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Synopsis

This paper presents an application of an intelligent control system for an underactuated underwater vehicle
called Blucy, developed for non-invasive underwater monitoring. During the monitoring, it is crucial to maintain
an attitude towards the target and stay on the survey’s path to improve the collected data quality, this highlights the
need for developing a sophisticated guidance and control system. Specifically, intelligent controls demonstrate
adaptability in challenging environments, such as sea current disturbances, and handle both unmodelled and
nonlinear dynamics of the system, like the presence of the fiber optic cable during remotely operated inspections.
In this work, a robust path-following algorithm is developed. A line-of-sight guidance is used to tackle the
problem of under actuation, which outputs a virtual input to the control system. A composite error learning based
methodology is implemented to design a control system. An integral sliding mode control that uses a radial basis
neural network to estimate the unmodelled dynamics and uncertainties is developed. In addition, a disturbance
observer is designed to approximate the external noise and the error made by the neural network. Furthermore, a
state estimator is implemented whose error, along with the tracking error made by the controller, is used in training
the neural network and disturbance observer, regarded as so-called composite error learning, which enhances the
learning process, making the controller more robust against disturbances and uncertainties. The efficiency and
performance of the proposed control methodology in following the desired path are studied through simulation.

Keywords: Underwater vehicles; Path-following; Composite error learning; Underactuated vehicle.

1 Introduction
The Blucy was developed in the Interreg IT-HR SUSHI DROP (Sustainable fisheries with drone data pro-

cessing) project for non-invasive underwater monitoring and for preserving and restoring underwater ecosystems
(Interreg, 2019). It is a hybrid Unmanned Underwater Vehicle (UUV), capable of operating either as a Remotely
Operated (ROV) or Autonomous vehicle (AUV), depending on the specific mission requirements. Authors have
performed missions such as close seabed monitoring and multibeam surveys to study benthic zones by generating
3D models of the habitats (Interreg, 2019, 2022; Lambertini et al., 2022). 3D models are then exploited to cre-
ate digital twins of habitats, from which statistical metrics are extracted to analyze the temporal evolution of the
habitat itself. These missions were performed by following a predetermined path manually by the pilot. Although
depth and heading autopilots were implemented, following the desired path manually was a difficult task primarily
because Blucy is an underactuated system. Secondly, external environmental disturbances and uncertainties affect
the quality and accuracy of the data collected. Thus, these challenges posed by the underactuated system in the
presence of variable sea currents and complex underwater terrains necessitate the importance of robust guidance
and control systems that can adapt to changing conditions while maintaining paths and enhancing the capabilities
of the Blucy.

Various control strategies have been explored in the literature to address the path-following challenges of
UUVs. A classical PID controller is implemented in (Antonelli et al., 2003), while an adaptive integral sliding
mode control for underactuated AUV with uncertain dynamics is presented in (Joe et al., 2014). A fuzzy logic
observer was employed to approximate external disturbances and uncertainties in a similar context (Duan et al.,
2020). A robust back-stepping control approach for underactuated AUVs was introduced in (Wang et al., 2009). A
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Figure 1: Blucy UUV performing close seabed survey in Croatian waters.

self-triggered vision-based model predictive control framework to tackle trajectory tracking amidst external distur-
bances is proposed in (Heshmati-Alamdari et al., 2014). Disturbance observers, known for their adaptive nature,
are utilized together with the controllers for robust trajectory tracking in (Guerrero et al., 2019; Duan et al., 2020;
Heshmati-Alamdari et al., 2020). A thorough review of nonlinear control techniques for underactuated AUVs are
provided in (Ashrafiuon et al., 2010).

Advances in computational resources have propelled the rise of Artificial Intelligence (AI) controllers, par-
ticularly Neural Networks (NN). Renowned for their adeptness in handling various uncertainties, deep learning
capabilities, and universal approximation property, NNs have garnered attention among researchers. Unlike con-
ventional controllers reliant on robustness alone, intelligent controllers employ NNs to estimate and address ex-
ternal disturbances and uncertainties, enhancing robustness. A recent review on intelligent controls to address the
problem of trajectory tracking of underactuated UUV is presented in (Er et al., 2023). Controllers based on NNs
often employ the Feedback Error Learning (FEL) strategy. However, this approach is prone to aggressive learning,
and the convergence of optimal NN weights requires persistent excitation. Without it, NN parameters can drift
from their optimal values, resulting in high-gain controllers. The learning efficiency is enhanced by designing a
state estimator based on estimated uncertainties, and its estimation error is incorporated into the learning rule, a
process known as composite learning. A composite learning-based controller for underactuated UUVs, capable
of tracking desired paths amidst uncertainties and external disturbances, is proposed in (Liu and Du, 2021). In
(Zhou et al., 2019), a back-stepping method with composite learning for underactuated systems is introduced,
while (Makavita et al., 2015) analyzes composite model reference adaptive control for underactuated AUVs.

Based on these works, this study proposes the following contributions: 1) A look-ahead guidance law-based
line-of-sight guidance system for maintaining the trajectory and attitude of a Blucy UUV in the presence of external
disturbances and uncertainties. 2) Estimation of tracking error, disturbances, and uncertainties using Feed Forward
Neural Networks (FFNN), along with a disturbance observer designed to calculate noise and estimation error of the
NN. The state estimation error is added to the learning rule, making it composite learning to enhance the learning
process. 3) Unlike previous studies, the composite error is regulated using a sliding manifold to ensure finite-time
convergence. 5) Hence, a neuro-adaptive integral sliding mode control is proposed to track the reference velocities
from the guidance loop.

The remainder of the paper is organized as follows: In Section 2, the mathematical model and actuator con-
figurations of Blucy are outlined. In Section 3, the design procedure of the guidance and neuro-adaptive control
is presented. Simulations and discussion on the results are reported in Section 4. Finally, conclusions drawn from
the research are presented in Section 5.

2 System description
The mathematical model of the Blucy (Figure 1) is based on the Fossen model, which characterizes the UUV

as a rigid body possessing a six-degree-of-freedom (DOF) motion (Fossen, 2011). It utilizes an inertial reference
frame for kinematics and a body reference frame for dynamics. The model encompasses the standard equations
for the translational motion of the Center of Gravity (CG) and rotational motion about the CG, which is the center
of the body frame. To express these relations, the following notations are considered:

η =
[
η1 η2

]′ where η1 =
[
x y z

]′ and η2 =
[
φ θ ψ

]′ (1)
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ν =
[
ν1 ν2

]′ where ν1 =
[
u v w

]′ and ν2 =
[
p q r

]′ (2)

Herein, the variable η denotes the position of the body frame relative to the inertial frame, expressed through linear
displacements (η1) and Euler angles (η2). Meanwhile, the variable ν refers to the linear velocity (ν1) and angular
velocity (ν2), both of which are expressed in the body axes system. Based on these notations, the 6 DOF equation
of UUV can be expressed as:

η̇ = JΘ(η)ν (3a)
Mν̇ +C(ν)ν +D(ν)ν +g(η) = τp (3b)

where JΘ is the transformation matrix; M = MRB +MA is the system inertia matrix including added mass (MA);
C(ν) =CRB(ν)+CA(ν) is the Coriolis-centripetal matrix (including added mass CA(ν)) due to the rotation of the
body frame with respect to the inertial frame; D(ν)ν is the Damping matrix, treated as the sum of a linear contri-
bution and a nonlinear one; g(η) is the vector of gravitational and buoyancy forces and τp = (X ,Y,Z,K,M,N)T is
the vector of control inputs.

Actuator description
Blucy is an under-actuated UUV designed to have stability in pitch and roll, enhancing its control over the

motion variables x,y,z,u,v,w,r, and ψ during various survey operations, such as multibeam and close seabed sur-
veys (Lambertini et al., 2022). It is equipped with a propulsion system consisting of six thrusters: two horizontal,
two vertical, and two lateral, strategically positioned around the CG to optimize thrust direction. These thrusters
use Kaplan Ka 4-70 series ducted propellers with 19A nozzle (Kuiper, 1992), differentiated into propulsive and
maneuvering types. Propulsive thrusters are optimized for high rotational speeds for surge motion. Maneuver
thrusters are designed for lower speeds to handle heave, sway, or yaw motions, with blade symmetry tailored to
their specific operational requirements.

Thrust and torque outputs are theoretically predicted using polynomial regression of the Ka 4-70 series, refined
by experimental data to derive thrust (CT ) and torque (CQ) coefficient curves as functions of the propeller’s advance
ratio J.

The overall force (F) and moment (M) generated by the thrusters are computed from the individual thrust (Ti)
and torque (Qi) of each actuator, considering their positions (li) and orientations (ei) relative to the CG:

F =
6

∑
i=1

(ei ·Ti) (4)

M =
6

∑
i=1

(li ×Ti) · ei +Qi (5)

This setup not only ensures efficient navigation and maneuverability but also supports the vehicle’s ability to
perform complex underwater operations, adhering to the specific performance demands for each survey type. The
overall force and moment in (4) and (5) are used as control input τp.

Control Objective
This work aims to develop a robust guidance and control system for Blucy UUV that guarantees precise path-

following with the vehicle’s nose aligned to the path direction despite uncertainties and external disturbances. The
path under consideration for the simulation replicates a typical mission profile, where data collection is conducted
using the onboard multibeam system. This trajectory is built through geo-located waypoints, which define the path
typically undertaken during real operations.

3 Design of guidance and control system
In this section, a guidance and control system is developed in two parts. Firstly, the look-ahead guidance law,

based on the line-of-sight, is designed to enable the tracking of the path. Secondly, a neuro-adaptive sliding mode
control based on composite error learning is designed to track the virtual inputs for the guidance system. The
schematic representation of the system is depicted in Figure 2.

To design the guidance and control system, let us consider the following synthetic model of the system (3),
describing the kinematics and the dynamics:

ẋ = ucosψ − vsinψ

ẏ = usinψ + vcosψ

ż = w
ψ̇ = r

. (6)
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Figure 2: Guidance and control scheme.

and
u̇ = 1

m11
(m22vr−d11u+ τu +du(t))

v̇ = 1
m22

(−m11ur−d22v+dv(t))
ẇ = 1

m33
(−d33w+ τw +dw(t))

ṙ = 1
m66

((m11 −m22)uv−d66r+ τr +dr(t))

. (7)

Here in, m11 = m−Xu̇, m22 = m−Yv̇, m33 = m−Zẇ, d11 = Xu +Xu|u||u|, d22 = Yv +Yv|v||v|, d33 = Zw +Zw|w||w|,
d66 = Nr +Nr|r||r|. τu and τw are the forces along xb and zb respectively, while τr torque about zb. The terms du,
dv, dw, and dr represent the disturbance affecting the systems.

This model does not account for roll and pitch dynamics, as the separation between the CG and the Center of
Buoyancy (CB) generates a substantial restoring force that inherently stabilizes roll and pitch oscillations. More-
over, the coupling motion between pitch and heave is also not considered, as they can be effectively decoupled
because the depth autopilot is achieved without altering the pitch. Consequently, in practical scenarios where the
UUV operates at low speeds, these assumptions hold.

3.1 Guidance
The desired path to track is assumed to be differentiable and described in a path reference frame. The tracking

error respective to the inertial reference frame can be expressed in the path reference frame as follows:

xe = (x− xd)cos(ψp)+(y− yd)sin(ψp)

ye =−(x− xd)sin(ψp)+(y− yd)cos(ψp)

ze = z− zd

(8)

where the terms xe ye and ze are referred to as long tracking, cross tracking, and vertical errors, respectively. ψp is
the path tangent angle defined as ψp = atan2(ẏd , ẋd). The task here is to drive the xe, ye, and ze to zero. To do so,
take the time derivative of (8) to obtain the following error dynamics:

ẋe =−(x− xd)sin(ψp)ψ̇p +(y− yd)cos(ψp)ψ̇p +(ẋ− ẋd)cos(ψp)+(ẏ− ẏd)sin(ψp)

ẏe =−(x− xd)cos(ψp)ψ̇p − (y− yd)sin(ψp)ψ̇p − (ẋ− ẋd)sin(ψp)+(ẏ− ẏd)cos(ψp)

że = ż− żd .

(9)

by defining desired horizontal velocity Ud =
√

ẋ2
d + ẏ2

d , desired vertical velocity żd = wd and using the kinematic
relations (6), we obtain

ẋe = yeψ̇p +Ucos(ψd −ψp)−Ud

ẏe =−xeψ̇p +Usin(ψd −ψp)

że = w−wd

(10)

where U =
√

u2 + v2 is the horizontal velocity, ψd is the desired yaw angle.
Now, define the following Lyapunov function candidate:

V1 =
1
2

x2
e +

1
2

y2
e +

1
2

z2
e (11)

and taking the time derivative along the trajectory, one obtains the following equation:

V̇1 = xeẋe + yeẏe + zeże

= xe(yeψ̇p +Ucos(ψd −ψp)−Ud)+ ye(−xeψ̇p +Usin(ψd −ψp))+ ze(w−wd)

= xe(Udcos(ψd −ψp)−U)+ ye(Using(ψd −ψp))+ ze(w−wd)

(12)
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To this end, design the virtual inputs Ur and wr as follows:

Ur =
Ud

cos(ψd −ψp)
− γ1xe (13)

wr = wd − γ2ze (14)

where the γ1 and γ2 are the positive gain parameters. Under the assumption that the virtual inputs are followed, the
(12) becomes:

V̇1 =−γ1x2
e + ye(Usin(ψd −ψp))− γ2z2

e (15)

which shows, that long tracking error (xe) and vertical tracking error (ze) converge to zero for positive values of
γ1 and γ2 provided the U and w follow the virtual inputs given in (13) and (14) respectively. What remains to
see is the convergence of cross-tracking error (ye) to zero. If the system is fully actuated, a virtual input of v can
be designed to make ye converge to zero. However, the system considered is underactuated, hence the following
look-ahead-based guidance law as in (Breivik and Fossen, 2005) is chosen:

ψd = ψp +arctan(
−ye

∆
) (16)

where the ∆ is the look-ahead distance. Smaller ∆ means aggressive steering, while larger ∆ means slow steering.
If the desired ψd is perfectly tracked, (15) becomes:

V̇1 =−γ1x2
e −U

y2
e√

y2
e +∆2

− γ2z2
e (17)

for U > 0, the term ye goes to zero. Hence, the overall system is stable according to (Lekkas and Fossen, 2014).
Now, Let us consider the error dynamics of the ψ whose error is defined as ψe = ψ −ψd . Let the Lyapunov

candidate with respective to ψe defined as follows:

V2 =
1
2

ψ
2
e (18)

with time derivative as:
V̇2 = ψeψ̇e = ψe(ψ̇ − ψ̇d) = ψe(r− ψ̇d) (19)

Similar to position tracking, to guarantee the convergence of the ψe to zero, the virtual input r is chosen as follows:

rr = ψ̇d − γ3ψe (20)

for a positive γ3 and if the r follows the given virtual command. then V̇2 ≤ 0, thereby, guaranteeing the convergence.

3.2 Control
In light of the above discussion, it is clear that for the tracking error to converge, the virtual inputs should be

followed, and hence, they are passed as a reference to the control system. To design a controller, Let us rewrite (7)
as follows:

u̇ = fu +
1

m11
τu +d1(t)

v̇ = fv +d2(t)

ẇ = fw +
1

m33
τw +d3(t)

ṙ = fr +
1

m66
τr +d4(t)

(21)

where
fu =

1
m11

(m22vr−d11u) d1(t) =
1

m11
du(t)

fv =
1

m22
(−m11ur−d22v) d2(t) =

1
m22

dv(t)

fw =
1

m22
(−d33w) d3(t) =

1
m66

dw(t)

fr =
1

m66
((m11 −m22)uv−d66r) d3(t) =

1
m66

dw(t)

(22)
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In the above model, The sway velocity is assumed to be passively bounded in the sense that |v|< vm as it cannot
be controlled but only observed, and hence, its dynamics are not considered in the control design. Furthermore,
the unknown time-varying environmental disturbances are assumed to be bounded such that there exist |d| ≤ dn,
where dn represents an unknown constant. In addition, the system can have uncertainties due to ignored nonlinear
dynamics in the synthetic model and the parameters. Therefore, the uncertain state space representation of the
above system is given as follows:

Ẋ = f (X)+g(X)τ +∆(X)+d(t) (23)

where X = [u,w,r]T , f (x) = [ f u, f w, f r]T , g(x) = [ 1
m11

, 1
m33

, 1
m66

]T , τ = [τu,τw,τr]
T and d = [d1(t),d2(t),d3(t)]T .

The term ∆(x) = ∆ f (x)+∆g(x)τ represents uncertainties.
Now, considering Xr as the reference signal to the control loop and by defining the tracking error as e = X −Xr,

a sliding manifold can be given as follows:

S = e+λ1

∫
edt (24)

where λ1 is a positive definite matrix. By taking the time derivative of the above equation, one obtains the following
equation:

Ṡ = ė+λ1e = Ẋ − Ẋr +λ1e

= f (X)+g(X)τ +∆(X)+d − Ẋr +λ1e
(25)

In this approach, ∆ is estimated using a radial basis neural network. Assume that ∆ to be approximated as
∆̂ = Ŵ µ(X), with Ŵ representing the updated output weights and µ denoting the relevant basis function matrix.
Leveraging the universal approximation capability of NNs, one has:

∆ =W ∗T
µ(X)+ ε, (26)

where W ∗ and ε denote the optimal weight matrix and the minimal estimation error of the NN, respectively. The
estimation error is assumed to be bounded based on the universal property. Essentially, the NN’s role is to minimize
the total estimation error by iteratively estimating W ∗ as Ŵ .

To counterbalance the NN’s estimation error and accommodate unaccounted time-dependent terms bounded
disturbances (d), we introduce an adaptive disturbance observer that aims to estimate D = d(t)+ ε as D̂.

To this point, the convergence of the reference tracking can be achieved by choosing the following control law:

τ = g(X)−1(Ẋd −λ1e− f (X)− ∆̂− D̂⊗ sign(EX )−K1 ∗S) (27)

where ⊗ represents the element-wise multiplication and K1 is the positive definite matrix related to the controller.
The term Ex represents the composite error that is used in the updating rules of neural network and disturbance
observer. It is termed as a composite error because it consists of both tracking error and error made by the state
estimator to enhance the learning process. The expression for the EX is given as follows:

Ex = S−KES0 (28)

where KE is a positive definite matrix, S0 is the sliding surface of the state estimator.

S0 = e0 +λ2

∫
e0dt (29)

with e0 = X̂ −X is the error made by the estimator and λ2 is a positive definite matrix.
Hence, the state estimator can be designed as follows:

˙̂x = f (X)+g(X)∗u+ ∆̂+ D̂⊗ sign(Ex)−K0S0 −λ2e0 (30)

where the K0 is the positive definite matrix characterising the gain of the state estimator.
To study the closed loop stability of the controller, let us consider the following Lyapunov candidate:

V3 =
1
2

ST S+
1
2

ST
0 KES0 +

1
2

tr(W̃ T
Γ
−1W̃ )+

1
2
(D̃T K−1

D D̃) (31)

where W̃ = Ŵ −W ∗ and D̃ = D̂−D. Taking the time derivative, following expression is obtained:

V̇3 = ST Ṡ+ST
0 KE Ṡ0 + tr(W̃ T

Γ
−1 ˙̂W )+ D̃T K−1

D
˙̂D

= ST (−K1S−W̃ T
µ(X)+D− D̂⊗ sign(EX )

+ST
0 KE(−K0S0 +W̃ T

µ(X)−D+ D̂⊗ sign(EX ))+ tr(W̃ T
Γ
−1 ˙̂W )+ D̃T K−1

D
˙̂D

=−ST K1S−ST
0 KEK0S−W̃ µ(X)ET

X − D̃T |Ex|+ tr(W̃ T
Γ
−1 ˙̂W )+ D̃T K−1

D
˙̂D

(32)
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Figure 3: Architecture of the simulator.

Figure 4: Validation of the simulator vs real data

Now, by choosing the following updating rules of the neural network and disturbance observer:

˙̂W = Γµ(X)ET
X (33)

˙̂D = KD|Ex| (34)

and substituting (33) and (34) in (32), one has:

V̇3 =−ST K1S−ST KEK0S (35)

hence, the stability of the control loop is guaranteed.
The overall closed-loop configuration of the guidance and control system adeptly ensures asymptotic stabil-

ity, thereby ensuring that the vehicle follows the desired path. Although the proof is omitted here for brevity,
leveraging cascade system theory and integrating neural network alongside disturbance observer into the design
provides the means to establish the asymptotic stability of the overall closed-loop system (Lekkas and Fossen,
2014). Furthermore, a linear control allocation is used to map the required surge, heave forces, and yaw moment
to the required rpm of the motors.

4 Simulation experiments
In this section, the reliability of the designed control scheme is tested by simulating real-life operational ma-

neuvers through a high-fidelity simulator of Blucy implemented in Matlab/Simulink whose architecture is depicted
in Figure 3. The vehicle simulator is developed from the nonlinear motion of equations (3) whose parameters are
given in Tables.1 and 2.

The simulator is validated against the data acquired during previous missions of the Interreg IT-HR Techera
project (Interreg, 2022). In particular, the data was recorded during a multibeam survey in the Marine Protected
Area of Miramare in Trieste, Italy. The results are depicted in the Figure 4.
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Blucy Actuator

Dry mass m 216.15 kg propeller type Ka 4-70 with 19A Duct
Wet mass m 216.45 kg number of thrusters 6
Ix 11.3114 kgm2 number of blades 4
Iy 49.2791 kgm2 diameter D 0.145 m
Iz 41.7449 kgm2 Pitch ratio P/D 1.28
Ixy 0 kgm2 Area ratio Ae/Ao 0.7
Ixz 2.8636 kgm2 Motor rpm range (−3000,3000)rpm
Iyz 0 kgm2 Gear ratio 4 : 1
Center of Gravity CG (0,0,0) m Prop rpm range (−750,750)rpm
Center of Buoyancy CB (0,0,0.06) m Propulsive M1, M2
Hydrodynamic Coefficients Ct(J) −0.27J3 +0.33J2 −0.55J+0.54
Linear [Kg/s] Quadratic [Kg/m] Cq(J) −0.02J3 − 0.02J2 − 0.004J +

0.08
Xu =−2.61 Xu|u| =−61.82 Maneuver M3, M4, M5, M6
Yv =−24.72 Yv|v| =−597.62 Ct(J) −0.25J3 +0.31J2 −0.52J+0.50
Kv = 0.83 Kv|v| =−30.05 Cq(J) −0.02J3 − 0.02J2 − 0.004J +

0.08
Nv =−11.21 Nv|v| =−85.4 Position w.r.t. CG li [m]

Zw =−2.82 Zw|w| =−255.86 M1 [-0.821 0.230 -0.008]
Mw =−1.71 Mw|w| =−38.7 M2 [-0.821 -0.230 -0.008]
Yp =−1.43 Yp|p| =−38.14 M3 [0.615 0 -0.386]
Kp =−0.04 Kp|p| =−23.68 M4 [-0.835 0 -0.386]
Np = 0.41 Np|p| = 9.28 M5 [0.490 -0.113 -0.131]
Zq =−0.07 Zq|q| =−37.19 M6 [-0.660 0.124 -0.131]
Mq =−0.06 Mq|q| =−95.69 Thrust versor ei

Yr =−1.87 Yr|r| =−342.98 M1 [1 0 0]
Kr = 0.14 Kr|r| = 41.28 M2 [1 0 0]
Nr =−0.044 Nr|r| =−375.53 M3 [0 0 1]
Added Mass M4 [0 0 1]
Xu̇ −28.94 kg M5 [0 1 0]
Yv̇ −166.03 kg M6 [0 1 0]
Zẇ −94.13 kg
Kṗ −0.07 kgm2

Mq̇ −17.10 kgm2

Nṙ −33.58 kgm2

Table 1: Blucy UUV and actuator parameters

Guidance Controller

γ1 0.035 λ1 diag(0.1,0.2,0.1)
γ2 0.085 λ2 diag(2,2,2)
γ3 0.85 K1 diag(300,500,500)
∆ 5 m K0 diag(5,5,5)

Γ diag(10,10,10)
KD diag(5,5,5)
KE diag(3,3,3)

Table 2: Guidance and controller parameters

The linear velocities (u, v, w) and latitude and longitude measurements are not recorded during a turn because,
in multibeam surveys, data gathered during turns are not reliable for 3D reconstruction as they are distorted and act
as a disturbance for the post-processing analysis. From Figure 4, it is clear that the simulated trajectory follows the
actual data, except for the u velocity, because the data is also affected by the presence of the tether, which produces
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Figure 5: Simulated path of a multibeam survey: Desired path (black); Case 1 (red); Case 2 (blue).

additional drag forces that the vehicle should overcome. Although nothing can be said for data during the turn,
comparing the position and ψ data, one can conclude that the simulator is still valid and can be used to design and
test the new guidance and control schemes.

4.1 Operational scenario
The path used for the simulation emulates a typical operational path of underwater missions such as multibeam

surveys. As shown in Figure (5), the path includes 15 waypoints (WP). The mission sequence starts with Blucy
diving to 5m depth from WP0 to WP1. Then, the vehicle proceeds to navigate the rest of the waypoints (WP1-
WP13), maintaining a constant depth. The length along the x and y directions is strategically chosen to have a good
overlap of data for 3D reconstruction during a multibeam survey. The simulation accurately reflects the procedure
and conditions typically encountered in a real-world mission.

Two case studies are presented in this paper: Case 1, will validate the control scheme designed using the
synthetic model against the 6 DOF model to check the performance against the coupled dynamics neglected in the
simplified model. Case 2, is a simulation with external disturbance of form 0.05sin(0.1t) and sin(0.1t) are applied
to translational and rotational motions, respectively. Moreover, random uncertainties of ±5% on Blucy parameters
(Table (1)) are considered to test the robustness against disturbances and uncertainties.

4.2 Results
The 3D trajectory tracking of the two cases is depicted in Figure 5, while linear velocities, angular velocities,

and attitude angles are illustrated in Figure 6. The sway velocity v (see Figure 6) is well-bounded, ensuring the
assumption made in Section 3.2. Furthermore, φ and θ are also stable due to the restoring forces as predicted.
Analysis of Figure 8 reveals that the implemented controller adeptly tracks the virtual commands ur, wr, and rr
with a steady state error magnitude of 10−3. However, in case 2, this error magnitude rises to 10−2 because of the
oscillations, but are well-bounded. The ψ tracks the desired command at an order of 10−2 and increases to the
order of 10−1, acting as the guiding command for the vehicle along the intended path trajectory.

The effectiveness of the designed guidance loop is evident from Figure 5, which showcases the Blucy’s adher-
ence to the desired trajectory with an error magnitude of 2 during the turning as the UUV is not capable of making
sharp turns. However, the error reduces to the magnitude of 10−1 in the straight line paths. These magnitudes
increase by an order of one in the presence of disturbance and uncertainties. These results are consistent with the
general requirement of a multibeam survey mission.

Additionally, the required rpm commands are outlined in Figure 7. Initially, there is chattering (that is not
depicted in the figure), an inherited problem of sliding mode control due to the discontinuity of the ’sign’ function.
Different approaches are proposed in the literature to tackle this problem (Gambhire et al., 2021). Nevertheless, the
easiest way is to replace the sign function with a hyperbolic tangent function that smooths the chattering. Hence,
in Figure 7, commands are smoother. But, in case 2, they are oscillatory because of the workload on the controller
due to the disturbances and uncertainties, and these oscillations are perfectly manageable by the actuators.
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Figure 6: State variables: Case 1 (red); Case 2 (blue).

Figure 7: Thrusters rpm: Case 1 (red); Case 2 (blue).

Furthermore, the vector norms of the neural network weights in Figure 9 show that they are bounded, indicating
the convergence of the neural networks. This success is due to the proposed composite learning-based neural
networks, combined with a disturbance observer and state estimator. As demonstrated in Figure 10, this approach
effectively estimates and compensates for complex model terms and system dynamics changes caused by various
uncertainties, highlighting the robustness of the proposed methodology.

5 Conclusions
Starting from a synthetic model, A neuro-adaptive sliding mode control based on composite learning was

proposed for Blucy UUV. The neural network, in conjunction with the disturbance observer and state estimator,
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Figure 8: Controlled states (u,w,r,ψ): Case 1 (red); Case 2 (blue); Desired (black).

is trained to estimate the uncertainties and disturbances. The estimation error of the state observers is added to
the learning rule of the neural network (such a learning process is called composite learning) to have a resilient
and adaptive control system. Furthermore, to solve the underactuated problem, a line-of-sight guidance based on
look-ahead distance is proposed. The effectiveness of the proposed guidance and control method in tracking a path
of a real operational scenario was demonstrated successfully through simulations using a high-fidelity simulator
of Blucy in the presence of uncertainties and disturbances. The chattering of the sliding mode control action is
addressed by replacing the sign function with a hyperbolic tangent function. Notably, the composite learning
process eliminates the need for prior knowledge of uncertainties and disturbances, obviating the necessity for high
learning rates typical of neuro-adaptive schemes. The article’s novelty lies in the design of a composite learning-
based, neural adaptive sliding mode control system tailored for Blucy UUV.

Future work will focus on enhancing the robustness and adaptability of the control system in real-world oper-
ational scenarios. It includes optimising the parameters of the neural network and disturbance observer for better
prediction and compensation of dynamic environmental disturbances. Additionally, efforts will be made to imple-
ment and test the proposed control strategies on the physical system to validate simulation results.
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