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Synopsis 

Critical and auxiliary equipment aboard ships is maintained using a combination of preventive and corrective maintenance.  
These policies lead to over maintenance and unanticipated failures which can be very costly since they compromise 
operational readiness of ships.  Predictive maintenance based on monitoring the current health of the component can reduce 
unanticipated failures and reduce costs associated with unnecessary maintenance.  In this paper, An AI and IoT based 
comprehensive Predictive Maintenance Framework is proposed for equipment aboard ships, in particular for a water pump. 
Components which have a high frequency of failure and result in significant downtime are chosen for Predictive 
Maintenance.  Vibration, acoustics, temperature, current, pressure and flow are continuously monitored in real time by 
installing sensors at multiple pick points on the equipment. A novel single layer Long Short Term Memory (LSTM) neural 
network model with an attention module is used to predict the degradation level of the components and the most common 
failures of the pump. The optimal value of the degradation level at which maintenance should be performed for the subsystem 
is calculated using cost analysis of maintenance.  However the failing component is likely to be interdependent on several 
other components.  A cost based grouping model clusters components taking into account the predicted health of the 
components, the economic dependencies among the components and the location of the components within the system.  In 
the case of a maintenance alert the cluster of components would undergo joint maintenance to optimize maintenance costs. 
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1. Introduction: Maintenance Paradigms 

 
Maintenance of critical and auxiliary equipment aboard ships is currently carried out by a 
combination of preventive and corrective maintenance.  Preventive maintenance is a crude 
policy where the time/usage intervals of scheduled maintenance are determined by the OEM 
and often leads to unnecessary maintenance.  Under corrective maintenance the component is 
run till failure.  Both Preventive and Corrective maintenance lead to unanticipated downtime 
which leads to operational losses.  On Naval ships it can lead to significant costs since it 
compromises combat preparedness. An AI based predictive maintenance (PdM) paradigm 
which predicts component failures, based on the current health of the component, could 
reduce the cost of unnecessary maintenance and unanticipated failures. 
 
In this paper, the author proposes a comprehensive Predictive Maintenance Framework for 
marine equipment, in particular for a large centrifugal pump with a flow rate of 300𝑚!/hr 
based on monitoring the condition of the pump through IoT sensors. The author presents a 
method to choose critical components that are suitable for predictive maintenance.  Data 
collected from the sensors is analyzed using a novel Long Shor Term Memory (LSTM) model 
with an attention module that will predict the degradation level and the Remaining Useful 
Life (RUL) of the critical components.  However, a knowledge of the RUL of a component 
may not provide the operator complete information about when and which components should 
undergo maintenance.  As part of the post predictive decision-making module, a cost based 



 

function determines the exact time when maintenance should be performed to optimize the 
cost of maintenance.  Furthermore, a cost-based clustering method is used to establish which 
cluster of components should undergo joint maintenance.  Based on these calculations, an 
optimal amount of inventory can be stocked.  In our opinion this is the first time a complete 
predictive maintenance framework from the viewpoint of the operator has been proposed. 
 

2. Current Research and Challenges 

 
The ability to predict the need for maintenance of machinery at a specific future moment is 
one of the biggest challenges for Industry 4.0.  As a result Predictive Maintenance (PdM) has 
received significant attention in recent times, see (Snchez, 2016) for recent overviews.  
 
Generally, the predicted maintenance framework consists of two components:  
 

1. Prediction of the level of degradation of the machine, including the remaining Useful Life (RUL)  
2. Making decisions based on these predictions. 

 
Based on the predictive approaches, most studies can be classified into: 
 

1. Rule based approaches 
2. Data Driven approaches 

 
The first approach relies on creating a stochastic model of the degradation evolution of the 
system (Papakonstantinou, 2014). This approach uses sensors which monitor the machine 
health and sends alerts based on predefined settings, once a specific rule has been activated. 
The advantage of this approach is that it does not require large amounts of data relating to 
machine faults and failures. It also provides simple clear and unambiguous alerts to the 
operator based on easy to understand rules and thresholds.  However developing such a 
solution requires extensive prior knowledge of system degradation processes. Furthermore, it 
is difficult to develop complex models of the deterioration of systems that often consists of 
thousands of components. From a practical view, such models are rarely able to capture the 
entire gamut of real life operational variables. As a result these models often make 
simplifying assumptions that lead to wrong maintenance decisions. 
 
In recent times the data-driven framework has received a lot of attention (Loutas, 2013).  
These models use large data sets of machine health to predict the health of the system in the 
future.  The traditional data-driven approaches (Medjaher, 2012) require manual processing 
and analysis of data by human experts.  As the amount of data being collected has grown 
exponentially, in recent studies, the deep learning (DL) methods which do not require data 
wrangling and signal processing techniques have become popular (Deutsch,2018).  However, 
there are significant challenges to employing deep neural networks for predictive 
maintenance.   
 
The first is the lack of meaningful data sets.  Deep learning predictive models require the 
availability of datasets with run-to-failure trajectories of individual components.  This time 
series data needs to be annotated with proper mode of failure labels.  Such data is rarely 
available because of the multitude of failure modes, each of which is a rarely occurring event. 
Even if OEM’s possess this data, they are reluctant to share it in the open community. 



 

Currently, most available datasets are synthetic datasets generated with simulators or 
developed in a lab environment for simple systems. (Eker, 2012) 

Both model and data driven methods focus on either diagnosing a fault or predicting the 
Remaining Useful Life (RUL) of components.  They do not estimate the degradation level at 
which maintenance should be performed.  Determining the threshold level of degradation at 
which maintenance should be carried out requires considering the cost of maintenance and the 
cost incurred by unanticipated failure.  

These models do not determine the type of maintenance to be performed, i.e. which group of 
components need to be maintained jointly.  Components in complex systems are 
interdependent since the functioning of one component affects the functioning of other 
components.  Maintenance costs can be optimized by clustering interdependent components 
for joint maintenance.  This clustering needs to take into account the degradation level of the 
components, the interdependency of the components and the physical proximity of the 
components.                                                                                          

In this paper a hybrid system is proposed which incorporates both Deep Learning and 
Stochastic modelling to provide a complete predictive maintenance framework.  The solution 
not only predicts the future health of the system but provides clear recommendations on when 
and what type of maintenance is required. 

3. Approach 

3.1. Risk Profile Number  

The suitability of components for predictive maintenance was based on the criticality of the 
faults, the frequency of the faults and if those faults could be detected.  Components were 
chosen for predictive maintenance by assigning a Risk Profile number based on criticality and 
frequency of breakdowns.  A FMECA was conducted to determine the most critical failures 
based on the down time associated with the particular failure.  This was done using data 
provided by the pump OEM.  The data of the frequency of failure modes was also provided 
by the OEM.  Failures which resulted in a down time of more than 24 hrs. and which had a 
frequency higher than 1 failure every 5 years were determined as suitable candidates for 
predictive maintenance.  The list of these failures and the associated components is given in 
Sec 4. 

3.2. Scaling Factor  

Marine equipment is often customized or manufactured in limited quantities which makes it 
challenging to obtain data for a particular equipment.   The centrifugal pump under 
consideration was a custom manufactured equipment.  A fully functional scaled down version 
of the pump was obtained from the manufacturer.  The specific speed of a pump is defined as: 

𝑁" =
𝑁$𝑄
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																																																																(1) 

where: 
𝑁" = specific	speed 
𝑁 =RPM  
𝑄 =Flow rate at Best Efficiency Point (BEP) 
𝐻 =Head at BEP 



 

 
The specific speed is a useful index to compare different pumps. The specific speed of the 
scaled down pump was similar to that of the original pump to ensure the degradation behavior 
was similar up to a scaling factor. The study was carried out on the scaled down version of the 
pump. 

3.3. Data Set  

A meaningful data set was created by inducing particular faults in components and letting the 
components degrade under accelerated load conditions.  Sensors placed using noninvasive 
methods monitored the degradation level of the components.  In this way data relating to 
normal and failure modes was generated for the deep learning model. 

3.4. Stochastic Model  

The degradation state of the system at any time t is modelled as a stochastic process	(𝒀𝒕)!"#.		
𝒀𝒕	is a vector valued random variable which represents the degradation level of the system at 
time t: 
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where	𝑌*'	represents	the	degradation	level	of	the	ith	component	at	time	t.			

	The following assumptions are made related to the degradation of component i (i=1,2…r): 

1. The condition of component i at time t can be measured and represented by a scalar valued random 
variable	𝑌!" .	 The degradation trajectory is a sample path of the time-dependent stochastic process 
(𝑌𝑖𝑡)!"#.	

2. 𝑌!"	has a lognormal distribution with mean	𝜇!" 	and variance	𝜎! .	The mean	𝜇!" 	will be a monotonically 
increasing function of t while the variance 𝜎!.  Is assumed to be independent of t.  Lifetime distributions 
of components in which physical fatigue and stress are the primary contributors of physical failure are 
often modelled as log normal distributions.  This assumption is required to impose additional structure 
on the data since there are a limited number of sample paths to estimate the probability of failure of a 
component.	

3. The initial degradation level of component i is	𝑌!%	=	0.	The component i is considered initially as new. 
The higher the value of	𝑌!",	the closer component i is to failure.		

4. A critical degradation threshold	𝑍!	is determined based on economic or technical factors.  for component 
i. If	𝑌!" 	=	𝑦!" 	exceeds	𝑍! 	component i is considered have failed. A failed component is required to be 
maintained immediately.                                                                                 

3.5. Predictive Model  

The degradation level at time t, depends on the how the fault has progressed in the past. An 
LSTM neural network is used to model the time dependency. LSTM networks keep track of 
long and short term dependencies and are well adapted to modelling sequential data.  The 
input data to the LSTM or the input sequence consists of the sensor readings over a fixed time 
period.  The output sequence will be the prediction of the degradation level over a fixed time 
horizon.  The model will predict the degradation level of the component rather than the RUL.  



 

This exploits the large amount of degradation data generated by the fault seeding.  The data 
relating to end of life of the component is limited.  The RUL of component i can be calculated 
using the degradation level and the critical degradation threshold 𝑍* . 

3.6. Threshold Degradation Level 

It is required to determine the threshold 𝑍*+*,,	 at which maintenance of component i should be 
carried out, to minimize the total cost of maintenance during the time period under 
consideration.  𝐶-, is defined as the cost of predictive maintenance and includes both the cost 
of performing maintenance and the cost of planned downtime.  Predictive maintenance will be 
performed if the degradation level of component i, 𝑌*' >	𝑍*+*,. 
 
𝐶), is the cost of reactive maintenance and includes the cost of maintenance of the failed 
component and the cost of unplanned downtime.  The cost of unplanned downtime is assumed 
to be higher than the cost of planned downtime. 
 
Total 𝐶-, over a period of time 0,1…T can be defined as: 

𝑇𝑜𝑡𝑎𝑙	𝐶-, = 𝐶-, ×F𝐼'

.
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																																							(3) 

Where 𝐼' is an Indicator variable which takes the value 0 if 𝑌*' <	𝑍*+*,	and 1 otherwise. 
 
Reactive maintenance is performed in the interval (𝑡 + 1, 𝑡) if the component fails in the 
interval and predictive maintenance is not performed in the interval.  Let 𝑃*' be the 
conditional probability that the ith component fails at time t+1 given that it was working at 
time t.  
 

𝑃*' = 𝑃𝑟𝑜𝑏	N𝑌*,'2& 	≥ 	𝑍*P𝑌*,' <	𝑍*Q																									(4) 
 
 Total 𝐶), over a period of time 0,1…T can be defined as 

𝑇𝑜𝑡𝑎𝑙	𝐶), =	F𝐶), × (1 − 𝐼'2&)𝑃*,'																				(5)
.

'/0

 

 
The cost function that needs to be minimized to determine 𝑍*+*, can be defined as: 
 

𝑇𝑜𝑡𝑎𝑙	𝐶𝑜𝑠𝑡 = 𝑇𝑜𝑡𝑎𝑙	𝐶-, + 𝑇𝑜𝑡𝑎𝑙	𝐶),																		(6) 
 
The values of 𝑌*,' and 𝑃*' are determined by the predictive model as explained in Sec 5.  The 
Total Cost function is minimized to determine the value of 𝑍*+*,. 

3.7. Joint Maintenance 

The Health of component is defined as the probability that component i has not failed at time 
t: 

𝐻*(𝑡) = 𝑃𝑟𝑜𝑏	(𝑌*'	<	𝑍*)																																														(7)	
	
	



 

For	the	time	interval	(𝑡 + 1, 𝑡),	the	conditional	Health,	given	that	that	component	i,	is	
working	at	time	t,	is	given	by:	

	
																					𝐻*(𝑡 + 1|𝑡) = 𝑃𝑟𝑜𝑏	N𝑌*,'2& <	𝑍*P𝑌*,' <	𝑍*Q = 1 − 𝑃*'							(8)	

 
A Path Set of a system is a set of components whose functioning ensures that the system is 
functioning.  A Minimal Path Set is defined a as a path set where the removal of any element 
results in the set no longer being a path set.  We consider the set W of all the MPS of the 
system. 
 
The Health of the system can be defined in terms of the Minimal Path Sets (MPS) as follows: 
 

𝐻(𝑡) = 1 − Z {1 − Z 𝐻*(𝑡)}																																(9)
*∈456456∈W

	

 
The conditional reliability of the system is defined as:	
 

𝐻(𝑡 + 1|𝑡) = 1 − Z {1 − Z 𝐻*(𝑡 + 1|𝑡)}
*∈456456∈W

																(10)	

 
The idea behind joint maintenance is to find the optimal group of components which will 
increase the Health of the system by the maximum amount compared to the total cost of 
predictive maintenance of the group.  This will be the group of components G that maximizes: 
 

𝐻7(𝑡 + 1|𝑡) − 𝐻(𝑡 + 1|𝑡)
𝐶-,7

																																																											(11) 

where: 
 
𝐻7(𝑡 + 1|𝑡) is the Health of the system if the group of components G undergo preventive 
maintenance at time t and  𝐶-,7  is the cost of preventive maintenance of the group of 
components G, which is defined in Eq. (3).  It follows from Eq. (8) and Eq. (11) that the 
determination of G requires the calculation of the Minimal Path Sets of the system, value of 
𝑃*' and the cost of preventive maintenance of all the components. 

4. Common Failures 

The common pump failures and associated components that were chosen for predictive 
maintenance were:  

4.1. Mechanical Failure  

4.1.1. Mode: Bearing Failure                        
Component: DE Pump Bearing/NDE Pump Bearing/DE Motor Bearing/NDE Motor Bearing 

The bearing is an important part of the centrifugal pump that supports the pump and motor 
shaft. Bearing failure occur due to poor lubrication, overload, and other reasons.  These 
failures are often associated with an increase in temperature, vibrations in the narrow band, 
and the kurtosis index.  



 

4.1.2. Mode: Misalignment Fault              
Component: Pump Shaft/Impeller/Motor Shaft/Rotor 

A displacement or angular deviation of the pump shaft or motor shaft at the coupling results 
in misalignment.  It causes changes in the vibration signals in the axial and radial directions 
and increases the vibration amplitude at twice the operating frequency. 

4.1.3. Mode: Imbalance Fault and Feature of rotating parts:           
Component: Pump Shaft/Impeller/Motor Shaft 

Rotating parts can have unbalanced masses due to manufacturing and assembly defects, and 
blockages during operations.  This results in unbalanced forces which changes the vibration 
frequency and amplitude. 

4.1.4. Mode: Loose Fault and Feature               
Component: Foundation/Shaft/Impeller/Seals 

Loose faults are caused by loose foundation or poor fit between components.  The resulting  
time wave form of the vibration signal will show impacting and fixed vibration direction.  
Looseness	caused	by	poor	assembly	often	has	spectral	characteristics	of	superimposed	
working	frequency	and	high-order	harmonics.	 

4.1.5. Mode: Mode:	Winding	Failure:           
Component:	Stator	Winding/Rotor	Winding 

Winding	failures	cause	thermal	deterioration	resulting	in	rise	in	temperature,	
current/voltage	anomalies	and	vibration	increase.	

4.2. Electrical	Failure 

4.2.1. Mode:	Current	leakage	           
Component:	Shaft/Bearing 

Electrical overload or over-current may be caused by high or low voltage supply or short 
circuited conductors.  It can result in current leakage with current flow through shaft and 
bearings. 

4.3. Fluid	Fault		

4.3.1. Mode:	Abnormal	Flow	Passage	and	Feature	         
Component:	Inlet	strainer/Volute/Impeller	 

During	operations	blockages	at	the	inlet	and	volute	and	improper	assembly	of	impeller	
can	reduce	pump	efficiency.		In	such	cases,	the	vibration	amplitude	of	the	impeller	
increases	with	an	increase	in	RPM.	

	

	



 

4.3.2. Mode:	Mode:	Water	Hammer	Fault	and	Feature	         
Component:	Valve 

Sudden	opening	and	shutdown	can	result	in	a	sudden	change	in	the	flow	of	fluid	through	
the	pump	body	causing	a	shock	phenomenon.		It	can	result	in	a	sharp	increase	and	then	
rapid	decay	of	vibrations	and	acoustic	amplitude.	

4.3.3. Mode:	Cavitation	Fault	and	Feature	                        
Component:	Shaft/Impeller/Bearings 

Cavitation	results	increased	vibration,	noise	and	decrease	in	efficiency	of	the	pump.		The	
vibration	and	acoustic	features	of	a	cavitation	fault	are	a	continuous	wide	band	signal.	

5. Methodology 

5.1. Data Collection 

The data consists of the measurements made by the sensors at regular time intervals.  These 
include measurements of: 
 

• Vibration (Tri Axial) 
• Temperature 
• Flow 
• Current/Voltage 
• Acoustic emissions 

The data consisted of normal and failure mode operations.  Components were seeded with a 
particular flaw and the pump operated till the component failed to obtain failure mode data.  
The data of the normal and failure modes was aggregated.  The aggregated data was split into 
a training subset and a testing subset using an 80:20 ratio.  The training data was used to fit 
the LSTM model while the testing data was used to evaluate the fit of the model. 

5.2. Predictive Model 

The sensor data observed at time t, is represented by the vector 
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where 𝑋*'is the ith sensor observation at time t. 
 
The output consists of the level of degradation of the r components which at time t is 
represented by the vector 𝒀𝒕 
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where 𝑌*' is the degradation level of component i at time t which is assumed to be 
monotonically increasing in every component. The degradation levels are measured 
physically for fixed points in time 𝑡&, 𝑡(… . 𝑡-.  For any point in time between two of these 
fixed points the degradation level will be a linear interpolation of the degradation level at the 
fixed points. So, for any t such that 𝑡*< t < 𝑡9,  
 

𝒀𝒕 =	𝒀𝒕𝒊 + (𝑡 − 𝑡*) b	𝒀𝒕𝒋 − 𝒀𝒕𝒊c																																			(14) 
 
is a piecewise linear function. 
 
It is assumed that 
 

𝑿𝒕 = 𝑓	(𝒀𝒕)																																																																										(15) 
 
for some unknown function 𝑓(. ). 
 
A LSTM neural network model is used to estimate the function 𝑓(. ).  The basic structure of a 
LSTM cell is given in Fig.1 

 

Fig1: Basic Structure of a LSTM Cell 

In an LSTM unit,  𝐶' represents the long term memory ,while ℎ', the hidden state represents 
the short term memory at time t.  There are three gates in a LSTM unit: the forget gate, the 
input gate, and the output gate. Each of them controls the amount of information used in the 
unit. Generally, based on the input 𝑥' and ℎ':&, the input gate 𝑖', ∈ Rk×1 decides which 
values to use in calculating 𝐶' .  Next, forget gate 𝑓', ∈ Rk×1 determines which information 
from 𝐶':&should be removed, and which can be used to update 𝐶' . Finally, output gate 𝑜'∈ 
Rk×1 controls what information in 𝐶'  to become ℎ'. 

A Sequence to Sequence LSTM model is used which will take a sequence of observations and 
output another sequence. The Input sequence will be 𝑿' , 𝑿'2&… . . 𝑿'2, and the output 
sequence will be 𝒀' , 𝒀'2&… . . 𝒀'2; where n > m. 
 
A Two layered Encoder-decoder is the standard modelling paradigm for sequence-to-
sequence tasks in LSTM.  The first layer is the autoencoder layer which converts the input 
sequence to a single context vector of fixed dimension.  The second layer is the decoder layer 



 

which converts the context vector into the output sequence as shown in Fig.2.  However, there 
are two major problems with this architecture:   
 

1. Loss of information about higher level relations between multiple sensor readings.  For instance, a bearing 
fault may be picked up early by an ultrasonic sensor and as the fault progresses the vibration and 
temperature signatures also change. 

2. The decoder may require different information at different times which is not possible with the context 
vector which is the last hidden state vector 
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Fig 2: Architecture of Sequence to Sequence LSTM Network 

 
So, a single layer LSTM is employed for a seq to seq model.  The architecture is shown in Fig 
3. 
 
The single layer Seq to Seq LSTM architecture does away with the bottleneck of the context 
vector allowing the network to model the high level relations between the sensor 
measurements. 
 
The standard LSTM model uses only the last hidden state as the output.  In the proposed 
model, an adaptation of the attention model developed by Bhadanau (Bhadanau, 2015) is 
used. A SoftMax function is applied to all the hidden states which gives a weight to each 
hidden state.  The final output of the attention module is the weighted sum of all the hidden 
states as shown in Fig 3.  This will allow the model to weight the sensor readings with more 
important readings getting weighted more in accordance with the fault.   For instance, a shaft 
misalignment fault will weight the vibration measurements more than the temperature 
measurements.  
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Fig 3:  Architecture of proposed LSTM Network 
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Thresholds for failure of component i denoted by 𝑍*, are determined as described in Sec 3. 
  
At time t, if the output sequence contains 𝑌*'∗where 𝑌*'∗ =	𝑦*'∗> 𝑍* , the RUL of the 
component i, is given by: 
 

𝑅𝑈𝐿(𝑖) = min
'∗
(𝑡∗ − 𝑡)									𝑤ℎ𝑒𝑟𝑒	𝑦*'∗> 𝑍* 																												(16) 

 
As described in Sec 3,  
 

𝑙𝑜𝑔𝑌*' 	∼ 𝑁(𝜇*'	, 𝜎*)																																																																						(17)	
	
	
The	parameters	of	the	distribution	can	be	estimated	from	the	data	and	the value 𝑃*' is 
calculated from the log normal distribution.  However, lack of sufficient data prevented us 
from completing this step.	

6. Result 

The sensor data was resampled at 1 minute intervals and the mean value of the data was 
considered for each interval.  A sliding window of size 20 with a step size of 1 was used to 
generate the input sequences.  The output sequence of the model consisted of the predicted 
degradation level of the components.  The Root Mean Square Error (RMSE) was calculated 
for the predicted values and the observed values for both the test and training data set.  The 
number of training epochs was varied and the RMSE of both the test and training data sets 
were compared across the epochs.  The optimal number of epochs was determined to be 1000, 
since a higher number indicated overfitting of the model as the RMSE of the training set 
started to increase. A similar process was used to determine the number of neurons and batch 
size.  The final configuration used in the LSTM was 2 neurons, batch size 8 and trained for 
1000 epochs.  The RMSE calculated for the aggregated data, which represents the overall 
accuracy of the model was 97.6%. 
 
The test data was stratified according to failure modes discussed in Sec 4.  The accuracy of 
the model was tested for prediction of each failure mode.  The results are given in Table 1. 

 

Table 1: Failure Mode Accuracy Test Results 

Failure Mode RMSE 
Bearing Failure 97.79% 

Misalignment Fault 93.56% 
Imbalance Fault 90.79% 

Loose Faults 95.58% 
Winding Failures 96.67% 
Current Leakage 100% 
Abnormal Flow 93.29% 

Cavitation Failure 92.67% 
 

Due to lack of data the conditional probability of the failure of a particular component given 
in Eq.(4) could not be determined from the data.   



 

7. Conclusion and Future Work 

In this study the author has proposed a comprehensive solution for predictive maintenance of 
machines, in particular a centrifugal pump aboard a ship.  The framework was tested on a 
scaled down pump with similar specific speed and accurately predicted the most common 
modes of failure. The model predicted the degradation level of the components rather than the 
RUL directly.  This approach was preferred since there was sufficient data relating to the 
degradation level of the components, the data relating to failure was limited.  The author 
conjectures the model can be applied to the original pump by comparing the normal 
signatures of the two pumps and determining a scaling factor.  The framework also provides a 
method to determine the optimal time and the optimal cluster of components that should 
undergo joint maintenance based on economic costs.  At this point lack of sufficient data 
prevented calculation of the conditional probability of failure of the components as defined in 
Eq. (4), from the data.  This parameter is necessary to determine the optimal time and cost 
based grouping for optimal joint maintenance in the proposed model as described in Sec 3.6 
and Sec 3.7. As the study is still in progress the author expects to obtain the required failure 
data to validate the model.  Validation of the model also requires details of the operating and 
maintenance costs to determine the total cost of maintenance and the cost of preventive 
maintenance as defined in Eq. (3) and Eq. (6).  These costs will be specific to each user and 
will have to be obtained from a particular user of the equipment. 
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