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 Synopsis 

 

  Modern complex warships, amongst the most complicated machines ever built, must be both sustainable 

 and safe to operate. Understanding overall complex warship asset risk requires holistic assessment of every factor 

 which could add to availability or safe to operate risk, including logistical, personnel, engineering support and 

 performance data. Risk is presently evaluated through best human judgement, with many disparate data 

 streams of available data analysed by multi-disciplinary teams; however, the volume of data generated is 

 overwhelming. There is a need to provide an aggregate assessment of risk to pre-empt and prevent accumulated risks 

 from becoming large issues. This is balanced against the challenge of information-overload; if every possible risk is 

 flagged as a warning or a priority then this is also counterproductive. The emergence of the ability to integrate big 

 data has provided opportunities to better predict and manage warship availability and the safe to operate envelope 

 through the automation of data. This paper proposes a model for an availability and safe to operate risk tool 

 which could be used to enhance understanding of the risk to sustaining readiness and maintaining a safe to operate 

 position. It proposes a method to analyse the sub-components of capability taking into account all supporting 

 elements as well as criticality analysis to aid prioritisation. Key is to understand the thresholds at which a capability 

 is lost. This paper proposes an expert system which will integrate available data sets to deliver a better understanding 

 of complex warship availability and safety whilst also considering some of the challenges which will arise as higher 

 fidelity of the overall picture is attainable. 
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1. Introduction 

 

 Modern complex warships, amongst the most complicated machines ever built, must be both sustainable 

and safe to operate. Warship complexity is amplified by the integration of the Defence Lines of Development (UK 

Gov 2009) to deliver capability. Therefore, understanding overall complex warship asset risk requires holistic 

assessment of every factor which could add to availability or safe to operate risk, including logistical, personnel, 

engineering support and performance data. Risk is presently evaluated through best human judgement, with many 

disparate data streams of available data analysed by multi-disciplinary teams; however, the volume of data 

generated is staggering. Whilst the data may all be tracked as a line on a spreadsheet or database the overall risk 

is exceptionally challenging, if not impossible, to quantify using existing techniques which may lead to 

catastrophic events. For example, Haddon-Cave’s investigation (2009) argues that the complex accumulation of 

risk is a significant contributing factor to the Royal Air Force Nimrod crash, 2006. Moreover, history provides 

further prominent examples including the Challenger space shuttle explosion, 1986 (Brummer 1986), and the 

Piper Alpha disaster, 1988 (Cullen 1990).  

 With huge volumes of data to analyse, which is continuously changing, there is a need to provide an 

aggregate assessment of risk to pre-empt and prevent accumulated risks from becoming large issues. This is 

balanced against the challenge of information-overload; if every possible risk is flagged as a warning or a priority 

then this is also counterproductive. 



 The emergence of the ability to integrate big data has provided opportunities to better predict and manage 

warship availability and the safe to operate envelope through the automation of data. The topic of this paper is the 

development of a model for an availability and safe to operate risk tool which could be used to enhance 

understanding of the impact on sustaining readiness and cost implications on scheduling decisions and the delivery 

of high-quality safety and capability data to guide decisions. This paper proposes an initial model, prioritised and 

weighted against mission criticality, with thresholds set at which a capability is lost. It integrates available data 

sets to deliver a better understanding of complex warship availability and safety. 

 

2. The emergence of Big Data 

 

‘Data is the new oil.’ (Humby, 2006) 

  

 The volume of data produced in the modern word is mind-bogglingly vast; in 2022 alone there were 2.5 

exabytes of data created each day (Wise 2022). Moving forward and data creation is predicted to increase to 180 

zettabytes by 2025 (Statistica 2022)! This has resulted in a worldwide phenomenon known as the ‘Data Deluge’:  

 

‘the sheer volume of new data, “the Data Deluge”, is overwhelming the capacity of institutions to manage it and 

researchers to make use of it.’ (United States Government 2007) 

 

 Whilst the ‘Data Deluge’ impacts the business world, it also has a significant impact on military decision 

makers, for example, in deciding where to focus resource for the best result. 

 Despite the challenges posed by big data, the emergence of tools giving an ability to integrate it provides 

opportunities to better predict and manage warship availability and the safe to operate envelope through the 

automation of data and through ‘datafication’. The term ‘datafication’, first coined by Mayer-Schönberger and 

Cukier (2013), is the process of capturing any aspect in a digital format. Arguably anything may be subject to 

‘datafication’, and this had led to the emergence of digital twins. 

 

3. Digital Twins  

 

‘A digital twin is a virtual representation of an object or system that spans its lifecycle, is updated from real-time 

data, and uses simulation, machine learning and reasoning to help decision-making.’ (Armstrong 2020)  

 

 Digital twins were first conceptualised in 2002 (Grieves and Vickers 2017 cited Grieves 2002) and are 

now emerging as commonplace in industry, as digitalisation is embraced. They provide a method to digitalise 

systems for analysis, and this technology is also useful for militaries. However, there are subtle differences 

between the requirements for industry and military use. If the reader firstly considers a civilian use of digital twin 

technology in a wind turbine. 

 Digital twin technology could be incorporated at the design phase to model the wind farm using cloud-

based technology. This enables different components and configurations to be tested in simulation to select the 

optimal solution based on the real-life characteristics of the wind flow and topography of the wind farm. Once 

commissioned, embedded sensors would gather real world system performance data which could be analysed to 

enable the system to be optimised as well as monitored for efficiency of maintenance and defect repair. This has 

the potential to optimise performance, reduce down-time and also expenditure on unnecessary work. 

 All of these things we would aspire to be able to do with our warships, however, unlike a warship a wind 

turbine will only have a limited number of independent variables in comparison, such as the angle of the blades 

or indeed how windy it is. Also, unlike a warship it will have been mass produced with large volumes installed 

throughout the world from which to gather meaningful statistical data. For the wind turbine sensor data may be 

analysed and, with a relatively minimal number of parameters, machine learning methods may then be applied 

which will look at similarities and trends. 

 

4. The complexity of Military Capability 

 

 And now if the reader considers why applying the same methodology to a combat system or military 

capability poses significant challenges for the techniques that work well in many civilian applications. A combat 

system or capability is termed as ‘a set of human and technological resources which comprise the fighting 

capability of a platform.’ (UK MOD 2018). Arguably, this definition could be extrapolated to encompass every 



resource, both organic and inanimate, that comprises a warship; whilst warships are used for other purposes, their 

expense is justified solely in their fighting capability/survivability. 

 There are scale differences in complexity when considering the military use of a capability or a combat 

system as opposed to a civilian use of an equipment. The base equipment of, for example, a destroyer, could be 

considered as equivalent to the wind turbine. However, to make this into a usable capability all the Defence Lines 

of Development (DLoDs) as well as arguably the entire military support organisation must be integrated which 

presents a much greater magnitude of complexity; ‘complex data’ instead of merely ‘big data’. When calculating 

both the cumulative risk to capability and for safe operation the DLoDs, in Figure 1, must therefore all be 

considered: 

 

 
Figure 1 – Defence Lines of Development (UK Gov 2009) 

  

 Relating Figure 1 to the civilian use referred previously, and to highlight the scale difference in 

complexity, the wind turbine would be the ‘Equipment’ block. An equivalent ‘value generating’ asset in the 

military might be a naval destroyer. Noting that modern naval destroyers are already entitled complex warships 

due to their integration, this in itself indicates the challenge ahead. 

 

5.  The sub-Components of Military Capability and Safety 

 

 Using the example of a typical naval destroyer, Figure 2 represents a non-exhaustive list of possible 

capabilities: 

 
Figure 2 – Naval Destroyer Capability 

 

  

 

 

 

 

 



 The capabilities within Figure 2 may be broken down further to the next level to the grouping of 

equipment that forms the capability. Whilst, in the real world, significant redundancy is designed into complex 

warships, for the purposes of this paper a simplified grouping of equipment comprising area air defence is shown 

at Figure 3: 

 
Figure 3 – Area Air Defence Equipment 

 

 If all equipment comprising the area air defence capability is at the specified performance (green), then 

the capability is also determined to be available to the operators as shown in Figure 4: 

 

 
Figure 4 – Area Air Defence Capability Performing Correctly 

 

 However, changes in availability of the sub-components may affect the assessment of the overall 

capability. A total failure of the missile system, for example, would mean area air defence could not be completed, 

as per Figure 5: 

 
Figure 5 – Area Air Defence Capability Inoperable 

 

  

 

 

 

 

 

 

 



 Alternatively, there may be an equipment fault in the fire control Radar, but it could still be used in a less 

capable reversionary mode, as per Figure 6: 

 

 
Figure 6 – Fire Control Radar Degraded 

 

 Moving down a level further, each of the equipment comprising a capability may also be mapped for 

sub-components. One key sub-component here is the availability of competently trained maintainers and 

operators. If accurate competence data is available then it is a key indicator of both the sustainability of capability 

and the ability to make a safe to operate declaration. A (non-exhaustive) basic analysis of other sub-components 

impacting the availability of a fire control radar is at Figure 7: 

 

 
Figure 7 – Factors Impacting Fire Control Radar availability 

 

 Whilst this paper will not analyse to the next lower level as the methodology has been highlighted with 

the examples given, each of the factors in Figure 7 could also be broken down further to sub-components 

continually, providing greater granularity as necessary. To complete the model of the destroyer, a digital 

representation of each component would be required, gaining in accuracy but also complexity as more granularity 

is introduced. This could come from data within existing databases or from new ‘datafication’. 

 Figure 8 integrates Figures 2, 3 and 7 to show a very basic dependency map. Whilst a simplified example 

has been demonstrated, if the reader begins to mentally extrapolate Figure 8 to encompass all of the systems 

integrated to a typical naval destroyer, then this rapidly becomes more challenging to interpret, and highlights the 

need for a digital solution: 



 
Figure 8 – Overall Assessment of Capability 

 

6. Other Uses 

 

 Having introduced the concept through the lens of availability of capability, the model could provide a 

digital representation with uses to a broader user community. This includes being used to determine whether a 

warship is safe to operate. 

 The model could provide a decision-making tool confirming whether the predetermined threshold for a 

safe system had been met. This would take inputs from certification and other related databases, considering the 

equipment and assets that are required to safely operate a platform, as in the non-exhaustive diagram of the 

requirements (equipment only for simplicity noting there would also be a significant personnel competence 

element unrelated to equipment) to safely sail a warship at Figure 9. Of note, each of the individual equipment 

feeding the safe to sail analysis would also have underpinning analysis of sub-components as per the previous fire 

control radar example in Figure 7: 

 
Figure 9 – Safe to Sail 

 



 While the capability example previously looked at a single warship, feasibly any capability could be 

modelled, providing Operational Commanders with an automated analysis of the availability of the assets at their 

disposal, or readiness for particular tasking. This would also provide a single point of truth across the organisation, 

with the removal of personnel driven ‘optimism bias’, due to the automation. For example, the risk to availability 

of capability across a task group comprising an aircraft carrier, two destroyers, two frigates, support vessels and 

a submarine. Whilst this is done through human analysis at present, this would just be an extension of the model. 

However, with the number of different taskings that may be performed, all with different capability requirements, 

it may be necessary to create or modify existing models to suit.  

 

7. Trip Wires 

 

 Having considered the broad concept of digitised availability and safety modelling, the real ‘so what’ is 

related to forecasting the emergence of risk and mitigating it well in advance of it becoming an issue. The 

cumulative effect of low-level defects and other impacting factors can present an unseen threat. In Figure 10, the 

known risk is obvious, as the visible part of the iceberg. This might be, for example, a defective missile system. 

However, beneath the surface lies a staggering amount of unquantified risk. Consider a platform that has four 

diesel generators and requires two diesel generators to be functioning to be able to sail. There may be two 

functional diesel generators, but a large volume of low-level defects on one of them, or maintenance that is subject 

to concessions and has been deferred. How well is the overall picture understood? 

 

 
 

Figure 10 – The Risk Iceberg  

 

 This is where trip wires could be built into the model, to forecast risks which could then be mitigated 

before they became issues. Noting the significant challenges that would be faced by programmers in building a 

fully integrated warship digital twin due to their sheer complexity, an ‘expert’ system with rules built in may be 

imminently more achievable. 

 

 

 

 

 



8.  Expert Systems 

 

‘An expert system is a computer program that uses artificial intelligence (AI) technologies to simulate the 

judgment and behaviour of a human or an organization that has expert knowledge and experience in a particular 

field.’ (Peterson 2016) 

 

 ‘Expert-systems’ are often described as ‘automated’ rather than ‘autonomous’. 

 

‘The decisions made or actions taken by an automated system are based on predefined heuristics. An autonomous 

system, on the other hand, learns and adapts to dynamic environments, and evolves as the environment around it 

changes.’ (Matteson 2019) 

 

 This is relatively simple for a wind turbine operator to achieve, with minimal complexity built in for 

redundancy and the ability to schedule maintenance periods that are never changed or postponed due to operational 

requirements. 

 However, it will be highly complex to achieve for warships as there is a lot of redundancy built in to 

enable reversionary modes allowing battle damage to be absorbed. Moreover, the complexity of risk due to the 

redundancy builds in a cushion for the operator which is also a part of their consideration as it is still highly 

possible to safely operate a warship with a large volume of defects when used for benign tasking. In a military 

context, a ‘benign’ tasking can change to a ‘high intensity’ tasking overnight. An illustration would be the re-

deployment of units to support operations in Libya following the Arab spring. Thus paradoxically the imperative 

to meet short-term lower intensity demands and the ability to do so using in-built redundancy creates a form of 

moral hazard where the consequences of eroding redundancy materialise at greater cost in the future.     

 Maintaining a sufficiently detailed picture to understand cumulative risk with constantly changing 

information is time consuming and challenging for the programmer, so, dependent on the desire, an initial triage 

could be completed using a criticality analysis to identify the primary systems of interest in buckets as Priority 1, 

2 or 3. An example of a Priority 1 system might be a diesel generator, whereas a Priority 3 might be the satellite 

TV system. 

 For the systems identified as critical, rules could be included. Consider the example of the diesels, a rule 

can be added whereby: 

 

 a. Low level alert = 3 of 4 diesels operating 

 

 b. Medium level alert = 3 of 4 diesels operating AND > 1 low level defect on at least 1 of 3 

 remaining diesels 

 

 c. High level alert = 3 of 4 diesels operating AND > 1 low level defect on at least 2 of 3 remaining 

 diesels 

 

 Such trip wires could be provided across all systems. Although the example of the diesels is very 

simplistic, this would provide meaningful alerts from within the ‘data deluge’. It would also enable a more 

accurate targeting of resource towards potentially previously hidden cumulative risks. 

  

9. Moral Hazard 

 

 ‘Moral hazard’ occurs when ‘people behave differently if they do not face the full costs or risks of their 

actions’ (Balafoutas et al. 2017). This might include an individual facing risk changing one's behaviour depending 

on whether one is insured. For example, a person may drive a hire car in a different manner to how they drive 

their own car, as somebody else is taking the risk -the hire car company and insurance company. If the reader 

considers that a warship may have a 30 year or even 50 year life the organisational imperative to incentivise the 

long-term strategic consequences of today’s actions becomes clear. The ability to more accurately understand all 

aspects of risk and redundancy may encourage short term risk taking through the deferral of maintenance and the 

development of ‘technical debt’. Whilst this would increase time on task in the short term and reduce costs (which 

may be very welcome), at some point somebody else would be responsible for paying the cost in time and resource 

which may not be the present operator. One of the highest profile incidents of ‘moral hazard’ may be the global 

financial crisis, 2008, where it has been argued that elements of the global finance industry made significant sums 



of money making high risk bets that were subsequently underwritten by unwitting worldwide governments and 

hence the public (Dowd 2008).    

 This also means there may be a deferral of when the negative points collide which would make it harder 

to train an algorithm. If the reader considers the wind turbine company which will be focussed on their financial 

balance sheet; a failed wind turbine may lose them £100k per day, and so on. The company would therefore be 

incentivised to spend £50k at the earliest point to fix the system as they would want to maximise reward long 

term. Accordingly, an algorithm would be written to identify when they needed to make interventions and they 

would make them in a timely manner. 

 However, if one is only looking at short term gain and somebody else is responsible for the payment in 

the future then the algorithm could become subtly different. It may therefore be difficult to train an algorithm to 

do reinforcement learning with conflicting goals.  

 

10. Challenges 

 

 There are other challenges associated with a digitalisation proposal such as outlined within this paper, 

although these are primarily associated with difficulties in digitalising legacy information technology 

infrastructure. Firstly, unless the systems are inbuilt with monitoring sensors, then data entry friction poses a 

significant challenge. A lot of this will rely on onboard teams to input vast amounts of data which may then enable 

automated analysis. This may not be possible depending on the available personnel resource and the volume of 

the data required to be input using existing databases. Furthermore, whilst the quality of existing data may be 

cleaned up, it may also present an issue, if it is inaccurate or not complete. Finally, as alluded, the greatest 

challenge is to build a digital infrastructure over existing organisations and process, although this is faced across 

industry and not just militaries. 

 There is also the challenge of generating statistically meaningful sets of data to enable machine learning 

from the complex data generated by an integrated combat system. Using the analogy of identifying imbalance in 

a coin, if this is tossed then the chance of heads or tails is 50% if it is fair. The coin would need to be tossed 

hundreds of times to determine any imbalance. If, however, the coin is only tossed a few times then any imbalance 

would not be recognised as there would be no pattern. Now consider the complexity of an integrated Combat 

System which has a vast number of statistical relationships which would require a huge number of rows of data 

to infer probabilities. This makes many machine learning techniques unsuitable, as unless there are failures (and 

enough of them repeatably); the sort of techniques that work well on a wind turbine may not work as well on a 

warship. In technical terms the Navy’s support data is characterised by being largely unlabelled, high-

dimensionality with more noise than signal. Therefore, more sophisticated hybrid models are required to pre 

narrow the range of data using domain expertise combined with ML techniques.  

 

11. Goodhart’s Law 

 

 One of the other challenges is Goodhart’s law which states; ‘any observed statistical regularity will tend 

to collapse once pressure is placed upon it for control purposes.’ (Manheim and Garrabrant 2019).  This is a 

particular issue for measuring performance in defence in peacetime as all measures are proxy measures with the 

real reference measure rarely tested. Proxy measures are therefore vulnerable to gaming whether by humans or 

algorithms. This can be illustrated by an anecdote from the Soviet era when nail factories were instructed to 

increase the quantity of nails they manufactured, with the focus being on the number. It is alleged they switched 

to produce millions of very small, useless nails. The criteria for the weight was then changed to generate larger 

nails so the managers initiated the production of large, but equally useless nails (Coy 2021). 

 This effect has important implications for the metrics used to train and measure the effectiveness of 

decision support algorithms. Considerable care needs to be taken to ensure that the recommendations to improve  

hard-to-measure complex and sometimes conflicting outcomes like ‘safety’, ‘availability’ or ‘capability’ actually 

improve the overall outcome and not simply the metric. 

 

12. Conclusion 

 

 There is presently a significant drive towards digitalisation as large organisations, including militaries, 

seek to capitalise on the benefits it enables. In a military context, this provides the potential to better monitor and 

analyse the availability of capability, safety, as well as deliver an enhanced understanding of cumulative risk and 

its mitigation. Harnessed correctly, this has the potential to deliver significant benefits to the user community. 



Firstly, through the identification of specific areas to target it could enable the saving of financial and time 

resource, as well as signpost previously unidentified risk, reducing threats to the availability of capability and 

reducing the risk to a safe to operate position. It also would provide a single point of truth across the entire user 

community which may be used for coherent decision making.  

 When considering the military application versus the civilian application, as demonstrated by the digital 

twin of the wind turbine compared with the naval destroyer, there is a scale difference in complexity. What might 

be relatively simple to achieve for the civilian sector may be significantly more challenging in the military context. 

This means that a complex warship digital twin may be too difficult to develop. The complexity of the data may 

make it challenging to implement machine learning, and an ‘expert’ system may be more suitable, notwithstanding 

the complexities of programming a complex warship with the redundancies built in.  

 This paper has proposed a model for an ‘expert’ system which would enable the monitoring and 

forecasting of availability risk, safe to operate status and other uses. It would enable a far more accurate forecast 

based on data, although with different ways to use the resulting data, there would need to be consensus on the 

desired output of any algorithms designed, noting the arising of a possible moral hazard based which may mean 

short term and long-term goals conflict. Other associated challenges, including data entry friction and accuracy 

of the source data, also may need to be overcome. Despite the challenges, however, digital tools may be developed, 

with the methodology proposed within this paper, to provide an analysis of risk to availability of capability and 

also an assessment of risk in a safety context. 

 

13. Recommendations 

 

This paper makes the following two recommendations: 

 

1. An ‘expert’ system is better suited to understanding holistic risk for complex warships due to the complex data 

and small statistical sample of data available which may pose challenges to other methods. 

 

2. An agreed consensus should be gained amongst relevant users of digital risk tools as to the aims of the output 

and of the underpinning algorithms to prevent both unintended consequences and the emergence of moral hazard. 
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