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Synopsis

The autonomous inland vessel has the potential to enable a hinterland modality shift to the waterway, however
economically-conscious solutions to the technological challenges are lacking. This paper explores the potential
role of stereovision technology as a primary sensor set within the application of autonomous inland vessels. The
design of a multi-camera navigation system for mid-range perception and localisation tasks is presented with a
view to providing sufficient data for collision avoidance tasks. The performance of these sensors in the application
is evaluated with experimental testing using small-scale vessels in an indoor tank, demonstrating their capabilities
and limitations for consideration in ongoing research.
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1 Introduction
Urban freight transportation (UFT) requires smaller vessels, specifically those under 300 tonnes for navigating

in restricted waterway environments. However, economic viability eludes the smaller inland vessel. In the Nether-
lands for example, the cumulative number of small inland vessels has been gradually declining since the turn of the
century (Sys and Vanelslander, 2011). As existing vessels reach their end-of-life, the preference for replacement
leans towards the economies of scale offered by larger ships. The impact of losing these small vessels is felt most in
urban areas where the freight transportation must shift modalities to the road network. This is a highly undesirable
trend given the less sustainable nature of road transportation and the ever-growing concerns about congestion.

Crew costs dominate the operational expenditure of small vessels, drawing key attention when attempting to
revive economic viability. Autonomy is considered to hold the potential to eliminate a large proportion of crew
costs. However with profitability being prominent, the initial investment and running costs of an autonomous
vessel must also be considered during technological research and development. Technologies that can enable the
automation of these vessels without infringing on economical objectives are consequently of critical interest to the
field of inland autonomy. Yet this factor is seldom encountered as a major research incentive.

The navigation system of an autonomous vessel requires sensors to perceive the environment and localise the
vessel’s own position. Radar and GPS/GNSS technology play primary roles in both autonomous applications
and conventional vessels, providing perception and localisation data respectively. In Table 1, typical technologies
encountered in autonomous vessel research are presented. The selection of these sensors is influenced by the
requirements of the application environment, with the majority of research to date simply focusing on acquiring
sufficient data to enable autonomous navigation. With the exception of a low-cost radar solution (Schuster et al.,
2014), little consideration has been made to the economical branch of reasoning during sensor selection.

Table 2 presents the main sensor options along with a comparison of the crucial technological characteristics.
Radar is the primary choice for perception tasks in autonomous vessels due to its proven, dependable reputation
from decades of being used as a navigation aid. Inland vessels operate in denser environments, experiencing closer
encounters with other vessels and static obstacles than sea-going vessels. Consequently achieving autonomy in
this setting requires extra provision for near-field perception. LiDAR is typically the go to solution as it provides
dense 3D point clouds of the nearby surroundings at a reasonable frequency, with only a linear range error. The
cost of LiDAR however is considered one of the main limitations, especially where 3D sensor is required. The
PuckTM from Velodyne Lidar© for example is one of the most affordable options yet still costs over $4000 USD
(Hu et al., 2021) and unlike more expensive solid-state sensors can also be susceptible to mechanical failures.

Imaging sensors offer an alternative means of collecting depth data through stereovision, with devices such as
the Intel© RealSenseTM starting from around $200 USD (Léger et al., 2021). Although a single stereovision device
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Citation Technology
Peeters et al. (2020) GPS, IMU, LiDAR,

Imaging
Wang et al. (2020) IMU, LiDAR, Imaging
Song et al. (2019a) Radar
Shi et al. (2019) Radar, AIS
Song et al. (2019b) AIS, Radar
Sun et al. (2019) AIS, Radar
Fan et al. (2019) GPS, Radar, AIS,

Sonar
Zhuang et al. (2016) Radar
Lyu and Yin (2019) AIS, Radar, GPS
Eriksen et al. (2018) Radar
Villa et al. (2020) GPS, LiDAR
Faggioni et al.
(2022)

LiDAR, Imaging

Villa et al. (2020) GPS, Radar, AIS, Li-
DAR, Imaging

Table 1: Navigation technologies utilised in
maritime autonomy.

Sensor Range Data
Frequency

Cost Limitations

Radar High Low Mid Surface
reflections

LiDAR Mid Mid High Vertical noise
& weather
sensitive

Imaging Low-
Mid

High Low Non-linear
range error &
light sensitive

Sonar Low-
Mid

Mid Mid Near-surface
noise

Table 2: Comparison of sensor technologies.

cannot provide a 360◦ horizontal coverage like Radar and LiDAR, a degree of vertical coverage comes at no extra
cost. Data from imaging sensors can also be processed using a wealth of computer vision techniques which are
highly enabling to automation. Range is however limited as stereovision is subject to a quadratic depth error and
to benefit fully from the sensors, good light and visibility are required. Sonar sensors are occasionally utilised by
autonomous surface vehicles however the technology does not provide a great source for perception due to surface
noise.

A sensor fusion technique with GPS and digital compass data has shown significant improvements over raw
sensor information (Liu et al., 2022) for self-localisation and an inland application has also taken the fusion ap-
proach by utilising LiDAR and cameras to further precision for an urban waterway environment (Wang et al.,
2020). The inland systems (Wang et al., 2020) (Peeters et al., 2020) in Table 1 both utilise stereovision however
the technology takes a back seat role to LiDAR. In the automotive sector, LiDAR was also once the primary sensor
choice, however its cost presented a barrier to consumer accessibility and studies proved the capability of vision
technology (Wang et al., 2019). A stereovision-based navigation system also has the potential to provide an apt
solution for autonomous inland vessels, especially when utilised for collision avoidance (Hepworth et al., 2021).

Rule five of the international collision regulations states that a vessel must maintain a proper look-out at all
times so to make a full appraisal of the situation and the risk of collision (IMO, 1972). Whilst a human will
never be able to maintain a look-out in all directions surrounding the vessel, at all times, their vision does not
have a fixed orientation, providing flexibility in field of view. When perceiving the environment using stereovision
devices, such flexibility is not achievable in the absence of a rotating mount, such as those used by LiDAR and
Radar sensors. Nonetheless, the application of a multi-device setup can overcome this obstacle and imaging sensors
are not susceptible to the same mechanical failures attributed with a rotating sensor. Furthermore, the application
of a multi-device setup provides an enhanced sensor fault tolerance as there is some physical redundancy should
one sensor fail.

This paper contributes a multi-device vision solution for autonomous vessels, utilising stereovision technology
and artificial intelligence to automate situational-awareness and self-localisation. This economically-conscious
navigation system is particularly well suited to application on the inland waterway, helping work towards the
restoration of the small inland vessel fleet and a sustainable modality shift.

The paper is organised as follows. Section 2 details the stereovision-based navigation system including its
application to a small-scale test vessel. Section 3 then covers a mapping procedure to post-process the navigation
data into a useful format for collision avoidance. Section 4 presents the results of experimental testing in an
indoor tank environment and in the Section 5, conclusions are drawn and recommendations for future research are
presented.



Figure 1: Model-scale test vessel utilised as the rig
for experimental testing. Figure 2: Perception Sensors - Field of View

2 Stereovision-based Navigation System
Supplying sufficient environmental awareness for a vessel to autonomously avoid collisions makes the role of

a navigation system critical. The stereovision-based solution presented in this section consequently applies its
focus to enabling interactions with dynamic obstacles on the waterways. A fully operational navigation system
of an autonomous vessel must have the capacity to perform perception and localisation under any condition of
visibility to comply with collision regulations. This paper narrows its focus to clear, well lit conditions for initial
development. This section is split into two main topics. The first sub-section details the perception tasks, which
involves the detection of obstacles and consequently determination of obstacle position to gain environmental
awareness. The second topic then covers the localisation tasks which concern the determination of the autonomous
vessel’s current position.

2.1 Perception
The proposed camera configuration can be seen in Fig. 1 with the coverage illustrated in Fig.2. A total of four

Intel© RealSenseTM D435i depth devices are utilised covering a forward weighted coverage around the vessel,
focusing on the critical interaction region for collision avoidance. The two blind spots that can be seen at the aft
of the vessel only cause a momentary lapse in perception tracking deemed permissible at this stage of testing.
However a comprehensive lookout could be achieved by the use of devices with wider angle lenses.

To minimise computational load for the multi-camera setup, a resolution of 480x240 at 15Hz was chosen for
this application. Due to the correlation between the distance and the depth error in a stereovision setup, it is
important to consider the range within which the device is designed to operate. In this case, the manufacturer
recommends use cases with a range of up to ten metres, which is sufficient for the scale vessel (1:75) in question.
For larger scale applications, the specific requirements would need to be considered, with the individual sensor
specifications and baseline influencing the operating range.

Each of the depth cameras has two infrared sensors that allow for a depth frame to be extracted from the
disparity map of the overlapping sensor coverage. An additional RGB sensor is also integrated into the device,
which in this application is utilised for obstacle detection, with the resultant region of interest (ROI) being used
to extract relevant position data from the point cloud data. As the colour and depth frames are not physically
aligned in the device, alignment must be conducted during post-processing. Sub-sampling is applied to the depth
frame directly prior to this alignment by decimating the depth frame through a factor of two, reducing subsequent
computation by a factor of four. It further has the benefit of removing dead depth pixels, which occur in instances
where the built-in stereo-matching algorithm cannot extract a depth value of acceptable accuracy.

The potential of artificial intelligence in maritime navigation is well founded, both for object detection (Prasad
et al., 2017) (Shao et al., 2018) (Kim et al., 2018) (Faggioni et al., 2022) and for trajectory prediction Tang et al.
(2022). The application of a Convolutional Neural Network (CNN) for object detection is further explored in this
implementation. The MobileNet Single Shot Detector v2 framework is utilised, with a model being custom trained
for this application from the COCO 2017 pre-trained backbone. At this stage of research the model is only trained
for one object, a model scale tugboat. A total of 1200 manually annotated images of the model-scale tugboat were
used to train the final model.

Running inference on the trained model creates a set of obstacle bounds (OB) for each object detected within
each image. These bounds describe are rectangular coordinates within the frame as defined in Eq. 1, where x and y
describe the horizontal and vertical pixel position respectively. These coordinates, together with the classification
of the object (Ctype), are the key outputs of the neural network and are illustrated by the annotated box in Fig. 3.



Figure 3: Example Obstacle Detection Output - The
resultant bounds and classification of the detected ob-
stacle are annotated on the input image. Figure 4: Body Reference Frame (Fossen, 2011)

As the model is only trained to recognise one vessel type at this stage, all detections will consequently carry the
classification of ’tugboat’.

OB = [xmin,ymin,xmax,ymax] (1)

The obstacles detected are subsequently analysed to determine their actual position within 3D space and due to
the collision avoidance application, this position is defined by the Closest Obstacle Point (COP). Whilst possible
to extract all three dimensions, the surface vessels only operate within two dimensions of freedom therefore this
point is defined only as a two dimensional coordinate. The extraction of the third dimension from the stereovision
data could be useful for navigation purposes when determining the height of overhead obstacles, such as bridges.
However, such information could better be determined using an algorithm specifically designed for this task,
leaving the scope of this project to focus on enabling avoidance around obstacles.

The minimum depth value is extracted from the ROI of each detected obstacle as defined in Eq. 2, where z is the
depth value at each pixel. The known depth value is then scaled to a distance (X) in metres and the lateral position
(Y ) of the obstacle can also be extracted from the device using built-in geometrical optics, taking the centroid of
the obstacle bounds as reference. The position of the contact vessel is at this stage defined in coordinates relative
to the device (D) with which the obstacle has been detected, as defined in Eq. 3. These device coordinates shall
later be translated in the mapping section, to merge all four devices into one coordinate system.

zmin = min(zxiy j), xi = xmin, ...,xmax, y j = ymin, ...,ymax (2)

COP = (XD,YD) (3)

2.2 Localisation
To localise the Autonomous Vessel, a dedicated tracking device is utilised which makes use of two fish eye

lenses and a built-in inertial measurement unit to conduct stereo V-SLAM (Visual- Simultaneous Localisation and
Mapping). The device selected for this application also belongs to the Intel© RealSenseTM range, with the T265
camera fulfilling this role.

The tracking camera is mounted to the bow of the vessel as seen in Fig. 1. The position at the bow of the
vessel was selected to minimise vision occlusions and IMU noise due to vibrations. The SLAM algorithm that
runs onboard the T265 uses a Visual-Intertial-Odometry (VIO) technique and provides pose directly to the vessel.
The two fish-eye sensors allow for a large field of view to be covered and a calibrated scale of the environment. The
further fusion of visual feature recognition with high frequency IMU data allows for the VIO algorithm to further
track movements over shorter time steps, enhancing the localisation accuracy. Allowing for initial acceleration
from a stationary position to be measured where vision alone would struggle.

The device directly provides position and orientation, therefore the only post-processing tasks concern transla-
tion to the desired coordinate frame and units. The local coordinate system is translated from the device coordinate
axes to correspond with the body reference frame and the extraction of Euler angles from the quaternion orientation
data. The position of the vessel is only required within two body-frame dimensions, xb and yb as defined in Fig. 4
and the Euler angle of main interest is the yaw angle (ψ) which provides a means to derive vessel heading.



3 Mapping Strategy
Mapping represents the final sub-task in the navigation system and is responsible for post-processing the per-

ception and localisation outputs into meaningful data for collision avoidance. Post-processing involves two main
procedures. Firstly, the translation of perception results to map positions into a single homogeneous reference
frame, and secondly the fusion of localisation and perception data to map the position of the AV and obstacles
in the global coordinate system. Obstacles are hereon referred to as Contact Vessels (CV), due to the collision
avoidance scope.

Figure 5: Multi-device Configuration for Perception. All linear dimensions in millimetres.
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XD
YD

)
(4)

Device Xo(m) Yo(m) γ(◦)

Fore 0.15 0 0
Aft 0.12 0 180
Port -0.64 -0.1 50
Starboard -0.64 0.1 -50

Table 3: Device orientation and position offsets.

Each CV position attained by the perception system is translated from the individual depth device coordinate
system into a consolidated AV domain. The origin of the AV domain, is located at the geometric centre of the
vessel as indicated by point CO in Fig.4, with the body axes orientation also matching that of the 2D AV coordinate
system. The relative camera is translated by applying the displacement from the origin point and accounting for
the configured angle through axes rotation. The displacement and angle for each camera can be found in Table
3. The result of translation is a set of CV coordinates within the AV domain (XAVD ,YAVD). One particularly useful
attribute for collision avoidance tasks which can be derived from this is the relative bearing of the CV as seen in
Eq. 6. This describes the angle between the AV’s forward direction and the CV position as can be visualised in
Fig. 6 (a).

β̂ = atan2(YAVD ,XAVD) (5)

β =

{
β̂ , β̂ ≥ 0
2π + β̂ , β̂ < 0

(6)

With the perception output coalesced into a singular coordinate frame, any replications that exist in the overlap-
ping field-of-view regions are removed and each CV is associated with an identification number for tracking over
time. Tracking is achieved using a Global Nearest Neighbour approach whereby the coordinates of each CV de-
tected in the current frame are compared with all CV positions in the previous frame and associated by minimising
Euclidean distance.

Global mapping is conducted by utilising the localisation data. The global coordinate system requires a base
map to be provided by the user that details the area of navigation, the starting position of the AV and the start
heading (ϕ0). The AV position (Xav,Yav) can thus be defined by summing the start position with the position
data from the localisation output. By monitoring the position over time, the AV speed (uav) can be determined,
following a constant time step of one second. The relative heading value is calculated through summing the initial
offset with the yaw value (ψ) as defined in Eq. 7 and then applying the cases in Eq. 8.



Figure 11(a): Bearing (β ) and Approach Angle (α) of
the CV in the AV domain.

Figure 11(b): Heading (ϕ) of the AV and Track angle
(τ) of the CV in the global domain.

Figure 6: Visualisation of Key Angles from the Mapping Procedure

ϕ̂ = ϕ0 +ψ (7)

ϕ =


ϕ̂ , 0 ≤ ϕ̂ ≤ 2π

2π + ϕ̂ , ϕ̂ < 0
ϕ̂ −2π, ϕ̂ > 2π

(8)

Defining the global coordinates of each obstacle (Xcv,Ycv) is accomplished through the translation of obstacle
coordinates in the AV domain using the current AV position and orientation. The velocity vector between the CV
position at the previous time step (one second) and the current position can be referred to as the relative track, with
the vessel speed (ucv) being the magnitude and the Track Angle (τ) being the direction. This Track Angle (τ) is
defined in Eq. 13 and can be seen as an estimation of the CV heading as visualised in Fig. 6 (b). To assist in
collision avoidance procedure it is also useful to know the angle at which a dynamic obstacle is moving relative
to the AV itself. This directional measure of obstacle dynamics is referred to as the approach angle (α) which is
defined in Eq. 15 and can be seen in Fig. 6 (a).(

Xcv
Ycv

)
=
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Xav
Yav

)
+

(
cosψ sinψ

−sinψ cosψ
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XAVD

YAVD

)
(9)(

∆Xcv
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Xcv(t)
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−
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Xcv(t −1)
Ycv(t −1)

)
(10)

ucv =
√

∆X2
cv +∆Y 2

cv (11)

τ̂ = (atan2(∆Ycv,∆Xcv)+ϕ0) (12)

τ =


τ̂ , 0 ≤ τ̂ ≤ 2π

2π + τ̂ , τ̂ < 0
τ̂ −2π, τ̂ > 2π

(13)

α̂ = τ −ϕ (14)

α =

{
α̂, α̂ ≥ 0
α̂ +2π, α̂ < 0

(15)



Figure 7: Experimental Setup - Front: Autonomous
Vessel(AV), rear: Contact Vessel (CV)

Figure 8: Pseudo-radar plot.

4 Experimental Results
The performance of the developed navigation system is evaluated hereon with data gathered through experi-

mental testing. The test environment and vessels used in experimental testing can be seen in Fig. 7 with the vessel
in the front acting as the autonomous vessel and the vessel behind as the contact vessel. The test environment is
further equipped with an OptiTrack© 3D tracking system that is used to extract ground truth vessel pose data from
tracking markers.

The performance of the mapping procedure is not the explicit focus of experimental testing in this work, rather
it is a post-processing task for collision avoidance. Instead the primary data which it relies on from the perception
and localisation tasks is assessed in detail. Nonetheless, the mapping procedure was reviewed for functionality
during experimentation. In Figure 8, a pseudo-radar plot can be seen which provides real-time visualisation of the
mapping output within the AV domain.

Evaluations of the perception and localisation systems are made independently in the following sub-sections
so to highlight the specific performance of the stereovision sensor solutions under each task. The perception and
navigation tasks were run onboard the AV’s NVIDIA Jetson TX2 during all testing.

4.1 Perception
The perception system is built within a ROS package and designed to run on the onboard Jetson TX2. The

output is published over the ROS network and was found to be capable of reliably supplying data at a frequency
of 5Hz. The robustness of obstacle detection and the accuracy of positioning are selected as key criteria for the
quantitative analysis. The precision/recall KPIs defined in Eq. 16 and 17, and the position error KPI defined Eq.
18 are used for this purpose.

Precision =
correct predictions

all predictions
(16)

Recall =
correct detections
all ground truths

(17)

RMSEpos =

√
∑

N
i=1(ôi −oi)2

N
(18)

where: oi = measured position, ôi = ground truth position, N = number of samples

AT Epos =

√
∑

N
i=1(p̂i − pi)2

N
(19)



AT Erot =

√
∑

N
i=1(ŷi − yi)2

N
(20)

where: pi, yi = measured values, p̂i, ŷi = ground truth values, N = number of samples
CNN model inference was tested on the NVIDIA Jetson TX2 mounted onboard the vessel, with frames being

processed from all four camera streams. Running inference on a TensorRT engine model was found to reduce
latency fivefold over a standard Tensorflow format. This enables obstacle detection to be processed at up to 10Hz
and does so without exhibiting a reduction in average precision. The obstacle detector demonstrated this high
precision with increasing recall, achieving a total precision of 97.4% and recall of 94.6%. However as the neural
network was both trained and tested with one type of obstacle in one environment, the significance of this result is
limited to the specific experimental environment.

The accuracy of obstacle positioning is evaluated using the accepted ground truth from the OptiTrack camera
system. The ground truth position is aligned with the centre-point (CO in Fig. 4) of the CV, whereas the perception
system provides the closest point (Eq. 3) to the AV. Data was collected within the ten metre range covered by the
perception system, with a total of 280 data points being gathered across three tests with varied vessel positioning.
A root mean square position error of 0.31 metres is obtained from the experimental data, as can be seen in Figure
9. Whilst this appears high with respect to the vessel dimensions, it is valuable to remember that the the COP
approach of the perception system carries an inherent safety factor. Correcting for the minimum causal deviation
of this safety factor (half vessel beam), already reduces this error to 0.16m. This evaluation therefore delivers
insight to the performance of the specific perception approach, rather than the stereovision sensor itself.

Figure 9: Perception System Position Error

4.2 Localisation
The localisation system is also built within a ROS package and tested on the Jetson TX2. A consistent stream

frequency of 10Hz was attainable. As such, should an ongoing process require a higher rate of localisation data,
this could be attained directly from the localisation system, bi-passing the mapping procedure which publishes
data at half the rate.

Experimental testing to evaluate localisation performance was conducted using two path types, a slalom/zigzag
style path and a straight path as can be seen in Figure 10. These two path types aim to review performance under
typical sailing conditions, i.e. a straight path between waypoints, but also when conducting obstacle avoidance
where sharp turns are required. The two KPIs selected are the position error and heading error, which are both
defined by the root mean square deviance between the acquired sensor value and the accepted ground truth value
(Eq. 19 and 20). These errors were again calculated by taking the pose data from the Optitrack system to be the
ground truth values.

Both the straight paths and slalom paths exhibited a correlation between the magnitude of error and the path
length, a behaviour that is commonly faced by localisation systems that utilise a Visual-SLAM approach. This
behaviour is frequently characterised by the sensor drift whereby position error accumulates over the length of a
path. As well as being visually evident in the path plots, this behaviour can be further observed in the boxplots
in Figure 11. When the sampling length of the waterway is reduced, the position and heading errors also reduce
significantly. The average error across the two path types were found to be 0.129m and 5.3◦ for the position and



Figure 10(a): Straight Path

Figure 10(b): Slalom Path

Figure 10: Localisation System Testing - Performance following Straight and Slalom Paths.

Figure 11(a): Straight Path Boxplot Figure 11(b): Slalom Path Boxplot

Figure 11: Boxplot representation of relative position and heading errors for divided sub-trajectory lengths. Box-
plot colour corresponds to y-axis of the same colour. Specifically. blue: position error and red: heading error.

heading errors respectively along the full path lengths. With a reduced sampling length of 7.5m, the position and
heading errors also fall to 0.068m and 2.6◦ respectively.

It is furthermore clear from the results that the localisation performance along a straight path is far superior with
this technology when compared to path with slalom manoeuvres. The operational distance and anticipated vessel
behaviour should therefore be considered when utilising V-SLAM based technology for autonomous vessel appli-
cations, where possible utilising additional sensor data to supplement. These evaluations were made under normal
operational cases, however the localisation system was further observed on multiple occasions to be susceptible to
the impact of the kidnapped robot problem, hindering the overall system performance.

5 Conclusions and Further Research
A multi-device stereovision based-navigation system has been proposed to achieve low-mid range perception

and localisation onboard autonomous inland vessels. An additional mapping procedure has further been developed
to post-process the perception and localisation data into desirable attributes for collision avoidance.

The perception system introduced enables an autonomous vessel to maintain a constant lookout in areas of
collision risk. The utilisation of a convolutional neural network to conduct object detection has demonstrated its
suitability to the autonomous inland vessel application. With the model maintaining high precision with increasing
recall at impressive inference rates. A refined approach was taken towards the processing of depth data which
avoids the computationally expensive manipulation of dense point clouds.

A dedicated stereovision tracking camera, utilising a Visual Inertial Odometry approach was also integrated to



provide pose data for autonomous vessel localisation. The system proved capable of providing accurate tracking
data within a short range however, the localisation performance was seen to reduce as the vessel progressed down
the path length. The system was further observed on multiple occasions to be susceptible to the impact of the
kidnapped robot problem, limiting its reliability as an independent solution.

A clear progression for future work involves focus on collision avoidance using the developed navigation
system, allowing the outputs of the mapping procedure to be tested for suitability. The development of an Inland
Maritime Dataset for CNN training would enable research to apply focus to model optimisation, perhaps creating
a similar initiative to the KITTI benchmark suite (Geiger et al., 2012). Finally, the developed navigation system
would benefit from the addition of radar and GPS sensors for gathering complementary data for fusion with the
stereovision sensors. This sensor fusion approach could alleviate the reliability issues of the localisation system
and the range of the perception system whilst remaining economically conscious. Future research also aims to
overcome shortfalls in the system during low light conditions and/or poor conditions of visibility. Furthermore,
during scale up from model-scale to full-scale, consideration must be made to the selection of suitable imaging
sensors, lenses and baseline when configuring the stereovision setup.
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