSS)

International Ship Control Systems Symposium (iSCSS) 2024 https://doi.org/10.24868/11149



 

 

representative of the load under which the systems are and the other the measure of vibration under analysis have been 

used.   

Upon retrieval, the dataset undergoes initial preprocessing to ensure data integrity and usability. This step mitigates 

the influence of spurious data, enhancing the model's focus on meaningful patterns. In the train scenario it is crucial to 

choose a dataset representative of the good health of the apparatus under examination; this has been done because the 

model must learn how a good health scenario behaves to be capable, in the test phase, to recognize any anomaly by the 

increasing of the reconstruction error in magnitude. 

Indeed, the model's ability to identify anomalies is based on deviations from the normal patterns it learned during 

training. This anomaly detection process does not require labelled data during the training phase but uses the learned 

representation of normal behaviour to flag deviations. Furthermore, the key difference between unsupervised and 

supervised approaches in this case lies in the use of the validation dataset. While the validation dataset is labelled, these 

labels are not used to train the model. Instead, the labels are only used to assess the model's performance in detecting 

anomalies. 

Eventually, the chosen training dataset is concerning vibrational record of a bearing in the alternator apparatus of the 

couple “Diesel Engine – Alternator” related to the percentage of Electric Load output, for sake of clarity the data has been 

reported in dimensionless format.  

Bearing vibration serves as a direct indicator of the mechanical health of the system, with increasing vibration often 

signalling developing faults or wear. However, vibration patterns can vary significantly under different operational 

conditions. This is where electrical load data become valuable. 

The electric load data provides context for the operational state of the diesel engine-alternator couple. By correlating 

the bearing vibration with the electric load, the model can learn to distinguish between normal vibration changes due to 

varying load conditions and abnormal vibrations that may indicate a developing fault. 

In Figure 2 was reported the entire dataset that has been used, the time series represent only the working day of devices, 

indeed, the entire dataset is composed of 95 day of recorder data. 

 

 
Figure 12. Bearing Vibration and Electric Load dataset. 

The entire dataset was split into two parts, so that one part could be used for network training and the remainder for 

benchmarking. In particular, the division of the database was done knowing that the device broke down around the 95th 

working day the, by observing the timeseries data, the first fault symptoms started to appear around the 65th working day. 

The broke time was the only data available. Eventually, the time window used for the training dataset is between the 

beginning, the day zero, and the 46th day. The training dataset have been shown in Figure 3. 
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Figure 13. Bearing Vibration and Electric Load in good health status. 

Those measurements represent the apparatus in a “good health” status, as no malfunctions were reported during this 

period. For such a reason this is have been used as data training set that will be fed to the autoencoder to learn how the 

bearing vibration behave in a good state of health. Instead, the benchmark is the data test represented in Figure 4 and it 

goes from 46th day and the day of failure, 95th day. 

 

 
Figure 14. Bearing vibration and Electric Load anomaly. 

It is notable the time representation of the anomaly as it is evolving in time; that the anomaly can be recognized, after 

approximately the 65th day, the bearing vibration begins to increase its peak activity (blue line). 
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8.1.2. Normalization 

A critical component of data preparation involves scaling the features to a uniform range to transform each feature to 

the [0, 1] range. This normalization facilitates the model's learning by providing data in a consistent scale, crucial for the 

effective training of deep learning models. 

8.1.3. Sequencing:  

To accommodate the LSTM autoencoder's requirement for sequential data, the normalized data is structured into 

sequences. Each sequence, or "lookback" window, , reflecting one day of data sampled at 5-minute intervals. This 

structuring into sequences allows the model to learn from the temporal dependencies within the data, a key aspect of its 

capability to detect anomalies. In this way the model must learn how the time relation subsists between all the shifted 

sequences. 

8.2. Model Training 

With the data prepared, the next phase involves training the LSTM-based autoencoder model. This training process is 

executed over a max of 2000 epochs with a batch size of 128, employing a validation split of 30% to monitor the model's 

performance on unseen data. 

To enhance the model's learning efficiency and robustness, several strategies are employed: 

• ReduceLROnPlateau: This callback reduces the learning rate when a metric has stopped improving, enabling 

the model to fine-tune its weights more delicately as it approaches optimal performance. 

• ModelCheckpoint: Ensures the preservation of the model that achieves the lowest validation loss, safeguarding 

the most effective version of the model for future anomaly detection tasks. 

• Early Stopping: A custom callback checks for a stop condition after each epoch, allowing for dynamic 

termination of training based on specific criteria, ensuring resource efficiency, and preventing overfitting. 

 

For reference, and to show the quality of the model, in Figure 5 the trend of the loss and validation loss represented 

as epochs increases has been shown.  

 
Figure 15. Train Loss and Validation Loss 

It is possible to see, both training and validation loss decrease rapidly in the initial epochs, indicating that the model 

is learning effectively from the data. Moreover, the training loss (blue line with circle marker) continues to decrease 

steadily, showing the model's improving ability to reconstruct the training data. Indeed, the validation loss (red line with 

crossed marker) also decreases but starts to plateau earlier than the training loss. This is typical in deep learning models 

and suggests that the model is approaching its optimal performance on unseen data. The best performance, as indicated 

by the lowest validation loss, is achieved around the 30th epoch. This early convergence demonstrates the efficiency of 

our model architecture and training process. The early achievement of optimal performance (around the 30th epoch) 

highlights the effectiveness of training strategies, suggesting that further training may not yield significant improvements. 
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Figure 16. Health index of Trained Autoencoder 

The y-axis represents the Health Index, which is derived from the reconstruction error of the autoencoder. Lower 

values indicate better reconstruction, implying "healthier" or more normal behaviour of the system. While, the x-axis 

represents the time sequence of the training data, allowing us to visualize how the Health Index varies over time for 

known normal operating conditions. The red dashed line represents the anomaly threshold, set at the 99th percentile of 

the reconstruction errors observed in the training data. This threshold is crucial for distinguishing between normal 

operation and potential anomalies in future data. There are a few instances where the Health Index spikes above the 

general trend but remains below the threshold, these could represent natural variations in the system's behaviour that are 

still within normal operating parameters. 

8.3. Anomaly Threshold Determination 

The determination of an anomaly threshold is pivotal in distinguishing between normal and anomalous sequences. 

Following model training, the reconstruction error for each sequence is calculated by comparing the predicted output 

against the original input. This error reflects the model's ability to reconstruct the input data, with higher errors indicative 

of potential anomalies. 

The threshold for classifying a sequence as anomalous is set at the 99th percentile of the reconstruction errors observed 

across the training dataset.  

This threshold is chosen to identify the most significant deviations from the norm, capturing only the most pronounced 

anomalies. By focusing on these extreme discrepancies, the model effectively flags sequences that markedly diverge from 

the learned patterns of normal operational data, thus identifying potential issues or anomalies within the equipment's 

functioning. 

9. Results; Identify an anomaly and the RUL line trend. 

The proposed approach considers real-world application constraints. Indeed, for industrial applications, obtaining end-

of-life (EOL) data is often challenging. This difficulty arises primarily because the complexity of an apparatus can varies 

significantly within the variables under observation. Consequently, the variables that must be monitored encompass a set 

of machinery that manufacturers typically do not provide with detailed EOL dynamic curves. Secondly, the aim is to 

develop a holistic approach applicable to every system without requiring a priori knowledge of threshold locations. 

Moreover, as the system is used over time and more data are collected, thresholds can be adjusted based on empirical 

evidence. 

Following these observations, Remaining Useful Life (RUL) analysis was initiated through examination of trend 

patterns in the data. The objective was to identify any trends or dynamic changes in the sequence under analysis, 

determining whether the system was entering a degradation regime or experiencing sudden, severe degradation. This 

analysis was conducted using linear interpolation of the Health Index (HI) over the last n days. 

The purpose was to ascertain if anomalies could be detected before the HI effectively surpassed the established 

threshold, as shown in Figure 7. In particular, the figure shows the trend analysis assuming that the analysis was conducted 

the day before the first appearance of anomaly in the HI, i.e., the 64th day. 
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The RUL was interpolated for the last 11, 15, 19, and 21 days, and the intersection point of the trend line with the 

threshold was determined. Notably, each plot shows within the white box the number of days to reach the threshold value. 

Indeed, the mean RUL was assessed using these four RUL estimates. In this case, the estimated time to reach the danger 

zone is 212 days; this can be seen as a general indicator of the HI trend. 

The first symptom of anomaly occurred on the 65th day when the magnitude of vibration became visible (Figure 4). 

Examining the four graphs individually as the observation period window varies, it becomes evident that shorter 

observation periods yield more sensitive but unstable forecasts. Conversely, longer windows produce more stable 

forecasts but are unable to capture sudden threshold exceedances. For this reason, as a first approximation, an average 

assessment of threshold exceedances was chosen. 

On the 65th day, the system exhibited anomalous vibration magnitude, and the model detected this anomalous 

behaviour as the HI exceeded the HI threshold, as shown in Figure 8. A point of the HI crossed above the threshold, 

showing a value of 0.0041. Consequently, RUL interpolation showed a consistent drop in the time to intercept the 

threshold guard to 7.5 days, indicating that the system might be in a state of degrading performance. 

Moving forward in time, the behaviour of the HI validates the advanced degradation state of the system. Figure 9 

shows the prediction made at day 72, where the magnitude of the HI jumps to 0.07, with a clear upward trend indicating 

pronounced degradation in the apparatus's performance. Indeed, the prediction for the 11-day observation window is 

assessed as "already happened" for the intersection value between the HI threshold and the trend curve. 

To obtain definitive confirmation of the apparatus's new degradation state, HI prediction was carried out until the end 

of the data, where the apparatus reached definitive failure on the 92nd day. This is represented in Figure 10, showing that 

the system remains above the threshold throughout the period until the apparatus's failure. It is worth emphasizing that 

once the threshold has been reached, the interpolation of the last days of the RUL loses its informative significance, as 

shown for the 11-day observation window. 

In conclusion, this analysis demonstrates the effectiveness of the proposed approach in detecting and tracking system 

degradation over time. The method successfully identified the onset of anomalous behaviour and provided valuable 

insights into the progression of the system's health status, offering potential for early intervention and maintenance 

planning in industrial applications. 

 
Figure 17 - RUL fitting for last 11, 15 19, 21 days at 64th day. 
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Figure 18 - RUL fitting for last 11, 15, 19, 21 days at 65th day 

 
Figure 19 - RUL fitting for last 11, 15, 19, 21 days at 72nd day. 
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Figure 20 - RUL fitting for last 11, 15, 19, 21 days at near-end dataset. 

10. Conclusions & developments 

The research successfully implemented an LSTM-based autoencoder for anomaly detection in marine equipment 

sensor data. The model demonstrated the ability to identify developing faults in the bearing, as evidenced by changes in 

vibration patterns. The approach showed promise in handling data from different engine load profiles, suggesting potential 

adaptability to various operational conditions. 

While not extensively discussed in this paper, preliminary observations suggest that the proposed method may offer 

improved fault tracking capabilities compared to traditional statistical approaches. However, a comprehensive 

comparative study will be carried out to quantify these potential advantages. 

The results suggest that the proposed methodology has potential for enhancing predictive maintenance practices in 

maritime applications. By leveraging unsupervised learning techniques, this approach may be particularly valuable in 

scenarios where labelled failure data is scarce or unavailable. 

However, it is important to note the limitations of this study. Detailed comparisons with conventional methods were 

not performed within the scope of this paper. Future work should focus on conducting comprehensive comparative studies 

with traditional statistical methods and other machine learning approaches to quantify potential improvements in 

predictive accuracy. Additionally, expanding the range of fault types and operational conditions tested would further 

validate the method's generalizability. Investigating the integration of this approach with existing maintenance systems 

in real-world maritime operations is also an important area for future research. 

In conclusion, while this study demonstrates the feasibility and potential of the proposed unsupervised learning 

approach for marine equipment predictive maintenance, further research is needed to fully establish its comparative 

advantages and practical implementation challenges in real-world scenarios. 
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Answer To Reviewers 

 

To avoid repeating myself in thanking you for your valuable advice any time, we first want to thank you for 

bringing these issues to our attention, which helped to improve the scientific quality of our work. 

For the sake of clarity, below are the reviewers' comments, and at the end of the responses to the reviews we 

reported the entire paper with the changes highlighted in red text for ease of reading. 

 

----------------------- REVIEW 1 --------------------- 

 

----------- Comments to author ----------- 

The paper proposes an unsupervised machine learning approach, particularly using RNN and LSTM models, towards 

predictive maintenance of ship-based systems. The paper makes good contribution to the iSCSS and the topic covered is 

significant as the maritime industry increasingly looks towards autonomy and semi-autonomy. The introduction section 

provides useful and recent references. With regards to the methodology, it is not very technically complex, but still I 

believe it shows a decent application of CNN and LSTM towards the specific problem of maritime equipment PdM. Good 

analysis of the results relevant to the application scenarios is presented in Sec. 4. 

I recommend acceptance with Minor Revisions, but some of the comments below are critical and should be addressed 

before the paper is accepted. 

Specific questions and suggestions for improvements given below: 

 

• In Sec. 1, the authors write: 

“Conventional and most widespread predictive maintenance systems are based on statistical concepts in which the 

bottleneck is the limitation of the correlations of the signals taken into account. For such a reason, ML algorithms have 

proven to overcome this bottleneck by demonstrating the ability to capture complex correlations and patterns in the data, 

thus enabling more accurate predictions of equipment health and failure times (Zhao et al., 2023).” 

But this is very vague and not clear what is meant by “limitation of the correlations of the signals”? The authors should 

add 1-2 sentences to explain well what is the actual limitation. 

 

We update the text with this: “Conventional and most widespread predictive maintenance systems are based on 

statistical concepts, which often are based on linear models and predefined relationships between variables. The 

bottleneck of these approaches is their limitations to capture complex, non-linear interactions and hidden patterns 

within the multidimensional data typically generated by industrial equipment not well known at priori. For 

instance, traditional methods might struggle to detect interdependencies between multiple sensor readings that 

collectively indicate an impending failure, especially when these relationships change over time or under different 

operating conditions. For such a reason, ML algorithms have proven to overcome this bottleneck by demonstrating 

the ability to capture complex correlations and patterns in the data, thus enabling more accurate predictions of 

equipment health and failure times (Zhao et al., 2023). The flexibility of ML models to adapt to evolving patterns 

in the data also makes them particularly well-suited for handling the dynamic nature of industrial processes and 

equipment behaviour.” 

 

 

• In Sec. 1, the authors cite two primary papers towards the use of CNN / LSTM for marine PdM, but it is not 

clarified anywhere how the current paper improves the state-of-the-art, i.e. what is new in this paper. This is a critical 

point and needs to be explained well.  

 

In all honesty, it is not very clear to me which two main papers the reviewer was referring to. I assume they are 

(Han et al., 2021) and (Wu et al., 2020). In both cases they show applications based on supervised learning. The 

novelty of the article lies in the use of unsupervised learning with LSTM autoencoders specifically for maritime 

applications. 

The original sentence, “This article introduces a novel approach focusing on unsupervised learning, specifically 

leveraging state-of-the-art recurrent neural networks (RNNs), particularly short-term memories (LSTMs), to 

address the challenges inherent in predictive maintenance of marine devices (Han et al., 2021).” It has been revised 

to be more concise and clearer: “This paper introduces a new approach focusing on unsupervised learning, based 

on recurrent neural networks (RNNs), particularly short-term memory (LSTM), to address the challenges 

inherent in predictive maintenance of marine devices (Han et al., 2021). This approach advances beyond the 

supervised methods by offering a more flexible and adaptable solution for maritime applications where labelled 

failure data is often limited ” 

 

 

• In Sec. 2, the authors refer directly to their own company’s system directly right at the start of the section. Being 

a scientific paper, this is unfair, as any specific system should be mentioned as an example, or multiple other systems 

should be mentioned, or the authors can mention that they used this system as a reference, etc. The authors should find 

Proceedings of the International Ship Control Systems Symposium (iSCSS)

International Ship Control Systems Symposium (iSCSS) 2024 https://doi.org/10.24868/11149



 

 

the appropriate way to revise this. Furthermore, it is unclear whether the rest of the section refers to general methodology 

of a CBM or their specific OCMS CBM. This needs to be clarified in the text as well. In case the methodology given in 

Sec. 2 describes the working of the specific Finantieri NexTech OCMS, then it needs to be very short, around 1 paragraph, 

and then refer to some available material outside the manuscript for anyone who wants to see more details. 

 

We agree that the direct reference to our company's system at the beginning of the section is not appropriate for 

a scientific paper, but we have introduced it to highlight the difference with the new approach.  

We will revise the entire section to present a more general overview of Condition-Based Maintenance (CBM) 

systems, using our system as an example of an old statistics-based system. In addition, we have eliminated all 

aspects of implementation. 

 

• Section 3: Title should be “AI-based approach” 

 

Done, thanks 

 

• Section 3: The authors have suddenly jumped directly into “auto-encoders” which has not even been mentioned 

anywhere above. What is the connection of auto-encoders with CCN and LSTM? The authors should write 1-2 connecting 

sentences with the overall approach here in the start of Sec. 3. 

 

Thanks for the suggestion we revised Sec 3 accordingly your comment 

 

• Sec. 3: Not clear what is the difference between Fig. 2 and Fig. 3. The text explaining this in Sec. 3.1.1 needs 

to be revised, with possible captions revision as well. Same for Fig. 4, the text says it is benchmark data, but it is not 

explained well enough, also the caption does not say anything. 

 

We have added a more detailed description of the figures to highlight the differences among them. 

 

• Sec. 4: The writing in Sec. 4 needs to be improved overall in terms of write-up and grammar. Some examples 

to improve: 

o “The approach that has been discussed must take into account…” 

o “…the RUL analysis by means of the trend studying is done, to see….” 

o “This process has been done by means of a linear interpolation…” 

o Bugs with citation of Figures. 

• Fig. 7 and Fig. 8: What do the white boxes with “xx.x days” represent? Please explain in caption. 

 

Thank you very much for your detailed notes, we have deeply modified section 4 according to your suggestions. 

 

• Sec. 5: The authors make conclusions such as the methodology proposed “enhance predictive accuracy”, but 

how do they reach this conclusion without comparing any other conventional method results? I don’t think these 

conclusions can be made from this study which does not do any comparison. So this whole section should be revised to 

be in line with what the results of this paper actually show. 

 

You are right, the initial goal of this work should have been to compare the results by means of the two approaches, 

unfortunately the comparison would have been very heavy and also we did not finish analyzing the list of signals 

we wanted to compare. Therefore, we did not show the result of the comparison and mentioned this activity in the 

conclusion.  

We completely revised section 5 to highlight only the results obtained in this work, suggesting potential future 

developments. 

 

----------------------- REVIEW 3 --------------------- 

 

----------- Comments to author ----------- 

Thank you for your paper which is well constructed and offers a good contribution to i-SCSS, for which it is recommended 

with minor revisions. 

 

I found the description of the methodology in this paper relatively easy to follow; the description of the approach was 

straight forward, but the description at paragraph 3.2 (Model Training) would benefit from further expansion, and a more 

complete description of how the Train and Validation Loss figure relates to the Model Training would be useful. 

 

Thanks, we added the expansion concerning the Train and validation loss figure and model training 

 There are some minor editorial formatting amendments to be made including; 
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1. Use of first person (eg 'our findings' - Introduction). 

2. Capital letters for words in first use of abbreviations ('recurrent neural networks - Introduction). 

3. Use of emboldened text for titles (3.1.2 and 3.1.3). 

4. Equations to be numbered. 

5. 'AI' not 'Ai' (paragraph 3). 

6. Figures throughout the paper are difficult to read and would benefit from reformatting such that the descriptors and 

scales of the axis are more legible. 

 

Really thank you very much for these timely notes that we had not noticed. 

We have modified everything as suggested. The figures have also been modified by changing the layout and 

enlarging them where possible 
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Paper with changes highlighted 

 

11. Introduction 

Maintenance management in the naval sector poses unique challenges due to the diversity, complexity, and criticality 

of onboard systems (Coraddu et al., 2015). Conventional maintenance strategies often struggle to adapt to the dynamic 

operational conditions and varying maintenance requirements of maritime equipment. Condition-Based Maintenance 

(CBM) offers a more adaptive approach, relying on sensor data, continuous monitoring, and advanced diagnostics to 

assess the health status of components and predict maintenance needs based on actual operational conditions (Jardine et 

al., 2006). 

However, despite advancements in CBM and predictive maintenance methodologies, significant challenges persist. 

One such challenge is the estimation of the Remaining Useful Life (RUL) of components, particularly in the absence of 

sufficient run-to-failure data (Zhang et al., 2021). Traditional approaches often rely on predefined models and 

assumptions, limiting their effectiveness in accurately predicting RUL. In this context, a data-driven approach becomes 

crucial, leveraging the available data to develop models that can adapt to the unique characteristics of maritime equipment. 

The proposed methodology encompasses a comprehensive framework for predictive maintenance, including data 

acquisition, preprocessing, Health Index (HI) construction, and the prediction of remaining useful life (Xia et al., 2020). 

By adopting an unsupervised learning approach, the framework aims to overcome the limitations of traditional 

methodologies and provide more accurate and reliable predictions of equipment health and failure times (Liao et al., 

2018). 

In this context, the predictive maintenance (PdM) has emerged as a critical strategy in industrial sectors, aiming to 

enhance operational efficiency, minimize downtime, and reduce maintenance costs (Wu et al., 2020). In the domain of 

maritime equipment, particularly in the naval sector, the reliability and performance of devices are essential to ensure the 

completion of task without failures. Indeed, the adoption of advanced predictive maintenance methodologies becomes 

crucial.  

This paper introduces a new approach focusing on unsupervised learning, leveraging Recurrent Neural Networks 

(RNNs), particularly short-term memory (LSTM), to address the challenges inherent in predictive maintenance of marine 

devices (Han et al., 2021). This approach advances beyond the supervised methods by offering a more flexible and 

adaptable solution for maritime applications where labelled failure data is often limited. 

Conventional and most widespread predictive maintenance systems are based on statistical concepts, which often are 

based on linear models and predefined relationships between variables. The bottleneck of these approaches is their 

limitations to capture complex, non-linear interactions and hidden patterns within the multidimensional data typically 

generated by industrial equipment not well known at priori. For instance, traditional methods might struggle to detect 

interdependencies between multiple sensor readings that collectively indicate an impending failure, especially when these 

relationships change over time or under different operating conditions. 

For such a reason, ML algorithms have proven to overcome this bottleneck by demonstrating the ability to capture 

complex correlations and patterns in the data, thus enabling more accurate predictions of equipment health and failure 

times (Zhao et al., 2023). The flexibility of ML models to adapt to evolving patterns in the data also makes them 

particularly well-suited for handling the dynamic nature of industrial processes and equipment behaviour.  

This study seeks to augment current PdM practices by harnessing the power of ML, particularly by means of time 

series analysis for evaluating the health status of marine devices. 

Furthermore, the effectiveness of the proposed approach is evaluated through real-world application to actual 

equipment failure data, enabling a direct comparison with traditional statistical methods.  

A detailed description of the actual methodology is reported in section 2, while the potential development by means 

of LSTM is shown in section 3 and the results were discussed and shown in section 4. Eventually, the conclusion and 

recommendations are shown in Section 6 discussing the implications of what is shown for the field of predictive 

maintenance in maritime applications. 

11.1. Maritime scenario criticalities 

In the maritime domain, predicting potential failures holds critical importance for safeguarding both personnel and 

assets, as well as ensuring uninterrupted operational continuity (Lazakis et al., 2017). 

Indeed, proactive failure prediction plays a pivotal role in ensuring the safety of crew members and passengers. By 

anticipating potential failures in critical systems such as propulsion engines can implement pre-emptive measures to 

mitigate risks of accidents at sea, thereby preventing potential loss of life and vessel operational capability (Ivankevich 

et al., 2019). Moreover, failure prediction methodologies are indispensable for preventing environmental catastrophes. 

Maritime accidents, such as oil spills or collisions, can have devastating consequences on marine ecosystems (Duffey 

& Saull, 2009).  From an operational point of view, predictive maintenance is essential to avoid costly downtime; in fact, 

unplanned equipment failures can result in significant financial losses for shipping companies due to interrupted 

operations and emergency repairs (Jimenez et al., 2020).  
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In addition, another key aspect is the reduction of operational capacity, which is very important for the military sector 

where the ship must guarantee the best performance even in adverse scenarios. By accurately predicting potential failures, 

operators can schedule maintenance activities during planned downtime, optimising operational efficiency and reducing 

financial burdens (Dalzochio et al., 2023). Furthermore, failure prediction methodologies contribute to enhancing 

operational efficiency by enabling proactive maintenance and replacement of components before they fail. This approach 

minimizes the likelihood of unexpected downtime and optimizes vessel uptime, allowing for smoother and more efficient 

maritime operations (Makridis et al., 2020). 

Eventually, predicting potential failures in the maritime domain is essential for safeguarding lives and assets as well 

as optimizing operational efficiency. It represents a proactive approach to risk management that is critical for the 

sustainable and safe operation of maritime activities.  

 

12. Statistical-based approach 

Condition-based Maintenance (CBM) is an advanced maintenance strategy that monitors the actual condition of an 

asset based on data-driven logic. The actual condition of the asset is continuously monitored by on-line detection of 

significant working parameters. The aim of CBM system is supports maintenance personnel by providing indications of 

performance decay in certain indicators that could result in imminent failure.  

Generally, the working principles is based on the comparison with average and base-line reference values in order to 

indicate that the equipment is deteriorating prematurely, thus increasing the probability of failure, or, conversely, that the 

equipment still has a good level of performance that may allow the maintenance personnel to assess whether to postpone 

a maintenance activity (Hart, 2011). 

In addition to online monitoring, a predictive maintenance approach leverages historical data of equipment health 

indices to anticipate the need for preventive actions, enabling effective planning and optimal resource management in the 

medium and long term. Indeed, this makes it possible to anticipate when it will be necessary to intervene with preventive 

actions, allowing more effective planning and optimal management of resources (Tan et al., 2012). The analysis 

implements a similar approach to the Stochastic Process Control or SPC method used for the control and prediction of 

complex industrial processes in steady state (Hjartarson & Otal, 2006). 

The analysis is based on periods of stationarity in the field data, discarding transient periods. In particular, the 

stationary flag is validated by means of stationary concepts such as the evaluation of kurtosis, skewness, and crest factor 

of the gathered sample data. If the evaluated statistical values are included within a certain threshold the sample is 

considered stationary and it is used for the condition-based monitoring task (Heywood & McGrail, 2015).  

The approach is based on baseline maintenance that involves comparing the current performance of a piece of 

equipment to a known baseline performance. The baseline is established by measuring the performance of the equipment 

when it is in good condition and using this as a reference point for future performance analysis. 

The goal of maintenance analysis based on baseline is to identify changes in equipment performance that may be 

indicative of potential failures or maintenance needs. By monitoring the performance of equipment over time and 

comparing it to the baseline, maintenance teams can identify deviations from normal performance and act before 

equipment failure occurs. 

The system accesses the baselines of the various diagnostic parameters, the baseline of each diagnostic parameter 

“DP” (“Diagnostic Parameter”) is defined in terms of an expected value “EV” (“Expected Value”) and an expected range 

“ER” (“Expected Range”, the standard deviation). Both values are expressed as a function of control parameter: primary 

parameter “PP” (“Primary Parameter”). 

Each DP diagnostic parameter is then associated with a dimensionless diagnostic index (DI), defined as: 

 

𝐷𝐼 =
|𝐴𝑉 − 𝐸𝑉|

𝐸𝑅
 (1) 

 

where “AV” (“Actual Value”) indicates the current value of the diagnostic parameter, understood as the average value 

over the sampling period T adopted for the diagnostic analysis. 

The diagnostic index DI is therefore always positive and has a value of 0 when the current value of the diagnostic 

parameter coincides exactly with the expected value, while it takes on values greater than 1 when the current value of the 

parameter deviates from the expected value by more than the expected range of variation of the parameter itself. 

Thus, values close to zero are interpreted as indicating a normal machine condition while values close to or greater 

than 1 are interpreted as an abnormal condition. 

Detecting anomaly signals is an essential part of any maintenance predictive system. An anomaly signal is an 

indication that the performance of a piece of equipment is deviating from its expected or normal behaviour. It is important 

to note that anomaly detection is not a one-time activity, but rather an ongoing process.  

Once the DI is known the trend analysis based on the DI time series could be performed. Significant divergence from 

this baseline indicates potential issues. For instance, an upward trend in vibration levels beyond the established threshold 

may signal mechanical wear or imbalance. Similarly, an increase in temperature readings might suggest overheating or 

lubrication failures. These deviations from normal behaviour, identified through trend analysis, enable maintenance 
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personnel to proactively address emerging problems before they escalate into critical failures, ensuring sustained 

operational efficiency and reliability of the equipment (Mazidi et al., 2016). 

Eventually, maintenance predictive systems should be continually monitored and adjusted based on new data and 

changing conditions to ensure that anomaly signals are detected in a timely and effective manner. 

The proposed description of the statistics-based system is the workflow of the Condition Monitoring System (OCMS) 

developed by Fincantieri NexTech, one of the CBM tools available for industrial purposes, to summarize, the logical flow 

of information processing by the system, from the acquisition of field data at the lowest level to the trend analysis at the 

highest level, can therefore be described using the following diagram, to be interpreted with a bottom-up approach: 

 

 
Figure 21. CBM system workflow 

13. AI-based approach 

In the realm of Artificial Intelligence (AI), the quest for efficient and robust anomaly detection methods remains 

pivotal, especially in the analysis of time series data across various industries, including finance, healthcare, and 

manufacturing (Pereira & Silveira, 2019). Various neural network architectures have been employed for time series 

analysis and anomaly detection. Convolutional Neural Networks (CNNs) excel at capturing spatial patterns, while Long 

Short-Term Memory (LSTM) networks are adept at modelling temporal dependencies. Autoencoders, another class of 

neural networks, provide a framework for unsupervised learning that can incorporate both these architectures.  

This section shown the autoencoder technique, a sophisticated deep learning methodology, elucidating its role and 

effectiveness in identifying anomalies within time series datasets. 

Autoencoders are particularly useful for anomaly detection due to their ability to learn compact representations of 

normal data.  At their core, are a class of neural network models designed for unsupervised learning tasks. They learn to 

compress data (encoding) into a lower-dimensional representation and then reconstruct (decoding) the data back to its 

original form (Githinji & Maina, 2023). The intrinsic power of autoencoders lies in their ability to capture the most salient 

features of the data in the compressed representation. When applied to anomaly detection, this characteristic becomes 

particularly advantageous. By training exclusively on normal data, autoencoders develop a sense of 'normality' that is 

encapsulated in the lower-dimensional space. Anomalies, or deviations from this normality, are then detected based on 

the reconstruction error; a higher error indicates a data point that significantly diverges from the learned representation of 

normal data. 

This section will further explore the intricacies of implementing autoencoders for anomaly detection in time series 

data, including the choice of architecture (e.g., LSTM autoencoders for handling temporal dependencies), the selection 

of appropriate loss functions, and the strategies for setting thresholds for anomaly detection. Practical considerations, 

such as handling variable-length sequences and ensuring model robustness, will also be addressed. Through this 

exploration, the autoencoder technique emerges not only as a powerful tool for anomaly detection but also as a testament 

to the versatility and adaptability of AI-based approaches in tackling complex data analysis challenges. 

13.1. Data Preparation 
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The initial phase of proposed methodology focuses on the preparation of time series data for anomaly detection. This 

process encompasses fetching, preprocessing, normalizing, and structuring the data into a format suitable for ingestion 

by the LSTM-based autoencoder model. 

13.1.1. Fetching and Initial Preprocessing:  

The data is fetched from a designated database, comprising primary and secondary signals associated with specific 

equipment. In particular, the primary signal is the one that represent more the device behaviour. In detail, these signals 

represent two distinct features over the same time-period, essential for constructing a comprehensive view of the 

equipment's operational state. The fetched dataset spans a predefined interval, delimited by start and end dates, ensuring 

the relevance and timeliness of the data for anomaly detection tasks. The two features that represent the apparatus, one 

representative of the load under which the systems are and the other the measure of vibration under analysis have been 

used.   

Upon retrieval, the dataset undergoes initial preprocessing to ensure data integrity and usability. This step mitigates 

the influence of spurious data, enhancing the model's focus on meaningful patterns. In the train scenario it is crucial to 

choose a dataset representative of the good health of the apparatus under examination; this has been done because the 

model must learn how a good health scenario behaves to be capable, in the test phase, to recognize any anomaly by the 

increasing of the reconstruction error in magnitude. 

Indeed, the model's ability to identify anomalies is based on deviations from the normal patterns it learned during 

training. This anomaly detection process does not require labelled data during the training phase but uses the learned 

representation of normal behaviour to flag deviations. Furthermore, the key difference between unsupervised and 

supervised approaches in this case lies in the use of the validation dataset. While the validation dataset is labelled, these 

labels are not used to train the model. Instead, the labels are only used to assess the model's performance in detecting 

anomalies. 

Eventually, the chosen training dataset is concerning vibrational record of a bearing in the alternator apparatus of the 

couple “Diesel Engine – Alternator” related to the percentage of Electric Load output, for sake of clarity the data has been 

reported in dimensionless format.  

Bearing vibration serves as a direct indicator of the mechanical health of the system, with increasing vibration often 

signalling developing faults or wear. However, vibration patterns can vary significantly under different operational 

conditions. This is where electrical load data become valuable. 

The electric load data provides context for the operational state of the diesel engine-alternator couple. By correlating 

the bearing vibration with the electric load, the model can learn to distinguish between normal vibration changes due to 

varying load conditions and abnormal vibrations that may indicate a developing fault. 

In Figure 2Figure 3 was reported the entire dataset that has been used, the time series represent only the working day 

of devices, indeed, the entire dataset is composed of 95 day of recorder data. 

 

 
Figure 22. Bearing Vibration and Electric Load dataset. 
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The entire dataset was split into two parts, so that one part could be used for network training and the remainder for 

benchmarking. In particular, the division of the database was done knowing that the device broke down around the 95th 

working day the, by observing the timeseries data, the first fault symptoms started to appear around the 65th working day. 

The broke time was the only data available. Eventually, the time window used for the training dataset is between the 

beginning, the day zero, and the 46th day. The training dataset have been shown in Figure 3. 

 
Figure 23. Bearing Vibration and Electric Load in good health status. 

Those measurements represent the apparatus in a “good health” status, as no malfunctions were reported during this 

period. For such a reason this is have been used as data training set that will be fed to the autoencoder to learn how the 

bearing vibration behave in a good state of health. Instead, the benchmark is the data test represented in Figure 4 and it 

goes from 46th day and the day of failure, 95th day. 
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Figure 24. Bearing vibration and Electric Load anomaly. 

It is notable the time representation of the anomaly as it is evolving in time; that the anomaly can be recognized, after 

approximately the 65th day, the bearing vibration begins to increase its peak activity (blue line). 

13.1.2. Normalization 

A critical component of data preparation involves scaling the features to a uniform range to transform each feature to 

the [0, 1] range. This normalization facilitates the model's learning by providing data in a consistent scale, crucial for the 

effective training of deep learning models. 

13.1.3. Sequencing:  

To accommodate the LSTM autoencoder's requirement for sequential data, the normalized data is structured into 

sequences. Each sequence, or "lookback" window, , reflecting one day of data sampled at 5-minute intervals. This 

structuring into sequences allows the model to learn from the temporal dependencies within the data, a key aspect of its 

capability to detect anomalies. In this way the model must learn how the time relation subsists between all the shifted 

sequences. 

13.2. Model Training 

With the data prepared, the next phase involves training the LSTM-based autoencoder model. This training process is 

executed over a max of 2000 epochs with a batch size of 128, employing a validation split of 30% to monitor the model's 

performance on unseen data. 

To enhance the model's learning efficiency and robustness, several strategies are employed: 

• ReduceLROnPlateau: This callback reduces the learning rate when a metric has stopped improving, enabling 

the model to fine-tune its weights more delicately as it approaches optimal performance. 

• ModelCheckpoint: Ensures the preservation of the model that achieves the lowest validation loss, safeguarding 

the most effective version of the model for future anomaly detection tasks. 

• Early Stopping: A custom callback checks for a stop condition after each epoch, allowing for dynamic 

termination of training based on specific criteria, ensuring resource efficiency, and preventing overfitting. 

 

For reference, and to show the quality of the model, in Figure 5 the trend of the loss and validation loss represented 

as epochs increases has been shown.  
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Figure 25. Train Loss and Validation Loss 

It is possible to see, both training and validation loss decrease rapidly in the initial epochs, indicating that the model 

is learning effectively from the data. Moreover, the training loss (blue line with circle marker) continues to decrease 

steadily, showing the model's improving ability to reconstruct the training data. Indeed, the validation loss (red line with 

crossed marker) also decreases but starts to plateau earlier than the training loss. This is typical in deep learning models 

and suggests that the model is approaching its optimal performance on unseen data. The best performance, as indicated 

by the lowest validation loss, is achieved around the 30th epoch. This early convergence demonstrates the efficiency of 

our model architecture and training process. The early achievement of optimal performance (around the 30th epoch) 

highlights the effectiveness of training strategies, suggesting that further training may not yield significant improvements. 

 
Figure 26. Health index of Trained Autoencoder 

The y-axis represents the Health Index, which is derived from the reconstruction error of the autoencoder. Lower 

values indicate better reconstruction, implying "healthier" or more normal behaviour of the system. While, the x-axis 

represents the time sequence of the training data, allowing us to visualize how the Health Index varies over time for 

known normal operating conditions. The red dashed line represents the anomaly threshold, set at the 99th percentile of 
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the reconstruction errors observed in the training data. This threshold is crucial for distinguishing between normal 

operation and potential anomalies in future data. There are a few instances where the Health Index spikes above the 

general trend but remains below the threshold, these could represent natural variations in the system's behaviour that are 

still within normal operating parameters. 

13.3. Anomaly Threshold Determination 

The determination of an anomaly threshold is pivotal in distinguishing between normal and anomalous sequences. 

Following model training, the reconstruction error for each sequence is calculated by comparing the predicted output 

against the original input. This error reflects the model's ability to reconstruct the input data, with higher errors indicative 

of potential anomalies. 

The threshold for classifying a sequence as anomalous is set at the 99th percentile of the reconstruction errors observed 

across the training dataset.  

This threshold is chosen to identify the most significant deviations from the norm, capturing only the most pronounced 

anomalies. By focusing on these extreme discrepancies, the model effectively flags sequences that markedly diverge from 

the learned patterns of normal operational data, thus identifying potential issues or anomalies within the equipment's 

functioning. 

14. Results; Identify an anomaly and the RUL line trend. 

The proposed approach considers real-world application constraints. Indeed, for industrial applications, obtaining end-

of-life (EOL) data is often challenging. This difficulty arises primarily because the complexity of an apparatus can vary 

significantly within the variables under observation. Consequently, the variables that must be monitored encompass a set 

of machinery that manufacturers typically do not provide with detailed EOL dynamic curves. Secondly, the aim is to 

develop a holistic approach applicable to every system without requiring a priori knowledge of threshold locations. 

Moreover, as the system is used over time and more data are collected, thresholds can be adjusted based on empirical 

evidence. 

Following these observations, Remaining Useful Life (RUL) analysis was initiated through examination of trend 

patterns in the data. The objective was to identify any trends or dynamic changes in the sequence under analysis, 

determining whether the system was entering a degradation regime or experiencing sudden, severe degradation. This 

analysis was conducted using linear interpolation of the Health Index (HI) over the last n days. 

The purpose was to ascertain if anomalies could be detected before the HI effectively surpassed the established 

threshold, as shown in Figure 7. In particular, the figure shows the trend analysis assuming that the analysis was conducted 

the day before the first appearance of anomaly in the HI, i.e., the 64th day. 

The RUL was interpolated for the last 25, 35, 45, and 60 days, and the intersection point of the trend line with the 

threshold was determined. Notably, each plot shows within the white box the number of days to reach the threshold value. 

Indeed, the mean RUL was assessed using these four RUL estimates. In this case, the estimated time to reach the danger 

zone is 68.25 days; this can be seen as a general indicator of the HI trend. 

The anomaly manifested on the 65th day when the magnitude of vibration became visible (Figure 4). Examining the 

four graphs individually as the observation period window varies, it becomes evident that shorter observation periods 

yield more sensitive but unstable forecasts. Conversely, longer windows produce more stable forecasts but are unable to 

capture sudden threshold exceedances. For this reason, as a first approximation, an average assessment of threshold 

exceedances was chosen. 

On the 65th day, the system exhibited anomalous vibration magnitude, and the model detected this anomalous 

behaviour as the HI exceeded the HI threshold, as shown in Figure 8. A point of the HI crossed above the threshold, 

showing a value of 0.0041. Consequently, RUL interpolation showed a consistent drop in the time to intercept the 

threshold guard to 7.5 days, indicating that the system might be in a state of degrading performance. 

Moving forward in time, the behaviour of the HI validates the advanced degradation state of the system. Figure 9 

shows the prediction made at day 72, where the magnitude of the HI jumps to 0.07, with a clear upward trend indicating 

pronounced degradation in the apparatus's performance. Indeed, the prediction for the 11-day observation window is 

assessed as "already happened" for the intersection value between the HI threshold and the trend curve. 

To obtain definitive confirmation of the apparatus's new degradation state, HI prediction was carried out until the end 

of the data, where the apparatus reached definitive failure on the 92nd day. This is represented in Figure 10, showing that 

the system remains above the threshold throughout the period until the apparatus's failure. It is worth emphasizing that 

once the threshold has been reached, the interpolation of the last days of the RUL loses its informative significance, as 

shown for the 11-day observation window. 

In conclusion, this analysis demonstrates the effectiveness of the proposed approach in detecting and tracking system 

degradation over time. The method successfully identified the onset of anomalous behaviour and provided valuable 

insights into the progression of the system's health status, offering potential for early intervention and maintenance 

planning in industrial applications. 
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Figure 27 - RUL fitting for last 25, 35, 45, 60 days at 64th day. 
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Figure 28 - RUL fitting for last 25, 35, 45, 60 days at 65th day 

 
Figure 29 - RUL fitting for last 25, 35, 45, 60 days at 72nd day. 
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Figure 30 - RUL fitting for last 25, 35, 45, 60 days at near-end dataset. 

15. Conclusions & developments 

The research successfully implemented an LSTM-based autoencoder for anomaly detection in marine equipment 

sensor data. The model demonstrated the ability to identify developing faults in the bearing, as evidenced by changes in 

vibration patterns. The approach showed promise in handling data from different engine load profiles, suggesting potential 

adaptability to various operational conditions. 

While not extensively discussed in this paper, preliminary observations suggest that the proposed method may offer 

improved fault tracking capabilities compared to traditional statistical approaches. However, a comprehensive 

comparative study will be carried out to quantify these potential advantages. 

The results suggest that the proposed methodology has potential for enhancing predictive maintenance practices in 

maritime applications. By leveraging unsupervised learning techniques, this approach may be particularly valuable in 

scenarios where labelled failure data is scarce or unavailable. 

However, it is important to note the limitations of this study. Detailed comparisons with conventional methods were 

not performed within the scope of this paper. Future work should focus on conducting comprehensive comparative studies 

with traditional statistical methods and other machine learning approaches to quantify potential improvements in 

predictive accuracy. Additionally, expanding the range of fault types and operational conditions tested would further 

validate the method's generalizability. Investigating the integration of this approach with existing maintenance systems 

in real-world maritime operations is also an important area for future research. 

In conclusion, while this study demonstrates the feasibility and potential of the proposed unsupervised learning 

approach for marine equipment predictive maintenance, further research is needed to fully establish its comparative 

advantages and practical implementation challenges in real-world scenarios. 
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