000011102 001__ 11102 000011102 005__ 20240625161551.0 000011102 245__ $$aHydro-elastic analysis of carbon composite marine propeller using co-simulation technique 000011102 269__ $$a2019-11-05 000011102 336__ $$aConference Proceedings 000011102 520__ $$aCarbon fibre composite has extremely high strength, low density and no corrosion in sea water. These characteristics make it a favourable alternative for consideration as material for marine screw propellers. The obvious advantages are lightweight propeller, resistance to corrosion, and possibly favourable fatigue characteristics. As against this, the relatively higher flexibility of material needs investigation since change of geometry due to load on the blades can affect the hydrodynamic performance. These materials are reduced stiffness and anisotropic in nature, and therefore hydro-elastic based performance analysis is required to understand their performance in operating condition. The current study focuses on numerical investigation for the hydro-elastic based performance analysis of a composite marine propeller in open water condition. The procedure involves the coupling of  Reynolds-Averaged Navier-Stokes Equation (RANSE) based Computational Fluid Dynamics (CFD) solver with the Finite Element Method (FEM) solver using Co-Simulation technique. The open water characteristics including thrust coefficient (KT), torque coefficient (KQ), and open water efficiency (ηo ) analyzed as a function of the advance ratio (J). This paper presents a comparison of the hydrodynamic performance between the composite propeller and a conventional steel propeller taking into account the structural response under loading. The results for the composite propeller show improved thrust value in comparison with the conventional metallic propeller. 000011102 542__ $$aCC-BY-4.0 000011102 7001_ $$aKumar, A$$uIndian Institute of Technology 000011102 7001_ $$aSubramanian, VA$$uIndian Institute of Technology 000011102 7001_ $$aVijaykuma, R$$uIndian Institute of Technology 000011102 773__ $$tConference Proceedings of ICMET 000011102 773__ $$jICMET 2019 000011102 8564_ $$9c285055f-c66a-4e2c-baf3-de69825df544$$s1505208$$uhttps://library.imarest.org/record/11102/files/Paper%2010%20-%20Numerical%20investigation%20on%20two%20way%20coupled%20FSI%20analysis%20for%20a%20marine%20propeller%20using%20morphing%20technique%20.pdf