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Synopsis 

In the future warship power and propulsion systems need to be designed for increased flexibility, in part to 

sustain the demand of changing load profiles such as those characterised by high ramp-rates of new weapons 

and sensors intended to support enhanced future warfighting capability. Lithium-ion based battery performance 

is improving at a prominent pace in the automotive sector, increasing in both energy and power density, thus 

there is now an opportunity to exploit these characteristics for naval power systems. A common use energy 

storage system could facilitate benefits such as reduced fuel burn and prime mover running hours by reducing 

the number of running generator sets. Importantly, the improvement in battery systems, has reached a juncture 

where the technology could be considered to support directed energy weapons. The feasibility of a Lithium-

ion NMC based energy storage system, capable of high discharge rates, to power predicted laser directed energy 

weapons using time domain simulation is investigated in this paper. Results verify that the simulated system is 

capable of high rates of fire for extended periods subject to state of charge operating limitations. 

Keywords: Battery energy storage, high-energy lasers, hybrid propulsion. 

1. Introduction

Recent technological developments in electrochemical energy storage devices in parallel sectors have 

transferable benefits to naval ship power system design. Practical specific energy and power density of Lithium-

ion (Li-ion) batteries are attaining 150-250 Wh/kg and 200-450 W/L respectively for battery cells used in electric 

vehicle applications (Benveniste et al. 2018). Developments such as Lithium Sulphur chemistries demonstrate that 

battery cells could exhibit specific energy density upwards of 500 Wh/kg and 900 W/L (Nagata and Chikusa 2016). 

These attributes introduce the prospect of increasingly compact battery systems that can improve ship power 

system performance during low threat operations and compensate anticipated highly dynamic combat system 

loads. This is particularly attractive for warships with hybrid propulsion that have the aspiration to integrate future 

pulsed power loads such as laser directed energy weapons (LDEWs), where power generation capability is 

intrinsically reduced compared to full electric platforms.  

Battery based pulsed power is not in itself a novel concept, Huhman et al. (2016) describe the design of a 

battery system used to charge a capacitive device capable of delivering 12 kJ/s at 10 cycles per minute for a 5 

minute, 50 shot salvo. Gattozzi et al. (2015) investigated the ability of a Li-ion Energy Storage System (ESS) to 

power sub 125 kW LDEW loads, however little discussion was offered on the Li-ion battery model fidelity. This 

investigation differs for two reasons, firstly the battery system is the sole source for the pulsed load as opposed to 

a battery/capacitor combination for electromagnetic launch purposes as researched by Huhman et al. (2016). 

Secondly, the investigated LDEW loads are significantly greater, being 1.5, 1.75 and 2 MW, and could be required 

to power the pulsed load for a period of at least four minutes (Markle 2018).  

In this work a ‘common-use’ battery ESS is explored to power these anticipated LDEW loads. These loads are 

exerted on an ESS that utilises Li-ion Nickel Manganese Cobalt (NMC) chemistry. NMC is currently used in 

electric vehicle and commercial shipping battery system applications due to a balance of high specific energy and 

power as a consequence of high cell voltage (typically 4.1-4.3 V per cell) and low internal resistance, moreover 

NMC has a relatively high thermal runway temperature (Chemali et al. 2016). The battery ESS could benefit the 

power system by mitigating the reported adverse effects exhibited on QPS and power generation components from 

pulsating loads (Langston et al. 2017, Mills et al. 2018). This paper aims to firstly, justify the integration location 

of the ESS and pulsed load within a candidate power system. Secondly, to investigate the system response, and 

finally to define the operating envelope of the NMC based battery system under the LDEW pulse load parameters 

defined in Section 2.  
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2. Case study 

Consider the power and propulsion system shown in Figure 1. The reference system is combined diesel electric 

or gas turbine (CODLOG), the details leveraged from Gemmell et al. (2014) and McNaughtan et al. (2016). 

Review of the system schematic highlights two options for the integration location of the battery that permit both 

operation of the pulse load and improving wider power system performance during the wider operating profile. 

Firstly, with the main switchboard via DC/AC converter interface or secondly, with the DC link of the propulsion 

converter via a DC/DC converter. In the second option controlling the charge/discharge of the battery whilst 

maintaining a stable DC link voltage is challenging (Radan et al. 2016), this is exacerbated when a current pulse 

with high di/dt induces battery voltage drop due to low internal resistance, such as an LDEW load. The extent of 

this voltage drop is demonstrated later in Section 4. Thus, to decouple the fight and move capability the battery 

ESS was integrated with the main switchboards as shown in Figure 2 for a half ship set.  
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Figure 1: Reference system architecture for case study  

 

Figure 2: ESS and LDEW integration schematic for half ship set 

The battery ESS in Figure 2 is integrated with the main distribution system via a PWM bridge, passive 

components and input transformer. The passive components constitute a DC and AC side filter, associated with 

power quality (drawn from the battery and supplied to the ship) and the AC side filter is further influential in the 

control of the converter. The wye-delta transformer is a robust method of providing galvanic isolation from the bi-

directional converter to the distribution system due to the delta connection (Wakileh 2001). The LDEW is 

connected to the ESS DC-link via a DC/DC boost converter. This arrangement permits ESS and LDEW to be 

decoupled from the main switchboard during operation. Therefore, this avoids adverse QPS conditions on the main 

switchboard resulting from the pulsating load. Moreover, avoiding the higher losses associated with discharging 

from the ESS to an LDEW via the main switchboard as demonstrated by Figure 3, this is between 7-10% loss at 

higher current rates depending on SoC.  
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Figure 3: Analytical thermal efficiency map over battery discharge measured at (a) battery terminals i.e. 

connection to the LDEW converter and (b) connection to the main switchboard 

The LDEW parameters of interest in this work are derived from Mills et al. (2018), presented in Table 1. The 

load demand is the total input power to the weapon, which takes the LDEW inefficiency into account, assumed 

here as 75% (O’Rourke 2015). 

 

Table 1: LDEW load parameters of interest  

Parameter Value 

Pulsed load demand 2, 1.75, 1.5 MW 

Pulse duration 2.5 s 

Duty cycle 40% 

DC base load 50 kW 

 

Assuming 97% DC-DC converter efficiency (Kazimierczuk 2016), the maximum steady state power limits of 

the ESS under investigation are shown in Figure 4, reflecting the Orca system from Corvus Energy rated at 500 

kWh. The volume and mass of each string is 1.36 m3 and 1,550 kg respectively, this excludes the DC link filter 

and power electronic conversion equipment shown in Figure 2. This plot initially indicates to the system designer 

that a minimum of three strings are required in order to provide the LDEW loads using the particular NMC based-

battery ESS in this work, however not over the entire 20-90% SoC operating range of the battery. Five strings 

would provide benefit in the number of LDEW shots available and higher power capability, however this raises 

the issue of DC fault protection on the common bus. The peak fault current contribution of each string is circa 12 

kA (Southall and Ganti 2018). Therefore, four strings were used in this investigation.  

 
Figure 4: ESS string power limits and LDEW loads of interest- remove LDEW signs  

3. Simulation model 

The simulated circuit used to investigate the ability of the battery ESS to facilitate LDEW operation is presented 

in Figure 5. The respective components are described in the subsequent sections. The key system parameters are 

provided in Table 2. 

Conference Proceedings of EAAW 2 – 3 July 2019

Engine As A Weapon International Symposium 3 http://doi.org/10.24868/issn.2515-8171.2019.003



vbess

+

-

L

C

D

SW

vo

+

-

Pulsed 

load

Battery 

ESS

Boost 

converter

ibess iL io

 
 Figure 5: Simulated circuit  

Table 2: System modelling parameters 

 Parameter Value Parameter Value 

Peak battery voltage 1100 V Input inductor, L 900 μH 

Nominal voltage 980 V Output voltage, 𝑣𝑜 1400 V 

Cutoff voltage 800 V Output capacitor, C 10 mF 

Modules per string 22 PWM switching frequency 4000 Hz 

 

3.1. Battery ESS 

A second order behavioural Thévenin equivalent circuit model is demonstrative of a Li-ion NMC pouch cell, 

rated between 60-70 Ah. The cell model is scaled in series and parallel to represent the battery string described in 

Table 2. The cell circuit model in Figure 6 includes open circuit voltage  𝑢𝑜𝑐, equivalent series resistance 𝑅0, 

transient circuit voltages, 𝑢1 , and 𝑢2 , with associated non-linear complex impedance represented by resistor-

capacitor pairs. These parameters do not represent the battery internal components. Instead, these parameters 

denote a state-variable representation of the battery from the perspective of the cell terminals. These parameters 

are mapped using high order polynomial functions dependent on SoC. The SoC is estimated using coulomb 

counting, determined using (1), where Q is the battery capacity and ib is the battery terminal current. There are 

many other methods in the literature such as a Kalman filter techniques that can be highly accurate (Hannan et al. 

2017), however  coulomb counting is a robust method highly suitable for simulation purposes (Kalikatzarakis et 

al. 2018).  
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Figure 6: Lithium-ion battery Thévenin equivalent circuit  

R0

C2

R2

C1

R1

u0

u1 u2

ub

+

-

+ -
+ - + -

SoC 

estimation

Parameter 

maps

ib

SoC

uoc , R0, R1, 

R2, C1, C2
Initial SoC

uoc(sQ)

Conference Proceedings of EAAW 2 – 3 July 2019

Engine As A Weapon International Symposium 4 http://doi.org/10.24868/issn.2515-8171.2019.003



The order of the circuit model defines the precision of the voltage response under charge and discharge 

conditions. A second order circuit with two RC pairs provides a good balance between accuracy, complexity  and 

computational expense (Chen and Mora 2006). A first order model lacks resolution in the dynamic voltage 

response at system level, and is therefore more suitable for quasi-steady-state simulation (Hentunen et al. 2014). 

The first time constant of the circuit denotes the fast response of the battery dynamics, the second time constant is 

representative of the slower dynamics in the cell. The cell parameters for the model in this work were extracted 

from an experimental pulsed discharge (PD) test conducted at 0.5 C rate at 5% pulse rate from 100% to 0% SoC 

with 30 minute rest period between pulses using the method described by Hentunen et al. (2014). 

The model validation test series is provided in Table 3 for PD, constant current (CC) charging and constant 

current constant voltage charging (CCCV) results. The validation procedure correlates the voltage error when the 

model was subjected to current input data from the experimental tests. The error results increased substantially 

below 10% SoC, however the battery SoC range is limited during operation to 20-90% SoC to protect the cells 

(Hannan et al. 2017), thus this is deemed acceptable. The largest error pertains to 6C discharge, this is a 

consequence of the model parameterisation procedure at 0.5 C and higher cell temperatures at higher current rates. 

To reduce the error, PD tests over the entire cell operating range at selected intervals would be required to generate 

more parameter maps, as demonstrated by Hentunen et al. (2014), however this is outside the scope of this work.  

 

Table 3: Battery cell model validation results, SoC Range 20-90% 

Experiment 
Absolute error (%) % Error 

Max  Mean  RMS 

PD 0.5 C, 5% pulse rate 0.45% 0.11% 0.13% 

CC discharge 0.5C 0.81% 0.55% 0.57% 

CC discharge 1C 1.39% 1.11% 1.15% 

CC discharge 2C  2.81% 2.14% 2.23% 

CC discharge 3C  4.44% 3.11% 3.24% 

CC discharge 6C  8.68% 5.70% 5.90% 

CCCV 0.5C 0.67% 0.37% 0.41% 

CCCV 1C 1.26% 0.72% 0.85% 

CCCV 2C 2.76% 1.72% 1.90% 

CCCV 3C 4.19% 2.64% 2.90% 

3.2. Pulsed load 

The pulse load is modelled as a variable resistor with trapezoidal shape as described by Figure 7, the rise and 

fall time was assumed as 10 ms. The control system was designed to enable faster rise times subject to the input 

inductor di/dt limit of 0.94 kA/ms (at cutoff voltage). Lower inductance could increase rise time, but at the cost of 

higher current ripple, this increases the risk of EMI in the system. The input inductor and output capacitor ratings 

were designed to achieve 4% and 1% ripple for current and voltage respectively at 2 MW pulsed load. 
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Figure 7: Trapezoidal pulse load profile 
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3.3. DC/DC converter and controller 

The DC/DC converter control system comprises an outer and inner loop PI controller in a cascaded 

configuration as presented in Figure 8. The outer loop regulates the output voltage 𝑣𝑂 and sets the command for 

the inner loop controller that is responsible for controlling the input inductor current iL subject to the maximum 

battery current ibmax. The output of the inner loop controller is the duty cycle d, which governs the PWM switching 

signals that drive the IGBT switching devices. PI controllers are required to enable the fast response commanded 

by the pulsed load, a PID controller was not adopted as it would dampen the response due to its derivative term. 

A cascaded PI controller is appropriate to ensure the dynamic response of output voltage and current 

simultaneously (Özdemir and Erdem 2018). The feedforward controller mitigates the outer loop right hand plane 

zero, whose position fluctuates with load and battery voltage. Therefore, mitigating the control system instability 

under large load disturbances like the LDEW load investigated here.  

To manage the high current associated with the system, the IGBT and diode characteristics used in the boost 

converter are based on the ABB 5SNA and 5SLA modules respectively (ABB 2014, 2015). The DC collector 

current ratings of 3600 A and device di/dt limits of 11.5 kA/s are compatible with the pulse characteristics. 
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Figure 8: DC/DC converter controller  

Table 4: DC/DC converter control parameters 

 Control parameter Value 

Battery discharge current, 𝑖𝑏𝑚𝑎𝑥  6C 

Inner loop proportional gain, Kp 0.002 

Inner loop integral gain, Ki  0.134 

Outer loop proportional gain, Kp2 0.16 

Outer loop integral gain, Ki2 75.3 

3.4. Constraints and assumptions 

The following constraints were applied during this investigation: 

 The battery ESS is assumed to be at a maximum of 90% and minimum of 50% SoC at commencement 

of LDEW operation. The maximum engagement time was set to 8 minutes. 

 The simulated system described by Figure 5 is isolated from the main distribution system during LDEW 

operation.   

 The simulation will terminate if either the 800 V cut-off voltage, 80% DoD or 6C current limit are 

exceeded. The model voltage validation error is taken into account for high discharge rates. 

 The cells in the battery ESS are balanced and discharge equally, consequently all results are from the 

perspective of the battery ESS terminals.  

 Thermal stress and cyclic aging effects are outside of the scope of this model. The potential effects from 

repetitive operation of parallel cells at elevated discharge rates are discussed further in Huhman et al. 

(2016) and Wetz et al. (2015). 
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4. Results and discussion 

The circuit described by Figure 5 was simulated in the MATLAB/Simulink R2018a modelling environment. 

The circuit was simulated for the load parameters in Table 2, conducted at 10% SoC intervals from 90-50% SoC 

this allows the operator to understand the maximum shots available for a given LDEW load.   

4.1. System response 

Figure 9 demonstrates the voltage and current response to the pulsating load, the engagement commenced at  

5 s and successfully completes 9 shots. Consequently, verifying that the ESS and control system can provide a 

series of LDEW pulses. The simulation terminated when the voltage exceeded the cut-off voltage limit during the 

initial voltage drop of the 10th shot, thus it is not shown here. Observation of 𝑣𝑜  in Figure 9(a) shows slight 

perturbations maintained at 1400 V ± 50 V, which is within the 10% recommended tolerance limits for DC power 

systems (IEEE Industry Applications Society 2018). When the LDEW is on, the battery voltage drop due to 

internal resistance in the cells varies from 150 V to 180 V over the scenario, recovering to a mean voltage of 1,000 

V when the LDEW is off. Figure 9(b) shows that the battery current is maintained below the 3000 A limit for the 

scenario. The overshoot in the control system design causes a small excess of current to be drawn from the battery, 

thus increasing the initial voltage drop magnitude.  

 

 
Figure 9: System (a) voltage and (b) current response to 2 MW LDEW load commenced at 70% SoC 

4.2. Voltage drop with SoC 

The effect of the LDEW load range on the battery voltage drop is demonstrated in Figure 10(a) and (b), 

intuitively the voltage drop is larger for the larger LDEW load. Comparing Figure 10 (a) and (b) shows that the 

magnitude of the voltage drop has slightly increased with decreasing SoC. The voltage drop delta between 90% 

and 70% SoC is approximately proportional to the difference in initial voltage, consequently increased current is 

drawn across the internal resistance of the battery to provide the same load demand.  

 

 
Figure 10: Voltage response to LDEW loading when the simulation commenced at (a) 90% and (b) 70% SoC  
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4.3. Operating envelope of the battery powered LDEW 

Through varying the initial SoC of the battery the simulation results indicate that the ESS is capable of 

facilitating 1.5 MW for the longest engagement time without the need to recharge, completing >60 shots for all 

initial SoC values between 90-50% as shown in Figure 11. Contrastingly when the initial SoC is >80% the battery 

is able to provide over 70, 1.75 MW shots before recharge, after which the performance reduces linearly to 3 shots 

when the initial SoC is 50%. For the 2 MW LDEW load the number of shots reduces exponentially to 0 at 50% 

SoC from 61 shots at 90% SoC.  

It should also be noted that over the course of the engagement there will be a temperature increase in the cells 

due to pulsing, the temperature rise will decrease the internal resistance of the cells as demonstrated by Jung and 

Kang (2014) and Wetz et al. (2015). This effect is omitted here due to absence of a thermal model. Therefore, the 

results in Figure 11 could be considered as a worse case. There are two further options to increase the performance 

envelope for the 2 MW and 1.75 MW LDEW, firstly, increasing the number of battery strings, or by allowing the 

diesel generators to contribute a proportion of the LDEW load, this is in the scope of further work. In the latter 

that stored energy in the ships power system from passive devices, machines and transmission lines would also 

contribute to the LDEW load.  

 

 
Figure 11: LDEW performance envelope with varying battery SoC 

Table 5 provides a summary of the best-case performance of the simulated system when an engagement 

commences at 90% SoC. The shot limit is >60 consecutive shots (8 minutes) for all LDEW powers from 90% 

SoC, the results show that for each LDEW power the four minute engagement duration set out by Markle (2018) 

is surpassed by the four string arrangement at 90% SoC. However, the subsequent recharge time to 90% SoC 

following the engagement is significant at 0.6, 0.7 and 0.82 multiplied by the engagement length for the 1.5, 1.75 

and 2 MW LDEW respectively.  

 

Table 5: Summary of battery ESS performance under LDEW loading 

Performance parameter 1.5 MW 1.75 MW 2 MW  

Maximum number shots from 90% SoC (480 s limit) 76 76 61  

Engagement length 480 s 480 s 380 s  

SoC following engagement 69.9 % 67.8% 69.2%  

Recharge time to 90% SoC at peak C rate 302 s 333 s 312 s  

Mean ESS and converter cooling load 40 kW 56 kW 59 kW  

Peak ESS and converter cooling load 132 kW 172 kW 215 kW  

 

The capability to perform a second engagement could be limited by the cooling system, depending on its 

effectiveness to maintain temperatures within operating limits 20-60°C (Hannan et al. 2018), although ideally 

between 20-25°C. The model developed in this work assumes an efficient cooling system to maintain ambient 

temperatures in the ideal range. The calculated cooling load in the model is the summation of the ESS and converter 

losses, calculated using a polynomial function of the ESS thermal efficiency map in Figure 3, and by measuring 

the input and output power of the DC/DC converter respectively. The mean losses of the ESS and converter are 

small relative to the installed generator power (12 MW), the nature of the pulsating load reflects the peak losses, 
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which are not insignificant, and this transitory demand highlights the need for further work on integrating the ESS, 

converter and LDEW with the ships cooling system.  

Whilst this study represents a beginning of life assessment of the ESS to meet LDEW demands, the operational 

stress conditions of repetitive, high current discharge rates could promote cell aging, whereby the cell capacity 

fades and internal resistance increases as discussed in Huhman et al. (2016). Consequently, aging affects will 

influence whether the LDEW can operate for four minutes when the ESS is within the SOC ranges established in 

this work. Further, the auxiliary cooling load will increase due to the change in cell internal resistance. 

Investigating the degraded performance of the ESS under LDEW operation is the subject of future work. 

5. Conclusions  

This work aimed to establish the ability of a Li-ion NMC battery ESS to act as the power source to anticipated 

LDEW load demands for a candidate warship with hybrid power and propulsion system. The ESS was integrated 

with the power system via the main switchboard, the LDEW was collocated on the ESS common bus via a DC/DC 

boost converter to maximise efficiency and permit isolation from the wider power system during operation. Time-

domain simulation results demonstrated that the validated NMC based battery ESS, and control system were able 

to achieve high rates of fire depending on the initial SoC of the ESS. Cognisant of the stated assumptions, the 

results of this work have identified operational constraints for future LDEW loads under the battery-based system. 

These are that the battery should not be less than 80%, 70% and 50% SoC at the commencement of an engagement 

for 2, 1.75 and 1.5 MW LDEW loads respectively to ensure maximum shot capability is available.  
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