TY - GEN AB - Carbon fibre composite has extremely high strength, low density and no corrosion in sea water. These characteristics make it a favourable alternative for consideration as material for marine screw propellers. The obvious advantages are lightweight propeller, resistance to corrosion, and possibly favourable fatigue characteristics. As against this, the relatively higher flexibility of material needs investigation since change of geometry due to load on the blades can affect the hydrodynamic performance. These materials are reduced stiffness and anisotropic in nature, and therefore hydro-elastic based performance analysis is required to understand their performance in operating condition. The current study focuses on numerical investigation for the hydro-elastic based performance analysis of a composite marine propeller in open water condition. The procedure involves the coupling of  Reynolds-Averaged Navier-Stokes Equation (RANSE) based Computational Fluid Dynamics (CFD) solver with the Finite Element Method (FEM) solver using Co-Simulation technique. The open water characteristics including thrust coefficient (KT), torque coefficient (KQ), and open water efficiency (ηo ) analyzed as a function of the advance ratio (J). This paper presents a comparison of the hydrodynamic performance between the composite propeller and a conventional steel propeller taking into account the structural response under loading. The results for the composite propeller show improved thrust value in comparison with the conventional metallic propeller. AD - Indian Institute of Technology AD - Indian Institute of Technology AD - Indian Institute of Technology AU - Kumar, A AU - Subramanian, VA AU - Vijaykuma, R DA - 2019-11-05 ID - 11102 JF - Conference Proceedings of ICMET L1 - https://library.imarest.org/record/11102/files/Paper%2010%20-%20Numerical%20investigation%20on%20two%20way%20coupled%20FSI%20analysis%20for%20a%20marine%20propeller%20using%20morphing%20technique%20.pdf L2 - https://library.imarest.org/record/11102/files/Paper%2010%20-%20Numerical%20investigation%20on%20two%20way%20coupled%20FSI%20analysis%20for%20a%20marine%20propeller%20using%20morphing%20technique%20.pdf L4 - https://library.imarest.org/record/11102/files/Paper%2010%20-%20Numerical%20investigation%20on%20two%20way%20coupled%20FSI%20analysis%20for%20a%20marine%20propeller%20using%20morphing%20technique%20.pdf LK - https://library.imarest.org/record/11102/files/Paper%2010%20-%20Numerical%20investigation%20on%20two%20way%20coupled%20FSI%20analysis%20for%20a%20marine%20propeller%20using%20morphing%20technique%20.pdf N2 - Carbon fibre composite has extremely high strength, low density and no corrosion in sea water. These characteristics make it a favourable alternative for consideration as material for marine screw propellers. The obvious advantages are lightweight propeller, resistance to corrosion, and possibly favourable fatigue characteristics. As against this, the relatively higher flexibility of material needs investigation since change of geometry due to load on the blades can affect the hydrodynamic performance. These materials are reduced stiffness and anisotropic in nature, and therefore hydro-elastic based performance analysis is required to understand their performance in operating condition. The current study focuses on numerical investigation for the hydro-elastic based performance analysis of a composite marine propeller in open water condition. The procedure involves the coupling of  Reynolds-Averaged Navier-Stokes Equation (RANSE) based Computational Fluid Dynamics (CFD) solver with the Finite Element Method (FEM) solver using Co-Simulation technique. The open water characteristics including thrust coefficient (KT), torque coefficient (KQ), and open water efficiency (ηo ) analyzed as a function of the advance ratio (J). This paper presents a comparison of the hydrodynamic performance between the composite propeller and a conventional steel propeller taking into account the structural response under loading. The results for the composite propeller show improved thrust value in comparison with the conventional metallic propeller. PY - 2019-11-05 T1 - Hydro-elastic analysis of carbon composite marine propeller using co-simulation technique TI - Hydro-elastic analysis of carbon composite marine propeller using co-simulation technique UR - https://library.imarest.org/record/11102/files/Paper%2010%20-%20Numerical%20investigation%20on%20two%20way%20coupled%20FSI%20analysis%20for%20a%20marine%20propeller%20using%20morphing%20technique%20.pdf VL - ICMET 2019 Y1 - 2019-11-05 ER -