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Synopsis

Deterministic models based on the laws of physics, as well as data-driven models, are often used to assess
the current state of vessels and their systems, as well as predict their future behaviour. Predictive maintenance
methodologies (i.e., Condition Based Maintenance) and advanced control strategies (i.e., Model Predictive Con-
trol) are built upon the use of such numerical tools to identify ensuing performance shifts. In fact, forecasting
near-future performance can substantially contribute to enhancing operational efficiency and enabling advanced
system control. Data from modern sensor technology, which has become more readily available, combined with
automatic control systems capable of prescribing optimal control strategies, can improve vessel operation and re-
duce energy consumption. A data-driven model that relies on recent advances in Artificial Intelligence, Machine
Learning, and Data Mining, leveraging historical observations is employed to forecast a vessel’s onboard power
generation trends as a function of the past, present, and future behaviour of a ship and its systems. To prove the
framework, the proposed methodology is tested on real data collected from the Integrated Platform Management
System of an Oceangoing Patrol Vessel of the Royal Netherlands Navy. The developed data-driven model is
achieves high forecasting accuracy in the near-term. The authors foresee that the proposed methodology could
be used as part of an electric energy control strategy, within a more integrated and intelligent mission planning
framework.

Keywords: Near-Term Forecasting, Machine Learning, Electric Power Generation, Hybrid Propulsion, Data-Driven
Models.

1 Introduction
In order to meet IMO goals and the Netherlands Ministry of Defense (MoD) ambitions to reduce greenhouse

gas emissions and fossil fuel dependency by 70% before 2050 (International Maritime Organisation (IMO), 2018;
Netherlands MoD, 2015), shipping, in general, and the Royal Netherlands Navy, specifically, urgently need to in-
crease their energy efficiency. While advanced hybrid propulsion and hybrid power generation systems can reduce
warship energy efficiency by up to 40% (Schulten et al., 2017), current ships with hybrid propulsion do not utilise
their generators at their most efficient working point leading to 10% to 15% additional fuel consumption (Vasilikis
et al., 2022; Vasilikis, 2020). Optimisation-based power and energy management systems can increase the effi-
ciency of the energy system and reduce greenhouse gas emissions by optimising the allocation of load to various
power sources (Xie et al., 2022; Jaurola et al., 2019). For a case study Offshore Patrol Vessel (OPV), such an
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optimisation strategy that runs the diesel generators close to its most efficient working point in a DC distribution
system with battery energy storage, can lead up to 15% fuel savings (Zahedi et al., 2014).

Advanced and optimal control strategies for the operation of various onboard systems and equipment are nec-
essary to ensure energy efficiency (Mehrzadi et al., 2020), supplement operational planning (Vorwald et al., 2016),
and enhance safety on a vessel (Duan et al., 2015). Many propulsion systems and auxiliary loads such as weapon
systems for naval vessels, hotel and service loads, and dynamic positioning systems are dependent on the produced
electrical supply (Skjong et al., 2016). Therefore, smooth operation of a power generation system is not only cru-
cial for energy efficiency onboard, but also essential for safety out at sea, where an electric black-out could lead to
catastrophic events.

To ensure improved energy efficiency and safety, various strategies and methods are employed to control a
vessel’s dynamic power systems by utilising real-time feedback and state predictions or a forecast of the system’s
future behaviour (Xie et al., 2022). For example, Model Predictive Control (MPC) has gained popularity due to the
incorporation of a forecast of system parameters for a set time horizon within its structure, which has been shown
to increase performance compared to controllers that lack advanced knowledge of changes in power load (Opila
et al., 2018). In this sense, an MPC strategy relies on a forecasting method or model that can accurately identify
ensuing operational shifts (Camacho and Alba, 2013; Schwenzer et al., 2021; Dahl et al., 2018). Control inputs to
the system can then be optimised to ensure the power generation system’s efficiency and ability to deal with fast
transients, avoiding blackout scenarios. Therefore, energy and power management and electrical system safety can
be improved by forecasting the future load of the power system.

Automatic monitoring systems are now standard on new-built vessels and are increasingly often retrofitted to
older vessels, making high-fidelity and high-frequency data more readily available (Valchev et al., 2022). The broad
range of on-board sensors on ships has allowed maritime researchers to utilise varying subsets of the available data
features in developing purpose-specific Machine Learning (ML) forecasting models (Khan et al., 2005; De Masi
et al., 2011; Üney et al., 2019; Abualhaol et al., 2018). The ability to forecast a key parameter or a parameter set
in the short term is essential for many control strategies for marine applications. Apart from the popular Neural
Network-based methods, which require extensive training and validation datasets (Coraddu et al., 2015), kernel
methods (e.g. Support Vector Machines) are also often explored, for example, in applications such as vessel
motion forecasting (Zhou and Shi, 2010) and vessel traffic flow forecasting (Haiyan and Youzhen, 2015; Feng
et al., 2011).

Similarly, data from monitoring systems can be used for the forecast of electrical loads (Zhao et al., 2021;
Kim et al., 2021; Mehrzadi et al., 2020). For shore utility grids, the load demand of industrial and residential
electrical power consumers can be predicted based on historical load profiles in combination with forecasts of
the dew point and temperature with a sequence-to-sequence (seq2seq) forecast framework previously applied to
translation learning (Zhao et al., 2021). Kim et al. (2021) has demonstrated historical data on ship speed, relative
wind, ship draught, propulsion, and auxiliary load on a predetermined route can be used to predict propulsion
and auxiliary load on the same route under predetermined conditions for route planning purposes. Furthermore,
Mehrzadi et al. (2020) has demonstrated the use of a novel recurrent neural network algorithm to forecast thruster
power to counter environmental disturbances for dynamic positioning applications. However, the use of marine
environment and ship system monitoring data to forecast electrical load in the short term during sailing with hybrid
propulsion has not yet been addressed.

Therefore, in this paper, the authors aim to accurately forecast the short-term electrical load of a vessel with
hybrid propulsion, with both auxiliary loads and propulsion power supplied simultaneously by the electrical power
generation plant. To do this, a kernel-based ML approach, Kernel-Based Regularised Least Squares (KRLS) (Vovk,
2013), which has not previously been applied to vessel power forecasting, is used to learn a forecasting model based
on high-fidelity sensor data from the automatic monitoring system of a Naval vessel. The work clearly demon-
strates that the proposed methodology can predict future load changes without complex hydrodynamic physical
models, even during manoeuvring.

The rest of the paper will be structured as follows: Section 2 presents the sensor data from the Holland Class
OPVs that is used to train and evaluate the forecasting models. Section 3 outlines the proposed forecasting method
and how it is applied in the current work. Based on the results presented in Section 4, a discussion is carried out,
drawing observations on the performance and potential of the developed methods. Finally, the work is concluded
in Section 5 and avenues for future research are discussed.

2 Problem and Dataset Description
The schematic representation of the hybrid propulsion and combustion power supply system is illustrated in

Figure 1. The propulsion of the vessel is either from two propulsion electric motors (PEMs) for low-speed sailing
or from one or two main diesel engines for sailing at cruise speed and high speed. Vasilikis et al. (2022) has
demonstrated that the load of the power system for the steering, mission, and auxiliary systems is fairly consistent,



Figure 1: Schematic representation of hybrid propulsion plant with combustion power generation of the case study
vessel

but that the load varies significantly when sailing in electric propulsion mode on its two PEMs. Moreover, the
current power management system, in combination with operator decisions, does not ensure the diesel generators
are running at its optimum operating point (Vasilikis et al., 2022). Therefore, a hybrid power generation system,
with generators operating at their optimal load and batteries supplying load levelling, with an energy management
system that takes into account future load forecast, can achieve an estimated 10% to 15% fuel savings.

Thus, the current work seeks to address the problem of predicting short-term trends in power generation by
leveraging real operational data and state-of-the-art data-driven methods, toward maximising electric propulsion
plants’ efficiency and safety, whilst maximising blackout prevention, and minimising downtime. To this aim, real
data describing the operational behaviour of a hybrid propulsion system has been used over periods characterized
by full electric propulsion mode on its two PEMs. In detail, the Holland Class OPV sensor dataset fully encapsu-
lates the vessel’s operation, including over 70 features that describe the vessel’s propulsion, steering, navigation,
and energy generation systems, as well as the load characteristics including trim and draft, as described in Table 1.
From the total dataset, periods during which the vessel was sailing in full electric mode were selected based on
the propulsion and sailing mode parameters in the dataset. In particular, a time period of almost 40 hours, within
which the OPV operates in electric propulsion mode is utilised for model training, validation, and testing. This
translates to a time series of around 47000 data points with a sampling period of 3 seconds.

In the dataset covering a period of 40 hours, the ship sails using its two PEMs. Operation on the PEMs is
characterised by slow speed sailing and limited maneuvering, as the main diesel engines are engaged when higher
speed and instant acceleration are required. The complete dataset used for training and validation consists of sailing
periods at speeds between 4 and 9 knots and shaft speed settings between 50 and 90 rpm, as shown in Figure 2.
The total electrical load for propulsion, steering, mission and auxiliary systems ranges from 900 to 1200 kW. The
variation in load (see Figure 2(a)) is mainly influenced by the electrical propulsion motor load. When sailing on 2
PEMs the ship typically has two generators providing the electric power to the electric grid. This leads to a load in
the range from 450 to 600 kW per generator (see Figure 2(d)). The data in Table 1 will be used to predict the total
auxiliary load to be shared between the two diesel generators, which could be used in similar vessels to ensure
better load sharing between the generators and additional batteries installed.

A subset of the dataset of 4 hours duration has been kept aside from training and validation data to test whether
the established data-driven model can be used to forecast future load. This dataset consists of a period of 4 hours
of sailing at around 6 knots with a constant shaft speed setting of 65 rpm shaft speed and 1180 rpm electric motor
speed. During this manoeuvre, the ship takes two turns, one turn to starboard with a 35° starboard (SB) rudder
angle and one turn to port with a 35° port rudder angle. This leads to an increase in the power absorbed by the
PEMs due to the extra hydrodynamic load on the propeller. Only a complex hydrodynamic model would be able
predict this effect physically.

3 Proposed Approach
In the proposed context, namely the forecasting of near-term vessel electric power generation based on an input

feature set describing the operation of the vessel, a general modelisation framework can be defined, characterized
by an input space X ⊆Rd , an output space Y ⊆Rd , and an unknown relation µ : X −→Y to be learned (Shalev-
Shwartz and Ben-David, 2014; Hamilton, 1994). Within the current work, X contains the features listed in Table 1,
whereas Y consists of the target parameter, namely the Total Produced Auxiliary Power. In this context, the authors
define the model h : X −→ Y as an approximation of µ . The aim of the current work is to develop a model h that
is able to predict vessel performance parameters in the short-term.



(a) Portside: propeller rotational speed. (b) Speed through water.

(c) Diesel generators percentage load. (d) Diesel generators produced power.

Figure 2: Subset of relevant features distribution for the considered dataset

In the case of a forecasting framework, such as the current scenario, the input space X is comprised of past
and current information in a defined time window [t −∆−, t] (i.e. historical information about the input parameters
described in Table 1 spanning multiple data points up to ∆− seconds in the past), while the output space Y consists
of the total electric energy production at time t+∆+. For a better understanding, the above is graphically portrayed
in Figure 3. ∆− and ∆+ define the characteristics of the forecasting procedure. In particular, ∆− is a hyperparameter
which controls the amount of historical information to be exploited to predict the future state of the target feature.
Being a hyperparameter, there is an optimal value for ∆− which balances between having too little historical
information (i.e., ∆− being too small) to be able to make accurate forecasts and having too much information (i.e.,
∆− being too large), which would make the model susceptible to the curse of dimensionality (Shalev-Shwartz
and Ben-David, 2014; Oneto, 2020; Hamilton, 1994). On the other hand, ∆+ is application specific, as the time
horizon within which accurate predictions can be expected is not the same between different scenarios. Logically,
the further into the future we try to predict, the lower the accuracy of and confidence in the results (Shalev-Shwartz
and Ben-David, 2014; Oneto, 2020; Hamilton, 1994).

The approximating model h can be obtained through different types of techniques, for example, requiring
some physical knowledge of the problem, as in physics-based methods, or the acquisition and utilisation of large
amounts of data, as in data-driven methods. In this paper, a Machine Learning approach is adopted, as discussed in
Section 1, to map the task of forecasting onboard electrical generation into a typical regression problem (Vapnik,
1998; Shawe-Taylor et al., 2004). In fact, ML techniques aim at estimating the unknown relationship µ between
input and output through a learning algorithm AH which exploits historical data to learn h and where H is a set
of hyperparameters which characterises the generalisation performance of A (Oneto, 2020). The historical data
consists of a series of n examples of the input/output relation µ and are defined as Dn = {(x1,y1), ...,(xn,yn)},
where x ∈ X and y ∈ Y .

As mentioned in Section 1, in the current work an ML algorithm coming from the Kernel methods family called
KRLS (Vovk, 2013) is utilised. The idea behind KRLS can be summarised as follows. During the training phase,
the quality of the learned function h(x) is measured according to a loss function l(h(x),y) (Rosasco et al., 2004)
with empirical error



Input Variables
Variable Name Unit Variable Name Unit

Speed through water knots SB Prop. shaft speed rpm
PS Prop. shaft speed rpm SB Prop. pitch %

PS Prop. pitch % SB Prop. shaft torque Nm
PS Prop. shaft torque Nm SB Rudder Angle °

PS Rudder Angle ° SB PEM absorbed power kW
PS PEM absorbed power kW DG1 Fuel cons. l/h

DG2 Fuel cons. l/h DG3 Fuel cons. l/h
DG1 produced power kW DG2 produced power kW
DG3 produced power kW DG1 Load %

DG2 Load % DG3 Load %
SB PEM speed rpm PS PEM speed rpm

Bow thruster absorbed power kW Draft at bow m
Draft at stern m Rate of turn °/s

Target Variable
Variable Name Unit

Total Produced Power kW

Table 1: Dataset Features

Figure 3: Data-Driven proposed framework for forecasting

L̂n(h) =
1
n

n

∑
i=1

l(h(xi),yi). (1)

A simple criterion for selecting the final model during the training phase could then consist in simply choosing
the approximating function that minimises the empirical error L̂n(h). This approach is known as empirical risk
minimisation (ERM) (Vapnik, 1998). However, ERM is usually avoided in ML as it leads to severe overfitting of
the model on the training dataset. In fact, in this case, the training process could choose a model, complicated
enough to perfectly describe all the training samples (including the noise that afflicts them). In other words ERM
implies memorisation of data rather than learning. A more effective approach is to minimise a cost function where
the trade-off between accuracy on the training data and a measure of the complexity of the selected model is
achieved (Tikhonov and Arsenin, 1979), implementing the Occam’s razor principle

h∗ : min
h

L̂n(h)+λC(h). (2)

In other words, the best approximating function h∗ is chosen as one that is complicated enough to learn from the
data without overfitting. In particular, C(h) is a complexity measure: depending on the Machine Learning approach
used, different measures are realised. Instead, λ ∈ [0,∞] is a hyperparameter, that must be set a-priori and is not
obtained as an output of the optimisation procedure: it regulates the trade-off between the overfitting tendency,
related to the minimisation of the empirical error, and the underfitting tendency, related to the minimisation of



C(h). The optimal value for λ is problem-dependent, and tuning this hyperparameter is a non-trivial task, as will
be discussed later in this section. In KRLS, models are defined as

h(x) = wT
ϕ(x), (3)

where ϕ is an a-priori defined Feature Mapping (FM) (Shalev-Shwartz and Ben-David, 2014) allowing to keep
the structure of h(x) linear. The complexity of the models, in KRLS, is measured as

C(h) = ∥w∥2, (4)

i.e., the Euclidean norm of the set of weights describing the regressor, which is a standard complexity measure
in ML (Shalev-Shwartz and Ben-David, 2014; Vovk, 2013). Regarding the loss function, the square loss is typically
adopted due to its convexity, smoothness, and statistical properties (Rosasco et al., 2004)

L̂n(h) =
1
n

n

∑
i=1

l(h(xi),yi) =
1
n

n

∑
i=1

[h(xi)− yi]
2. (5)

Consequently, Problem (2) can be reformulated as

w∗ : min
w

n

∑
i=1

[wT
ϕ(x)− yi]

2 +λ∥w∥2. (6)

By exploiting the Representer Theorem (Schölkopf et al., 2001), the solution h∗ of the Problem (6) can be
expressed as a linear combination of the samples projected in the space defined by ϕ

h∗(x) =
n

∑
i=1

αiϕ(xi)
T

ϕ(x). (7)

It is worth highlighting that, according to the kernel trick, it is possible to reformulate h∗(x) without explicit
knowledge of ϕ , and consequently avoiding the curse of dimensionality of computing ϕ , using a proper kernel
function K(xi,x) = ϕ(xi)

T ϕ(x):

h∗(x) =
n

∑
i=1

αiK(xi,x) (8)

Several kernel functions can be found in the literature (Cristianini et al., 2000; Schölkopf, 2001), each with a
particular property that can be exploited according to the problem under examination. Usually, the Gaussian kernel
is chosen

K(xi,x) = e−γ∥xi−x∥2
, (9)

because of the theoretical reasons described in Keerthi and Lin (2003); Oneto et al. (2015) and because of
its effectiveness (Fernández-Delgado et al., 2014; Wainberg et al., 2016). γ is another hyperparameter, which
regulates the non-linearity of the solution that must be tuned as will be described later. Basically, the Gaussian
kernel is able to implicitly create an infinite dimensional ϕ , and because of this, KRLS is able to learn any possible
function (Keerthi and Lin, 2003). The KRLS problem of Eq. 6 can be reformulated by exploiting kernels as

α∗ : min
α

∥Qα−y∥2 +λαT Qα, (10)

where y = [y1, ...,yn]
T , α = [α1, ...,αn]

T , the matrix Q such that Qi, j = K(x j,xi), and the identity matrix I ∈
Rnxn. By setting the gradient equal to 0 w.r.t. α, it is possible to state that

(Q+λ I)α∗ = y, (11)

which is a linear system for which effective solvers have been developed over the years, allowing it to cope
with even very large sets of training data (Young, 2003).

One problem remains, namely, how to choose the hyperparameters of the forecasting method, namely λ , γ and
∆−. These directly influence the model’s ability to approximate µ , therefore requiring a proper Model Selection
(MS) and Error Estimation (EE) procedure (Oneto, 2020) to be tuned. Resampling techniques such as k-fold
Cross Validation (Kohavi et al., 1995), the nonparametric Bootstrap (Efron and Tibshirani, 1994), or Monte Carlo
simulation (Metropolis and Ulam, 1949) are normally used when dealing with real-world scenarios, as these have
been observed to perform well in practice (Coraddu et al., 2021). When utilising Resampling techniques, the



Total power generation forecasting
∆+[s] Optimised ∆−[s] MSE [kW2] MAPE [%] REP [%]

3 6 25.7±3.1 0.26±0.01 0.42±0.04
6 9 52.0±5.9 0.48±0.01 0.74±0.04

15 21 99.1±9.3 0.64±0.01 1.03±0.05
30 27 167.1±10.9 0.87±0.02 1.35±0.04
60 33 307.2±20.9 1.22±0.04 1.82±0.06
120 39 549.1±33.7 1.72±0.04 2.44±0.07
240 45 981.0±52.9 2.22±0.04 3.27±0.09

Table 2: MSE, MAPE, and REP values of the proposed model when changing ∆+ with the identified optimal ∆−.

original dataset Dn is resampled a number of times (nr), with or without replacement, to build three independent
datasets called learning, validation and test sets, respectively L r

l , V r
v , T r

t , with r ∈ {1, ...,nr}, such that

L r
l ∩V r

v =⊘, L r
l ∩T r

t =⊘, V r
v ∩T r

t =⊘ (12)

L r
l ∪V r

v ∪T r
t = Dn (13)

Following this, to perform the MS process and select the best set of hyperparameters H = {λ ,γ,∆−} from the
set of all possible ones H= {H1,H2, ...} for the specific algorithm AH , the following procedure must be applied:

H ∗ : arg min
H ∈H

nr

∑
r=1

M(AH (L r
l ),V

r
v ), (14)

where h=AH (L r
l ) is a model built with the algorithm A with its set of hyperparameters H and with the data

L r
l and where M(AH (L r

l ),V
r

v ) is a desired metric. Since the data in L r
l is independent of the data in V r

v , H ∗

should be a set of hyperparameters, which allows AH to achieve good performance on unseen data. Furthermore,
for the EE phase, the optimal model h∗A = AH ∗(Dn) is evaluated according to:

M(h∗A ) =
1
nr

nr

∑
r=1

M(AH ∗(L r
l ∪V r

v ),T
r

t ) (15)

Similarly to the process of MS, since the two datasets (L r
l ∪V r

v and T r
t ) are independent, M(h∗A ) estimates

the true performance of the final model without bias (Oneto, 2020).
In the current work, the MS procedure is completed using Monte Carlo simulation without replacement (Metropo-

lis and Ulam, 1949). Within this, l = 0.7ns, v = 0.15ns, and t = 0.15ns, where ns is the number of data points to be
resampled from Dn in each Monte Carlo iteration. The latter is implemented as a user input, which balances the
computational requirement of the model and the accuracy & confidence of its results. For what concerns the error
metric M, Mean Square Error (MSE) is used here for the reasons outlined earlier in this section. Additionally,
to analyze and ensure the performance of the developed model, Mean Absolute Percentage Error (MAPE) and
Relative Error Percentage (REP), as well as a range of visualization methods are also utilized.

4 Experimental Results & Discussion
The current section shows and discusses the results obtained according to the methods described in Section 3,

leveraging the real-world sensor data described in Section 2. The best performing model was selected with Monte
Carlo simulation from the hyperparameter grids: H = {λ ,γ,∆−}, chosen inH= {10−5,10−4.63,10−4.26, ...,102}×
{10−3,10−2.74,10−2.47, ...,102}×{3,6, ...,63}. The statistical validity of the results is demonstrated with averages
over 30 iterations, along with their t-student 95% confidence intervals. The MS and EE results for the future fore-
cast power system load are presented in Table 2 over a varying time horizon, for the best historical data duration.
Additionally, in Figure 4, the committed MAPE and REP of the forecasting model are presented graphically,
together with the corresponding ∆+ and optimised ∆−.

The modelling results demonstrate accurate predictions of the total future load of the power system under
changing conditions. For very short-term predictions, the model is accurate and able to follow fluctuations in the
power system based on a short history of past information (6 seconds). For predictions further into the future, the
accuracy reduces but remains within 2% MAPE for predictions up to 2 minutes into the future. As the forecast
moves further into the future, the level of historical knowledge that is utilised by the optimum model, selected
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(b) REP at different ∆+ with optimal ∆−

Figure 4: MAPE 4(a) and REP 4(b) behaviour as a function of ∆+ with the identified optimal ∆−.
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(b) PEM Motor Speed.
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(d) Actuated Rudder Angle.
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(f) Rate of turn based on center of gravity.

Figure 5: Time frame and representative subset of propulsive features for the test set considered in full electric
operating mode.

by the methodology described in Section 3, naturally increases. In conclusion, the model performs well and its
accuracy seems to suggest that it can be used for control strategies that can utilise load forecasts.

To verify and understand the high accuracy of the forecast and to evaluate the applicability of the model, the
model was further tested on the unseen set of data that represents full electric operation at constant speed with
rudder actuation, as described in Section 2 and shown in Figure 5. When predicting the future load of the power
system 3s into the future, the prediction is accurate, the forecast follows the actual trend, but does not accurately
follow the fluctuations (Figure 6). This confirms that the model can provide a forecast, but its applicability is
limited, as it does not follow the smaller fluctuations exactly. When increasing the future horizon to up to 60s
into the future, the forecast still follows the trend (Figures 7 and 8). However, when the power increases due
to an operator-initiated event such as rudder actuation, this causes a delay of up to 60s between the start of the
rudder actuation and the power increase. As the power increase during rudder actuation takes over 2 minutes to
reach its maximum, the prediction horizon of 60s allows an early forecast of power increase, before the peak of
the increase has been achieved. For other systems that cause a power increase, the time between a command and
the actual power increase could also allow an accurate forecast. More autonomous systems, such as an autopilot,
that actuate system loads based on data would potentially allow even more accurate forecasts, potentially also over
longer horizons. These forecasts with different horizons could be used in power and energy management strategies
that perform load levelling or energy management in systems with multiple power sources with different dynamic
responses, such as combustion engines, fuel cells, batteries, and ultracapacitors.



Figure 6: Real distribution - top left, scatter plot (Actual vs Predicted) - top middle, error distribution - top right,
and trend in time (Actual vs Predicted) of produced power - bottom, when ∆+ is 3s and optimal ∆− is 6s, according
to Table 2

Figure 7: Real distribution - top left, scatter plot (Actual vs Predicted) - top middle, error distribution - top right,
and trend in time (Actual vs Predicted) of produced power - bottom, when ∆+ is 15s and optimal ∆− is 21s,
according to Table 2



Figure 8: Real distribution - top left, scatter plot (Actual vs Predicted) - top middle, error distribution - top right,
and trend in time (Actual vs Predicted) of produced power - bottom, when ∆+ is 60s and optimal ∆− is 33s,
according to Table 2

Figure 9: Real distribution - top left, scatter plot (Actual vs Predicted) - top middle, error distribution - top right,
and trend in time (Actual vs Predicted) of produced power - bottom, when ∆+ is 240s and optimal ∆− is 45s,
according to Table 2



5 Conclusion & Future work
In this paper, a short-term electric load forecasting method for ships with electric or hybrid propulsion is

presented based on a novel KRLS model that uses typical data of a commercial platform management system.
This model accurately predicts the future power requirement for the combination of electrical propulsion and
auxiliary systems loads, 6 seconds to 4 minutes ahead in time, based on the past 9 to 45 seconds of data. For
predictions up to 30 seconds into the future, the MAPE is within 1%. For predictions up to 2 minutes, the accuracy
reduces to 2% MAPE, but still maintains an average prediction error within 100 kW, even during load steps of 250
kW due to heavy rudder actuation. These short-term predictions can be used for novel load sharing algorithms for
future hybrid power systems, with combinations of combustion engines, fuel cells, batteries, and ultracapacitors
in order to use the batteries for load levelling and the ultracapacitors for pulse loads. They can also be used in
control strategies such as MPC and can allow sufficient time for automatic starting and stopping algorithms to start
additional diesel generators and prevent electrical blackouts.

The current implementation does not use information about the marine environment that surrounds the vessel
during operation due to insufficient sampling rate. In an ideal scenario, high granularity readings of wind, wave,
and currents are expected to increase the capability and performance of the forecasting model, due to the high
correlation between the environment and electrical power loads. Researchers have previously explored the use of
X-band radar readings of near-term ocean behaviour in the creation of vessel motion forecasting models. Due to
the connection between propulsive power and wave loads, it can be expected that for a hybrid propulsion vessel,
an electric power forecasting model would also benefit from the above. Considering the current success in the
development of an accurate short-term forecasting framework, the authors are interested in further developing the
methodology by supplementing the model with information about the surrounding environment, depending on the
availability of suitable data, as well as exploring other ML algorithms and their forecasting performance.
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