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Synopsis

Reduced crewing concepts require a higher level of control and integration of platform systems. A clear reli-
ability assessment of these systems in early design stages reduces the need for alternations in later design stages
but remains challenging to perform. This paper addresses the design of reliable and integrated onboard systems
such as cooling water, power distribution, and control systems. Current approaches to making platform sys-
tems more reliable, such as redundancy, modularity (independent subsystems) and reconfigurability, are analysed
from a network theory perspective. Current graph measures do not align with experience-based requirements
for improving system robustness. Our method combines the principles of network theory and experience- and
rule-based system requirements to provide a comprehensive framework for a reliability comparison of integrated
multilayer platform systems (distributing more than one type of flow). The robustness requirements are trans-
lated into network metrics to facilitate a quantitative trade-off typical to the early stages of the design process.
The case study offers a preliminary view of the system topology of a notional naval vessel, consisting of power
distribution, cooling water distribution and control systems. The network metrics facilitate an assessment of the
system’s reliability compared to alternative system topologies with differentiating numbers of nodes, edges and
density. This study finds varying dependencies of the robustness metrics on the network properties, shining new
light on whether and how one should compare distribution system robustness.
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1 Introduction

Despite its critical role, the maritime industry operates largely in the shadows, only gaining fleeting visibility
when incidents like the Baltimore Bridge collision capture headlines. These and other situations arise from a
significant list of challenges facing the maritime industry, such as higher-risk shipping routes, operations in hostile
environments, reduced crewing concepts and a need to mitigate local and global environmental impact. The first
two challenges directly influence the lives of men and women onboard commercial and naval vessels. Therefore, it
is essential to improve the survivability of these ships. Most naval vessels can be approached as complex systems
of systems (Rigterink (2014)); enhancing the robustness of vital onboard distribution systems will likely lead to
lower vulnerability and higher overall survivability (Habben Jansen (2020)).

This vulnerability has been a topic of study in various maritime applications, such as offshore and naval ves-
sels. In previous work, Scheffers and de Vos (2024) used the difference between Dynamic Positioning (DP) class 2
and class 3 redundancy regulations (American Bureau of Shipping (2021)) to capture system robustness for ships
equipped with DP systems. This robustness is defined by de Vos and Stapersma (2018) as “The ability of energy
distribution systems on board of ships to withstand perturbations in system operation”. The comparison was per-
formed by modelling the DP systems as integrated networks. The systems were solely analysed from a logical
architecture as defined by Brefort et al. (2018), focusing on the physical relations between components. Moreover,
no differentiation between node and edge type has been taken into account. The robustness was measured using
network metrics based on three reliability aspects: independent subsystems, component redundancy and distribu-
tion redundancy. The research used a single class 2 DP system and a single class 3 DP system as a case study
to validate the assumptions from Clavijo et al. (2022). The study concluded that the network robustness metric
“modularity” could be applied as a proxy for “independent subsystems” for this specific case study. However, no
conclusion could be drawn regarding the other network robustness metrics nor regarding the applicability of these
metrics on other onboard distribution system architectures.

Amongst the vital distribution systems, we consider electric energy distribution systems, cooling water distri-
bution systems and sensor data distribution systems. One of the three main recommendations of this previous work
was to broaden the general validity and applicability of the study. It was suggested to study networks of varying
dimensions: what is the influence on robustness of adding additional components to the network?
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Therefore, the goal of this paper is to verify whether a system becomes more robust if a component or connec-
tion is added to the network, i.e. increasing redundancy, and, if this is the case, which components have a pivotal
position in this robustness enhancement. This current work studies the same five network robustness metrics as
were used in the previous study since these metrics and the corresponding reliability aspects are directly based on
DP regulations. The five metrics are 1) modularity, 2) effective graph resistance, 3) maximum flow, 4) clustering
coefficient and 5) circuit rank and are further explained in Table 2. It is assumed that the network robustness
metrics are also applicable in a broader sense to the vital distribution systems onboard naval vessels.

The verification is performed using the aforementioned network robustness metrics, which will be explained
later in more detail. With this research aim in mind, the study consists of the generation of networks representing
integrated onboard distribution systems (the logical architecture by Brefort et al. (2018)) and is based on an ex-
isting benchmark architecture (de Vos and Stapersma (2018)). The integrated systems consist of different system
components and the number of these components is varied for the generated networks. Next, the effect of the
number of components and connections with regard to the selected network robustness metrics is studied. The
contribution of this work lies in studying the effect of the variation of network size on the robustness of onboard
distribution systems.

2 Network Generation

Modelling the onboard distribution systems as networks is performed using the mathematical concept of graphs
G(V,E). These graphs are comprised of a set of nodes/vertices V (components) (Newman (2010)). The compo-
nents relate to each other through a set of links/arcs/edges E (connections). In this work, the nodes represent
system components such as pumps, engines, switchboards and computers. The edges represent tangible connec-
tions like cables, pipes and tubes. The physical architecture, as defined by Brefort et al. (2018), is not considered
in this study, so physical properties like the cable length or capacity are not included in the scope. This is in line
with studying system diagrams and facilitates analysis in very early-stage design before layouts or arrangements
are known.

The benchmark system model of vital distribution systems onboard a notional frigate developed by de Vos
(2018) serves as a foundation for examining the impact of component count on network robustness. This model
identifies twelve distinct function types of system components, each categorised into a specific ”layer”. Roughly
half of these layers comprise converter nodes, also known as ”converter layers,” which transform one flow, such as
electricity, into another, such as cooling water. The remaining layers consist of hub nodes, or ”hub layers,” which
facilitate flow distribution across the vessel without altering the flow itself. A cooling water pump exemplifies a
converter node, whilst a switchboard is a hub node. Figure 1 shows the benchmark system model with its five
distinct flows and twelve distinct node types. Converter nodes cannot directly connect to other converter nodes;
instead, they must connect via one or more hub nodes to enable flow distribution. The second and final network
constraint is that hub nodes can connect directly to each other and together form the distribution system for a given
flow.

2.1 Erdös-Rényi random network generation

A number of possible topologies are generated to compare different system architectures. This generation starts
with only the nodes from the benchmark system and an empty edge set: G0 = (Vbenchmark,E = /0). The physical
boundaries, as introduced in the benchmark system, are translated to mathematical boundaries using the Erdös-
Rényi (E-R) random graph model Newman (2010). For computational simplification purposes, it is assumed
that a converter component is only connected to the hub layer “above” and “below” a given component and no
other interrelations exist. Future research will include adding the additional interrelations as present in Figure 1,
e.g. the sensor components requiring electric power, next to cooling. The edges are included with probability p,
independently from every other edge. Since the physical networks onboard are assumed to be relatively sparse, the
edge probability is set on a constant value of p = 0.15. This value reflects a sparse network whilst still facilitating
sufficient edges to generate a connected network. Figure 2 shows a close-up of the upper three layers of the network
to visually explain these boundary conditions in edge generation. Zooming in on the edge generation within the first
three layers (diesel generator components DG, main switchboard components MSWB and transformer components
(TF)), edges are generated within the following conditions. First, a subgraph S of graph G is defined as:

S(VS,ES)⊆ G(Vbenchmark,E = /0) (1)

with:
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Figure 1: Benchmark energy and data distribution system model onboard a notional frigate (de Vos and Stapersma
(2018)). The benchmark contains alternating converter layers (grey) and hub layers (white) and the five distribution
flows 6600V AC (red), 400V AC (magenta), 2 °C cooling water (navy blue), 5 °C cooling water (green) and data
(grey). The layers contain the following components: 1. diesel generator (DG), 2. main switchboard (MSWB), 3.
transformer (TF), 4. switchboard (SWB), 5. cool water plant (CWP), 6. pipeline 2 °C (2Cpipe), 7. heat exchanger
(HE), 8. pipeline 5 °C (5Cpipe), 9. Sensor, 10. Computer (Comp), 11. Command, 12. Weapon.

C1 = {v ∈V | layer(v) = DG}
H1 = {v ∈V | layer(v) = MSWB}
C2 = {v ∈V | layer(v) = TF}
VS =C1 ∪H1 ∪C2

ES = /0

(2)

where:

• Ci represents the node set of the i-th converter layer.
• Hi represents the node set of the i-th hub layer.

2.1.1 Edge generation

Now, edges are generated connecting the first (converter) layer to the first (hub) layer by means of an E-R
random bipartite graph, i.e. no edges are generated within a layer, only between layers:

EC1→H1 = {(c,h) | c ∈C1,h ∈ H1, with p = 0.15} (3)

To ensure that all converter components actively participate in the network, all converter nodes are ”required” to
be connected to at least one hub node within this E-R bipartite graph:

∀c ∈C1,∃h ∈ H1 such that (c,h) ∈ EC1→H1 (4)

Contrary to converter layers, the hub nodes are connected within the layer. These edges are generated using an
E-R random graph:

EH1 = {(h1,h2) | h1,h2 ∈ H1, with p = 0.15} (5)

where the edges form a path between all hub nodes within the layer so that the hub layer is a connected graph.
This requirement stems from the engineering practice of making distribution between hub nodes possible and often
controllable via e.g. switches and valves. The connectivity is affirmed by:

∀h1,h2 ∈ Hi,∃ a path from h1 to h2 (6)

The last edge set within subgraph S is the E-R bipartite graph from the hub layer to the converter layer, repeating
the concept of Equation 3 and 4.
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EH1→C2 = {(h,c) | h ∈ H1,c ∈C2, with p = 0.15} (7)

∀c ∈C2,∃h ∈ H1 such that (c,h) ∈ EC2→H1 (8)

The combined edge set ES of the graph S(VS,ES is:

ES = EC1→H1 ∪EH1 ∪EH1→C2 (9)

One should note that edges within this network have no flow type, direction or other physical properties (despite
the obvious practical relevance and application of the connections); they simply represent an existing connection
between two components. Physical properties make the network more realistic, however, unexpected and useful
mathematical patterns might not be found.

2.1.2 Node addition

This study includes the influence of the number of components on robustness. Therefore, this network attribute
should change for different generated graphs. To facilitate this, a random number k ∈ 0,1,2 nodes are added to each
layer. This allows for a theoretical maximum of nlayers ·kmax = 11 ·2 = 22 additional nodes in the graph. Since k is
randomly determined for all graphs and layers, the likelihood of a generated network with 36+22 nodes is slim.
Figure 3 shows the upper three layers with the maximum number of nodes added to each layer (k1 = k2 = k3 = 2).
Visually, the added nodes are positioned in line with the existing nodes. Since the node addition is part of the input
node-set V , the edge generation automatically includes the added nodes.

Figure 2: Upper three layers of the integrated system
with the original number of nodes. The converter lay-
ers (green and brown) are both connected to the hub
layer with an E-R random bipartite graph, connecting
all converter nodes to at least one hub node. Within
the hub layer (pink), an E-R connected graph is gen-
erated, which in its place connects the entire graph.

Figure 3: Upper three layers of the integrated system,
each (randomly) expanded with two additional nodes
highlighted with the blue box. For this generated
network, all three layers have two additional nodes
so k1 = k2 = k3 = 2.

2.2 Generated network overview

Using the E-R random graph model, 2500 networks of the full 12 layers have been generated. The density
(Equation 10) indicates the relation between the existing edges |E| and the possible maximum number of edges.
However, this does not take into account the limitations imposed by the network generation algorithm regarding
the possible connections between nodes.

d(G(V,E)) =
2|E|

|V |(|V |−1)
(10)

Table 1 shows the total number of nodes and edges, the network density of the undirected network, and the
number of nodes per layer. The lower bound of the layer dimensions is equal to the network dimension of the
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Table 1: Minimum and maximum number of nodes, edges, and network density with layer types. The network
density is calculated as the ratio of existing edges divided to the total possible number of edges.

Name Minimum [-] Maximum [-] Layer

Nodes 36 50 -
Edges 45 77 -
Density 0.055 0.094 -
Diesel Generator (DG) 4 6 Converter
Main Switchboard (MSWB) 4 6 Hub
Transformer (TF) 3 5 Converter
Switchboard (SWB) 3 5 Hub
Cool Water Pump (CWP) 3 5 Converter
2°C Pipe (2CPipe) 3 5 Hub
Heat Exchanger (HE) 5 7 Converter
5°C Pipe (5CPipe) 5 7 Hub
Sensor 2 4 Converter
Command 2 4 Hub
Computer 2 2 Data

original benchmark system de Vos and Stapersma (2018). The column “Layer” shows the alternating layer types.
One should notice that the final layer, the data type computer layer, has a constant number of nodes (|E|comp = 2).
This is a simplified layer that includes both the command and weapon components from the original benchmark
system in Figure 1. A constant number of nodes provides a consistent contribution to the network robustness,
resulting in no changing influence on the robustness metrics. Figure 4 and Figure 5 display two extremes of
generated networks; the minimum and the maximum number of nodes and edges, respectively. It is not a necessity
that these generated networks contain both extremes in nodes and edges within one network.

2.3 Network Robustness Metrics

The applied network robustness metrics are a proxy for three reliability concepts: component redundancy, dis-
tribution redundancy and independent subsystems. First, the aspect independent subsystems refers to “two or more
component groups, each of which is capable of individually and independently performing a specific function”
(American Bureau of Shipping (2021)). The second reliability aspect, component redundancy, is achieved by the
installation of multiple (functionally equal) components (American Bureau of Shipping (2021)). The last aspect,
distribution redundancy, refers to the presence of ”independent alternative paths between source and demand nodes
which can be used to satisfy supply requirements during disruption or failure of the main paths” (Goulter (1987)).
An overview of the applied network robustness metrics to estimate the system robustness of the generated networks
is shown in Table 2.

3 Network database analysis

The generated network analysis is performed using the following steps. First, the relation between the metrics,
number of nodes, edges and network density is visually inspected using a pairplot. This forms the initial step in un-
derstanding and getting familiar with the generated network database. Next, a Pearson correlation heatmap presents
the linear relation between the metrics, network attributes and layer dimensions. This indicates the strength of pos-
itive and negative linear relations between the different studied network aspects. The third step is to study the
influence of the number of nodes of each layer using a sensitivity analysis. Lastly, the use and applicability of the
selected robustness metrics are evaluated using a second sensitivity analysis.

3.1 Pairplot and kernel density estimate

The pairplot in Figure 6 shows the five network robustness metrics, the number of edges, and the network den-
sity (Equation 10) on the x-axis and y-axis. What becomes clear from the colour gradient in the rows “Numedges”
(number of edges) and “Density” is the direct relation between the edges and density, and the nodes: with an
increase in nodes, the number of edges increases whilst the density decreases. Another apparent relation between
the number of edges and the circuit rank in row “Numedges”. Since both the number of nodes and the number of
edges are directly and linearly present in the equation for circuit rank, this is a highly predictable relation.
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Figure 4: Generated network 1860 with the minimum
number of nodes |V |min = 36 and edges |E|min = 45.
The number of nodes corresponds to the number of
nodes of the original benchmark system.

Figure 5: Generated network 744 (also shown in Fig-
ure 3) with the maximum number of nodes |V |max =
50 and edges |E|max = 77. With 14 additional nodes
(highlighted in the blue box), the maximum of 20 ad-
ditional nodes is not part of the generated network set.

Table 2: The calculation approach of the five selected network robustness metrics. The second column shows
the three reliability aspects as defined based on the difference between the American Bureau of Shipping (2021)
dynamic positioning class 1, 2 and 3 regulations.

Robustness
metric

Reliability
aspect Calculation Method notes

Modularity
(Newman and
Girvan (2004))

Independent
subsystems QG = 1

2m ∑i j

[
Ai j −

kik j
2m δ (ci,c j)

] Partitioning using Leiden
Algorithm (Traag et al. (2019))

Effective Graph
Resistance
(Ellens et al.
(2011),Ellens
and Kooij
(2013))

Component
redundancy RG = ∑1≤i≤ j≤N Ri j = N ∑

N
i=2

1
λi

λi is the i-th eigenvalue of the
Laplacian matrix

Maximum Flow
Newman (2010)

Component
redundancy

Cut set algorithm: the removal of
this number of nodes disconnects
the source node from the sink
node

A single artificial operational
source and sink node are added,
respectively connected to all
source nodes (DG layer) and all
sink nodes (Computer layer)

Clustering
Coefficient
Newman (2010)

Distribution
redundancy cG = Tr

(
A3

)(
∑

N
i=1 ki(ki −1)

)−1 ki is the number of direct
neighbours of node i

Circuit Rank Distribution
redundancy rG = |E|− |V |+ |C|

|C| is the number of connected
components, which is 1 for all
networks since they are generated
as connected networks
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The plots showing the interrelations between the five network robustness metrics (the upper five rows and the
leftmost five columns) are scattered; there seems to be no direct and strong relation based on this figure. This
statement also seems to be valid for the relation between the number of nodes and the robustness metrics after
studying the diagonal KDE plots of these metrics. The peaks of the different-coloured plots appear somewhat in
the same location which shows that the value distribution of robustness metrics is comparable for networks with the
different numbers of nodes. This suggests that the number of nodes does not play a key role in network robustness,
indicating a preliminary answer to the main research goal. The remaining part of the network database analysis is
likely to shine more light on this relation.

Figure 6: Pairplot showing the relation between robustness metrics and network dimensions. The diagonal plots
show the kernel density estimate (KDE) of each metric. The colours represent the number of nodes (Numnodes)
of each generated network, ranging from 36 (dark purple) to 50 (yellow).

3.2 Pearson correlation coefficient

The second analysis is a linear correlation analysis using the Pearson correlation coefficient ρX ,Y . This coef-
ficient indicates the strength of the linear positive or negative correlation between two variables and is calculated
using

ρX ,Y =
cov(X ,Y )

σX σY
=
E
[
(X −µX )(Y −µY )

]
σX σY

(11)

where:
cov is the covariance
σX is the standard deviation of X

µX is the expected value (the mean) of X
(12)

Figure 7 shows a heatmap representation of the Pearson correlation coefficient. In line with Figure 6, the x-axis
and y-axis show the network robustness metrics, the number of nodes, edges, and density. Moreover, the number
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of nodes per layer is added to this heatmap. One should note that the positive scale does not surpass a coefficient
value of ρmax ≃ 0.3 where the strongest possible positive correlation is ρmax,theory = 1. Therefore, even the darker
red squares indicate, at best, a moderate positive relation strength. The strongest negative correlation value is
ρmin ≃ −0.7 with a theoretical minimum value of ρmin,theory = −1. Again, this relation is not fully linear but can
be considered as a strong correlation.

By studying the heatmap from left to right, two things stand out: first, the column “modularity” shows barely
any significant correlation with any of the other studied network aspects. Second, modularity does show a some-
what stronger negative correlation with the number of cool water plant (CWP) components (row “Layer CWP”),
a converter layer with 3 to 5 nodes in the middle of the network. This correlation suggests that a lower number
of CWP nodes leads to higher modularity, which is the desired effect for this metric. Understanding the ground
for this relation will be studied in future research. An initial assumption is that this layer plays a critical role in
determining the number of partitions formed in the modularity algorithm.

Effective graph resistance, the second column, must decrease to indicate an improvement in network robustness
(Ellens et al. (2011)). Therefore, the number of nodes and particularly the number of nodes within hub layers
(MSWB, SWB, 2CPipe, 5CPipe) have a positive influence on the effective graph resistance. Since the addition
of a node will in itself increase the effective graph resistance if nothing else changes, this decreasing influence is
surprising. If resistance were the only used metric, one might suggest that removing, for example, a heat exchanger
to add additional pipes in the hub layers does improve the overall system robustness. The causal relation between
these components is grounds for future research.

Some minor remarks remain, starting with the columns “average max flow” and “global clustering coefficient”,
which both seem mainly influenced by edge presence and, to a lesser extent, by the varying numbers of nodes.
Since the circuit rank does have a positive relation with the number of nodes within layers, this could point to
the fact that most triangles (three fully connected nodes) are formed between layers whilst more general cyclic
structures are more often (also) found in hub layers. The remaining columns show less remarkable trends, with
only the very strong negative correlation between density and number of nodes standing out. Since the number of
nodes is present almost quadratic as the denominator in the density definition in Equation 10, this is completely
expected.

3.3 Network dimension and layer sensitivity analysis

In this study, a Sobol′ (2001) sensitivity analysis is performed using a Saltelli sample space (Saltelli (2002),
Saltelli et al. (2010)). The goal of this analysis is to evaluate the influence certain variables have on other variables.
The sample space is determined by the number of input variables D and an input size indicator N, which is N = 215

for the three performed analyses.

3.3.1 Input: 13 network aspects (incl. layers), Output: 5 robustness metrics

Table 3 shows the results of the first sensitivity analysis, which contains thirteen input variables D = 13 and
five output variables (the network robustness metrics) and has a sample size N = 215. The first conclusion drawn
from this table, supported by Figure 8, is that effective graph resistance, global clustering and circuit rank are not
or very limited influenced by the number of nodes. The network density and number of edges, two network aspects
that are inherently closely related, are dominant factors in the expected values for these three network robustness
metrics. Figure 6 and Figure 7 show results in line with this conclusion, which supports this analysis. However,
this relation was not predominant in the previous parts of this research. Appendix A shows a figure for all five
analysed metrics within this first sensitivity analysis.

A second finding is that in line with the first column of Figure 7, the number of CWP converter nodes has the
strongest influence on the modularity metric. Some higher-order interaction is found between the number of edges,
the density and the CWP layer. However, these effects are small compared to the first-order sensitivity relations.
The sensitivity analysis of the maximum flow metric (Figure 13) is further studied as part of the second sensitivity
analysis.

3.3.2 Input: 10 network aspects (only layers), Output: 5 robustness metrics

The second and third sensitivity analyses separate the input of the general network attributes, the number of
nodes, edges and density, from the layer-based input. For the second performed sensitivity analysis, the density,
total number of nodes and the total number of edges are disregarded as input variables. This facilitates a study
into the influence of different layers, their character (converter nodes or hub nodes) and number of nodes on the
network robustness metrics. The sample size is N = 215. Appendix B shows the five analysed metrics with the
number of nodes per layer as sensitivity indices.
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Figure 7: Pearson correlation heat map. The darker red squares indicate a positive linear relation, whereas the
darker blue squares indicate a negative linear relation.

Maximum flow is almost fully determined by the sensor layer, which is in line with the first sensitivity analysis.
The sensor layer is the smallest converter layer and is, therefore, a literal bottleneck in the flow from the operational
source node (“above” the DG layer) to the operational sink node (”below” the Computer layer). Any additional
component in the sensor layer facilitates a direct increase in flow through the system. Interestingly, the influence of
the TF layer in the first sensitivity analysis (Figure 13) marginalises when the number of edges and density are not
taken as input variables anymore. The plot “Second Order Sensitivity Indices for Average Max Flow” shows some
weak second-order interaction between the TF layer and the density and sensor layer. However, the interaction
seems to be predominantly part of the higher order.

Circuit rank is influenced by the number of nodes in all converter layers, whilst the number of nodes in hub
layers plays a marginal role. This could be motivated by the boundary condition that all converter nodes must be
connected to the previous and following hub layer. More nodes cause more edges, which is directly related to the
number of circuits within the network.

3.3.3 Input: 5 network robustness metric, output: 5 network robustness metrics

The third sensitivity analysis focuses on the mutual influence of the network robustness metrics. For this
analysis, the ”input variables” and ”output variables” change for each metric since the metric itself is considered
input for the other metrics. Ideally, the five metrics have no influence on the other robustness metrics (Van Mieghem
et al. (2010)). This orthogonality would indicate that the five metrics measure perfectly independent network
properties and would, therefore, cover most of the character of the network when combined. However, the shared
influence of density and number of edges on the metrics already suggests that the metrics are not fully independent.
Appendix C contains five figures showing the first-order, second-order and total-order sensitivity analysis for each
metric. As outlined earlier in 2, the five metrics correspond to three reliability aspects. For the sake of clarity and

Proceedings of the International Ship Control Systems Symposium (iSCSS)

International Ship Control Systems Symposium (iSCSS) 2024 https://doi.org/10.24868/11147



Robustness metric Main input variable (secondary
input variable)

Value (significant secondary
value)

Modularity CWP Layer S1 > 0.42
Effective Graph Resistance Density S1 > 0.94
Maximum Flow Sensor Layer, (Transformer Layer) S1 > 0.45, (S1 > 0.14)
Clustering Coefficient Density, (Number of edges) S1 > 0.72, (S1 > 0.13)
Circuit Rank Number of edges, (Density) S1 > 0.84, (S1 > 0.14)

Table 3: First order sensitivity analysis of network robustness metrics with 13 input variables. The second column
shows the dominant variable and the second-most influencing variable with brackets; the corresponding values are
given in the third column.

Figure 8: First order sensitivity analysis of the network robustness metrics Effective graph resistance, Global
clustering and Circuit rank. The higher-order sensitivity analysis shows marginal values and is therefore not shown
in this paper. The sample size of this analysis is set to N = 2E15,D = 13.

ease of reference, these aspects are reiterated here:

• Independent subsystems → Modularity
• Component redundancy → Effective graph resistance and Maximum flow
• Distribution redundancy → Clustering coefficient and circuit rank

It was initially expected that the number of nodes mainly influences the component redundancy and, to a lesser
extent, the independent subsystems and distribution redundancy. However, Figure 12 shows limited influence of
the number of nodes on the effective graph resistance. Therefore, this metric is possibly not the most suitable
metric to measure component redundancy. The interesting part of the resistance metric is that it has the highest
influence on modularity, maximum flow and circuit rank, respectively Figure 21, 23 and 25. The advantage of
this metric is that it includes multiple aspects of other metrics, which is valuable if one metric is used as design
or optimisation objective. However, a disadvantage is that the specific network properties that improve the value
of the metric become less apparent. The global clustering coefficient and the circuit rank in Figure 24 and 25
are mutually influencing, which is in line with the expected behaviour as a proxy for distribution redundancy.
The modularity sensitivity analysis in Figure 21 is in total order comparably equally influenced by the four other
metrics. Together with the small influence of modularity on the other metrics, this is assumed to be an indication
of the relative independence of this metric.

4 Conclusion and Discussion

The initial goal of this research was to determine the most robust integrated distribution system using network
robustness metrics. The design space of these distribution systems showed variation in the number of nodes,
edges, network density and network topology. In this research, 2500 connected networks have been generated
using Erdös-Rényi random networks with boundary conditions mimicking common engineering practice. These
networks are modelled based on the integrated distribution system on a notional frigate de Vos (2018). The physical
boundary conditions have been translated to mathematical constraints, facilitating fast network generation and
network analysis. The increase in case study size from two networks (Scheffers and de Vos (2024)) to 2500
has created a more thorough analysis and provided new insights with regard to what are ”good, safe and robust”
distribution systems.
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This analysis is performed using five metrics, each presenting certain robustness aspects based on dynamic
positioning (redundancy) regulations. First, modularity is determined by two main characteristics. The first and
main influence is the number of nodes in the cool-water plant (CWP) converter layer. The secondary relation is
with the number of edges and the density. Modularity is, however, relatively independent of the other measured
network aspects. This makes this metric interesting in its own right and not easily simplified by just using the
network density. Future research should be directed at the partitioning algorithm and linking the mathematical
modularity to operationally independent subsystems. The effective graph resistance is, to some extent, positively
influenced by the number of hub nodes (more nodes lead to a lower resistance) but is mainly determined by the
system density. This metric includes a variety of network properties and even when different-sized systems are
compared, a lower resistance network with equal or more nodes indicates a higher robustness. Despite its relation
to the number of nodes in the hub layers, resistance might not be the perfect proxy for component redundancy
due to its tight relation with network density. The maximum flow between the operational source and sink node
is determined by the system’s “bottleneck layer”, which is the sensor layer in the used case study. In terms of
robustness, including this metric is valuable to identify this layer. However, it does not indicate the robustness
of the complete system. The global clustering coefficient mainly identifies triangles between layers and has a
significant overlap with the circuit rank. The triangles between layers could prove interesting when certain nodes
require additional components. Future research into the application of the local clustering coefficient is therefore
recommended. The last metric, circuit rank, indicates that the number of nodes in the converter layers has more
influence on the distribution redundancy than the hub layers. However, the number of edges is the main input
variable to this metric since this number is also directly related to the number of nodes. Therefore, this metric
should be disregarded as a valuable robustness metric.

The overall goal of this research was to study the influence of adding nodes to the network on robustness. Based
on the three performed analyses, all five metrics show, at best, a weak relation with the total number of nodes.
Therefore, the conclusion is that simply adding a component will not inherently make the network more robust.
To conclude, one should be very critical of the specific network property a metric is indicative of. Figure 9 and
Figure 10 show the most robust networks based on the effective graph resistance and modularity, respectively. With
proper awareness of their limitations, the network robustness metrics can provide valuable support in the design
process of onboard distribution systems, contributing to reduced system vulnerability and, ultimately, improved
overall ship survivability.

Figure 9: Generated network 1002 with minimum ef-
fective graph resistance, RG = 0.0143,Q = 0.433.

Figure 10: Generated network 373 with maximum
modularity, RG = 0.0152,Q = 0.481.
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A Appendix: sensitivity analysis 1

Figure 11: Modularity network robustness metric - sensitivity analysis: full sample space N = 2E15,D = 13.

Figure 12: Resistance network robustness metric - sensitivity analysis: full sample space N = 2E15,D = 13.

Figure 13: Max Flow network robustness metric - sensitivity analysis: full sample space N = 2E15,D = 13.
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Figure 14: Clustering network robustness metric - sensitivity analysis: full sample space N = 2E15,D = 13.

Figure 15: Circuit Rank network robustness metric - sensitivity analysis: full sample space N = 2E15,D = 13.

B Appendix: sensitivity analysis 2

Figure 16: Modularity network robustness metric - layer sensitivity analysis: sample space N = 2E15,D = 10.
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Figure 17: Resistance network robustness metric - layer sensitivity analysis: sample space N = 2E15,D = 10.

Figure 18: Max Flow network robustness metric - layer sensitivity analysis: sample space N = 2E15,D = 10.

Figure 19: Clustering network robustness metric - layer sensitivity analysis: sample space N = 2E15,D = 10.
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Figure 20: Circuit Rank network robustness metric - layer sensitivity analysis: sample space N = 2E15,D = 10.

C Appendix: sensitivity analysis 3

Figure 21: Modularity network robustness metric - mutual sensitivity analysis: sample space N = 2E15,D = 4.

Figure 22: Resistance network robustness metric - mutual sensitivity analysis: sample space N = 2E15,D = 4.
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Figure 23: Max Flow network robustness metric - mutual sensitivity analysis: sample space N = 2E15,D = 4.

Figure 24: Clustering network robustness metric - mutual sensitivity analysis: sample space N = 2E15,D = 4.

Figure 25: Circuit Rank network robustness metric - mutual sensitivity analysis: sample space N = 2E15,D = 4.
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