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T his paper treats one phase of a continuous programme of 
study of the control characteristics of ships. The programme 
started with empirical studies of the kinematics of turning, but 
it soon became evident that a more comprehensive study of the 
motions involved, including steering, was necessary. Previous 
reports have set up a criterion for dynamic stability on course 
of an unsteered ship; the present work extends this to steered 
ships and, in particular, to a basic consideration of the all- 
important time factors involved in the actual process of steering. 
Some further clarification of this phase is in order.

The paper attempts to set up  quantitative measures of both 
the directional stability and the course-changing ability of 
automatically controlled ships, in terms of which

(1) approximate requirements can be formulated for the 
control systems needed for particular ships.

(2) approximate limits can be placed on the properties of 
unsteered ships (rudder amidships) in order that they can be 
handled by particular types of control.

In  a previous paper dealing with course-keeping qualities
[ 1],§ the quantity />, was introduced as a measure of the 
dynamic stability on course of an unsteered ship, l / |p i |  being 
approximately the number of ship lengths travelled by a stable 
ship in the time required to reduce an accidental deviation from 
undisturbed motion in a straight line to 1/e  of its initial value 
(e =  2 718), the rudder remaining in the amidships position. 
In  the present paper, the quantity q is introduced as a measure 
of the directional stability of a steered ship. I t is defined in an 
analogous way, but presupposes corrective applications of the
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rudder, actuated by suitable automatic control, to return the 
ship to its original heading (point of the compass).

In  the previous paper, it was inferred that the greater the 
dynamic stability (shown by greater negative values of p,), the 
more easily a ship can be steered to maintain a given heading. 
In  the present paper, this inference is proved by analysis, and 
the dependence of the quantity q on pi is demonstrated by 
sample calculations, summarized on Fig. 36. In  general, it is 
also seen that a larger negative value of q (increased directional 
stability) implies a larger permissible time lag in steering the 
ship, to produce the same performance in course keeping.

The effects of proportional displacement control, of pro­
portional displacement and rate controls combined, and of time 
lag in the control mechanism are investigated. Different tech­
niques for studying the directional stability of steered ships are 
presented as well as the calculation of trajectories.

I t  is shown that, in general, dynamically stable ships 
(negative pi) can be steered successfully by proportional dis­
placement control alone, while, in general, dynamically unstable 
ships (positive p ,) need the addition of proportional rate control. 
For slightly stable Ships (small negative pi) or for slightly 
unstable ships (small positive pi), rate control is desirable but 
not always absolutely necessary. I t  is seen also that both 
increased dynamic stability and the addition of rate control 
contribute to a more rapid change of course. It is shown 
further that the greater the dynamic stability of a ship, the 
greater the time lag in rudder response that can be tolerated, 
to obtain equal results in steering.

Quantitative indices are established, as far as possible at 
this time, and methods are described for calculating control parameters.

Basic work is needed on the effect of rough water on steer­
ing and ship control in general. I t has been recognized from 
the start that rough water is the ultimate consideration govern­
ing the necessary control characteristics and that smooth water 
studies are only the first step in an over-all programme. The 
authors have made brief preliminary studies of rough water 
problems and more detailed studies are currently in progress as 
part of a programme under way at the Experimental Towing 
Tank, Stevens Institute of Technology.
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Automatic Steering o f  Ships by Proportional Control
P art 1

GENERAL CONSIDERATIONS
The motion of a ship through still water and air with 

rudder amidships has been treated in detail previously [ 1] [2], 
This paper deals with the motion of an automatically steered 
ship under the same conditions of still water and air. The 
words “still water” and “air” are used, in a practical sense, to 
mean the existence of only very small disturbances. Certain

•sections of the present paper presuppose external disturbances 
of substantial magnitude; where this is done, it constitutes a 
preliminary approach to a treatment of rough water. Further 
work on rough water is needed and is contemplated.

One of the results obtained in earlier studies [1] [2] of 
the unsteered ship is the specification of course-keeping qualities 
with rudder amidships in terms of the dynamic stability index 
pi. A negative value of p, means that the ship is dynamically 
stable: when a dynamically stable ship moving on straight 
course is disturbed slightly, it settles down on a new straight 
course that is close to the original course (see Fig. 1). The 
greater the negative magnitude of p„  the more rapidly the ship 
settles on its new course and the closer the new course is to the 
original one. A positive value of p, means that the ship is 
dynamically unstable: when a dynamically unstable ship 
moving on straight course is disturbed slightly, it will wind up 
into a steady circling motion (even though the rudder is held 
amidships), as shown in Fig. 1. I t is apparent that neither 
dynamically stable nor dynamically unstable ships can be relied 
upon to maintain their original courses or headings indefinitely 
in the presence of normal seagoing disturbances.

The primary purpose of an automatic steering device, just 
as of a human helmsman, is to compensate for disturbances, 
making the ship maintain a prescribed heading and thus making 
it directionally stable. A second purpose of an automatic control 
or of a helmsman is to bring the ship from one course to 
another in an optimum manner.

c l a s s e s  o f  c o n t r o l  s y s t e m s
Broadly speaking, there are two general groups into which 

automatic steering devices may be classified: (1) continuous 
response devices, and (2) step response devices. In  both groups, 
the control system translates a deviation from desired heading 
into a rudder motion that tends to decrease the deviation. A 
continuous response control makes the rudder motion some 
continuous function of the heading deviation, the rate of change 
of heading deviation, or possibly higher derivatives or integrals 
of this quantity. This continuous function is chosen usually 
to be a linear function and the device is then called a propor­
tional control. A step response control places the rudder at 
one of two or more predetermined correcting angles, depending 
on the value of the heading deviation (and its derivatives).

I t  is apparent that a step response control in which there 
are a large number of closely spaced positions may differ little 
from a continuous response control. Also, step response systems

may be combined with continuous response systems over part of 
the range of rudder settings. As an example, one automatic 
steering device applies rudder pulses of prearranged magnitude 
and duration, and can be regarded as a special kind of step 
response device. In  general, continuous response controls are 
more difficult to design and construct, but usually produce 
smoother course lines for the ship than all but the most care­
fully designed step response controls. An extreme example of a 
simplified step response control is the “bang-bang” steering 
control used on some torpedoes. This is simply a switch that 
throws the rudder by a given amount in one direction or the 
other, depending on the direction of the heading deviation. 
W ith such a control, the body necessarily oscillates continually 
about its preset course, although, with careful design, the oscilla­
tions can be made rapid enough so that the heading deviations 
are not troublesome.Whatever type of control is used, the nature of the infor­
mation that is to be put into it (heading deviation with or 
without its derivatives or integrals) m ust be made definite for 
ships of varying degrees of dynamic stability. Properly, the 
decision as to type should depend more on the degree of per­
fection of the control (ability to use the information fed into it, 
magnitude of time lags, etc.) than on its classification in terms 
of continuous or step response. For instance, it is well known 
that a very high frequency bang-bang control can give per­
formance that is practically identical w ith that of a good pro­
portional control, in so far as the observable motion of the body 
is concerned. It should be possible, therefore, to place the 
choice between classes of controls at the level of engineering 
practice, where the influential factors are problems of design 
and construction, wear on steering engine, etc. General con­
clusions then can be drawn from a study of different classes 
of controls concerning the ease or difficulty of controlling 
various ships and the desirability of approaching the control 
problem analytically.Only continuous, proportional controls are considered in 
this paper. This restriction greatly simplifies the mathematical 
procedures, making it possible to examine a variety of situations 
quantitatively without excessive computational labour.

Every actual control possesses lags since the control and 
rudder do not respond instantaneously. The kind of lag which 
most nearly seems to describe the rudder response of ships is an 
“exponential lag” . I t corresponds to the fact that the ship’s 
rudder does not attain the angle called for instantaneously but 
moves at roughly a constant rate, which finally tapers off in 
reaching the specified angle. I t  is described in further detail 
in Part 2. Another type of lag often met in practice is a 
“constant lag” . This type occurs, for example, if it takes a 
constant finite time to transmit a signal to the controls. In  a 
ship, this type of lag is relatively insignificant, because of the 
relatively large time interval required to move the rudder; but in 
a small fast moving object, e.g., a torpedo or guided missile, a 
lag of this type may have an effect of great significance. Con­
stant lag also is discussed in Part 2.

In  order to keep the discussion general, both types of lag 
will be considered throughout the text.

p a r a m e t e r s  o f  t h e  c o n t r o l  f u n c t i o n
The parameters of a proportional control system are the 

numerical factors that determine the ratio of rudder angle to 
heading deviation and its derivatives and integrals, the time lag 
in response of the rudder to the information fed into the con­
trol, and the region over which the control operates (usually 
limited by the maximum rudder angle). The rudder angle is 
called 8 and the heading deviation 6; both quantities are positive 
to starboard, as shown in Fig. 8. The simplest proportional 
control is one in which S = -y d ,  with y  positive; this evidently 
tends to return the ship to course (0 — 0). The larger 7  is, the 
stiffer or more sensitive the control is, and the more decisively 
it corrects for a heading deviation. Thus, it would seem at 
first that a stiff control is necessarily desirable. However, if y
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is too large, the time lag, which is always present to some 
degree, can cause instability. This is because a heading devia­
tion calls for a correcting rudder that, because of the time lag, 
continues to be applied even after the deviation has disappeared 
(see Fig. 2). Then the ship overshoots its course and swings 
in the opposite direction. If -y and the time lag are both exces­
sive, oscillations of increasing amplitude can result.

The time lag can be compensated for to some extent by 
introducing control terms that are proportional to the first or 
higher derivatives of the heading deviation and that have an 
“anticipatory” effect. If the heading deviation starts to increase 
from zero, it is manifested as a positive value of 0 = d d /d t  
before 6 itself has attained an appreciable value, as shown in 
Fig. 3. Similarly, when 0 has reached a maximum and is 
starting to decrease, 0 is passing through zero from positive to 
negative values. T hus when 0 starts to increase from zero, a 
control function of the form 8 = - y 6 -  o0 (Fig. 4) calls for 
correcting rudder before the function 8 =  — y0  and when 0 
starts to decrease from its maximum toward zero, it slacks the 
rudder off more promptly. Higher time derivatives of 0 
increase the anticipatory effect. From  a mathematical point of 
view, a Taylor’s series expansion can be used to express the

heading deviation at the time t +  1 in terms of the deviation 
at the time t and its derivatives:

d(t+7) = 0(t) + 70(t) +  (i~/2\)0(t) +  . . .
The prediction of 6 at the later time requires, of course, an 
infinite number of terms in the series; this can never be attained 
in practice any more than a real prediction can ever be made in 
practice. However, the use of two or more terms in the series 
permits an extrapolation such as that made by gunfire com­
puters in finding the position of a target in the near future from 
its past and present positions.

T he use of an integral term (8 proportional to fO’dt) in 
the control function has the advantage of allowing course to be 
maintained in the presence of steady disturbances such as a 
cross wind. T o illustrate this, consider the effect of a steady 
side force on a ship with the control function 8 =  — yd. The 
ship will have to carry some rudder in order to counteract the 
force; but no rudder can be carried unless there is a heading 
deviation, since 8 is proportional to 6. Thus a compromise is 
reached in which the ship carries some rudder and is somewhat 
off course. If 8 is proportional to fd  dt, however, any devia­
tion at all, no m atter how slight, soon produces an appreciable 
value of the integral and the rudder corrects accordingly (see 
Fig. 5). In  the steady state, then, the ship carries the correct 
am ount of rudder and has no heading error. An integral 
control term, being the opposite of a derivative term which 
makes the ship respond more quickly, would be expected to 
make the ship sluggish. This is actually the case, as can be 
seen by noting that an integral control is equivalent to making 
the time derivative of the rudder angle proportional to the head­
ing deviation. The rudder attains a given value more slowly 
than it would if 8 itself were proportional to 0 (see Fig. 6). 
This, however, can be compensated for by introducing higher 
derivatives of 6 into the control function in addition to the 
integral term.

SCOPE OF THE PRESENT PAPER
In  this paper, the control function 8 = — yd -  a0 is applied 

to three ships—“A”, “B” and “C”— and account is taken of
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time lag. Derivative terms higher than the first are omitted not 
only because they would add to the complexity of the calcu­
lations but also because it was found that sufficient flexibility 
is obtained with 8 and 6 terms alone. The integral control 
term is left out because it tends to make the ship sluggish.

The heading error that appears without integral control 
in a steady cross wind is not believed to be an important effect, 
and in any event helps to offset the lateral drifting which will 
be caused by the cross wind. For a particular ship and a 
particular centre of pressure of the wind, it is possible to choose 
the parameters y  and a in the above control function so that 
the correct course is maintained in the presence of a steady cross 
wind. In  this instance, the ship carries rudder and has a head­
ing deviation. (See Appendix 2 for calculations on this point.)

The range of operation of the control system is of interest 
since the control m ust be able not only to handle large dis­
turbances but also to produce quickly desired changes in course. 
It is assumed in this paper that the control system functions 
out to the maximum rudder angle permitted by the construction 
of the ship. No consideration is given to the choice of this 
angle, since there is no reason for departing from present 
practice because of considerations of automatic control.

EARLIER WORK
M ost of the large body of literature on control problems 

and servo mechanisms [3] deals with industrial process control 
and related applications. Prior to the recent war, little analyti­
cal work appears to have been done in connexion with the

automatic piloting of aircraft, and still less in connexion with 
the automatic steering of ships. The war stimulated interest in 
both these problems and, in particular, in the parallel problem 
of analyzing torpedo control. Automatic piloting devices 
actually constructed and in use prior to the war were for the 
most part responsive to heading deviation only, and not to rate 
of deviation as well, and empirical determination of parameters 
was largely the rule [4] [5],Minorsky [6] [7] was apparently the first to make an 
analytical investigation of the behaviour of an automatic steer­
ing device on a ship and a preliminary study of some aspects 
of control systems. He considered proportional controls with 
the derivative and integral terms discussed in the previous 
section. His work is of limited usefulness because his assump­
tion of incomplete equations of motion for the ship makes it 
impossible to relate given values of parameters with consequent 
ship motions, and thus prevents reaching quantitative conclu­
sions. However, he constructed a proportional steering control, 
installed on the battleship New Mexico in 1923 [8], in which 
the rudder position was dependent on linear functions of the 
heading deviation and its first two derivatives, and (later) on 
the integral.

MacColl [3] gives a simple example relating to the auto­
matic steering of ships; others have made considerable progress 
on the analysis of automatic control of torpedoes, both in depth 
and steering.

As far as is known, no earlier work has attempted to dis­
cuss ship motions, with the objective of determining suitable 
ship and control parameters, as is done in this paper.

P a r t  2
ANALYTICAL METHODS

A number of objectives can now be set up for the analytical 
work which follows. A directional stability parameter q for 
the automatically steered ship, analogous to the dynamic stability 
parameter p, for the ship with rudder held amidships, is to be 
defined. I t  is to be expressed in terms of the control parameters, 
the time lag, and the properties of the ship itself. Finally, 
course changes are to be studied, and, if possible, the control 
parameters chosen so that the course can be altered automati­
cally in an optimum manner without ill effect on the perform­
ance of the same control system in steering on straight course.

ANALYTICAL REPRESENTATION OF RUDDER LAG
For the reasons discussed in Part 1, the control function 

is taken to have the form :
8*  =  —yO - c ' 6 =  - y ( )  -  o-Q  (1 )

where o- = (V /t)a , y  and <t  are positive, and 8* is the rudder 
angle that is called for by the control. I t  is not possible to 
have the ideal situation in which 8 is equal to §*, since this 
would require that the rudder be placed instantaneously in the 
desired position. Actually, there are time lags both in the 
control system and in the steering engine. While the first can 
be made very small by good design of the automatic steering 
device, it seems unlikely that the speed of response of rudder 
engines will be improved radically. The detailed nature of the 
time delays in steering engines is rather complicated to describe 
analytically: when a given rudder is called for, the steering 
engine starts moving fairly promptly, and proceeds with con­
stant speed until it is close to the desired rudder angle, when 
it slacks off and stops without overshooting.

For reasons that will appear, it is desirable to find (if pos­
sible) an analytical representation of the steering engine motion 
that is linear, since the entire system of equations for ship, 
control, and rudder then can be handled by the powerful mathe­
matical methods that have been developed for systems of linear 
equations. There are two simple linear relationships between 
8 and 8* that appear to approximate the steering engine delays 
reasonably well:

8 ((+7) = 8*(f) or 8(s+s) = 8*(i> (constant lag) (2)
and

8 +  78 = 8*(i) or 8 +  18' = 8*<s) (exponential lag) (3) 
where in both cases i  = (V’/l'jl. Equation (2) states that the 
rudder angle 8* called for at a particular time t is attained 
by the rudder at a time t  +  7 tha t is later than t by 7; this 
evidently can be expressed in path lengths 5 as well, in which 
case the delay is 7. Equation (3) may be interpreted as follows: 
if 8* = 0 for a long time and at s = 0 changes suddenly from 
8* = 0 to 8* =S0*, then 8 will approach the value So* expon­
entially in accordance with the relation 8 =  80*(1 — e - s/s). Fig.
7 shows a plot of such a step function behaviour of 8*, together 
with the changes of rudder angle 8 that correspond to the two 
types of lag.

Equation (3) is a first order linear differential equation. 
Equation (2) is a linear equation since its solutions can be 
superposed, but it is not a differential equation. While this 
introduces some mathematical complications, they are not as 
serious as those that would be introduced by the assumption of 
a nonlinear relation (differential or otherwise) between 8 and 8*. 
I t is interesting to note that equation (3) comprises just the 
first two terms in the Taylor’s series expansion of equation (2), 
since S(s+7) = 8(s) +  58'(s) +  (5s/ 2 !) 8"<) . . . This shows that 
equation (2) is equivalent to a linear differential equation of 
infinite order. Thus if “ is quite small compared to the s 
intervals that are of interest in a particular problem, there will
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be little difference between the results obtained from the two 
equations. In  other cases, and in general, it appears likely from 
an inspection of Fig. 7 that the exponential lag of equation (3) 
provides a better approximation to the actual rudder motion of 
ships than the constant lag of equation (2).

I t  is now necessary to decide upon a suitable value for 
t or 5. Since the rudder moves with sensibly constant speed 
over most of its travel, it is clear that 1 is roughly proportional 
to  the rudder angle that is called for suddenly. In  heavy 
weather, when the ship suddenly may be thrown considerably 
off course, 8* will change quickly from a small to a large value, 
and t will be roughly the change in 8* divided by the constant 
rudder engine speed 8„. D uring normal steering, on the other 
hand, 8* changes relatively slowly and t  will be correspondingly 
smaller. Also, an increase in the control parameters y  and cr 
will tend to increase t, since the control will call for a larger 
change in 8* for given changes in 6 and 6. Now equations
(2) and (3) are linear only as long as 1 and ~ are constants 
independent of 8*. Thus it is necessary to choose a compromise 
value of I  for a particular problem. Since this paper is con­
cerned mainly with normal steering, I  is chosen to correspond 
to a sudden change in 8* of a few degrees. Then for various 
ships and speeds, s is proportional to (V/180)-

EQUATIONS OF M OTION FOR SH IP AND CONTROL
The analytical work now involves setting up the equations 

of motion for the ship and the control (including time lag), 
describing the various kinds of disturbances, and obtaining 
solutions that illustrate the desired results. The equations of 
motion of the ship have been presented and discussed in an 
earlier paper [1] and will not be derived again here. As far 
as steering a straight course is concerned, the linearized equa­
tions (15) of [1] are adequate, and have the form (see Fig. 8): 
mQ. -  m,\p' -  C,tp = - 8 C \  (equilibrium of transverse

forces) j- (4) 
n i l '  +  Cki l  Cmxfi = 8Cfi (equilibrium of mom ents)J 
The independent variable in equations (4) is s = (V /l)t, which 
is the number of ship lengths I travelled at the speed V  in the 
time t. A prime denotes differentiation with respect to s, and a 
dot, differentiation with respect to t; in particular, Q =8' = 
d8/ds  = (l /V )6 . \[> is the yaw angle which, like 9, is measured 
in radians, m  = m l — Cf; m „ m 2, and n are dimensionless 
coefficients of longitudinal inertia, transverse inertia and rota­
tional inertia, respectively. C, and C, are the derivatives of the 
transverse force coefficient with respect to yaw angle \Jj and 
space angular velocity Q, respectively; Cm and C,,. are the 
similar derivatives of the moment coefficient. 8 C \  and 8Cju 
are the rudder force and moment coefficients, respectively, and 
can be taken to be proportional to 8, with sufficient accuracy for 
the present purpose.

Equations (1), (4), and either (2) or (3) comprise a com­
plete system of linear equations for the motion of an undis­
turbed ship; i.e., four equations for the four unknowns iL, 0 
(or Q), 8 and 8*. Two types of disturbance are taken into 
account readily: impulsive forces and moments that are equiva­
lent to initial conditions for the undisturbed motion, and steady 
forces and moments that are constant in time. Both types are 
considered in this paper. A third  type of disturbance, perhaps 
the most interesting from a practical point of view, is that con­
sisting of continuing non-steady forces and moments such as 
are encountered by a ship in a seaway. Although the mathe­
matical methods for handling linear equations with inhomo- 
geneous terms depending in an arbitrary way on the independent 
variable are well understood, it seems a little premature for the 
extra computational labour involved in lengthy calculations 
which require specification of these forces and moments. It 
should be noted, however, that when these terms are exponential 
or sinusoidal functions, the entire calculation can be handled 
analytically. No further mention of this type of disturbance 
will be made in this paper. However, a good qualitative picture 
of the behaviour in rough weather of an automatically steered

Reference

Arrows indicate the senses in which the quantities are taken to be 
positive. Note that ij/, 0, and 8 are all positive for a steady turn to starboard. This figure is identical with Fig. 16 of Reference [1].
ship can be obtained from results like those presented in Part 3 
of this paper.

In  the previous two sections, the basic differential equations 
of motion have been set up. In  the following two sections, two 
methods of solution will be presented:

(1) The method of characteristic exponents, leading to the 
Hurwitz criterion, and Routh’s rule as the criterion of stability. 
This method gives a means of computing the path (trajectory) 
of the ship’s motion.

(2) The Nyquist method [9], sometimes more suitable as a 
criterion of stability, though not suited to the determination of 
the path.

Both methods can be used with either assumption regarding 
time lags.

METHOD OF CHARACTERISTIC EXPONENTS
The general method for solving a system of simultaneous 

linear equations in which one or more dependent variables 
fy , 6, S, 8*) are functions of a single independent variable (s) 
consists in expressing each of the dependent variables as a sum 
of exponential functions of the independent variable:

■em5
N

t =  l 
N

N
i=l

8(s) = :s 8*(j) =
i—1

(5)

It can be shown that the solutions of homogeneous equations 
of the present type can be expressed in the form (5), where the 
coefficients i e t c . ,  are constants that depend on the initial 
conditions, and the characteristic exponents qt are constants 
that depend on the equations but that do not involve the initial
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conditions. I t is assumed in (5) that the q, are all distinct; 
if two or more of them coincide, a slight modification of equa­
tions (5) m ust be made. The number of terms N  in each 
summation is finite if the equations are differential equations of 
finite order. Since equation (2) is, because of its Taylor’s series 
representation, equivalent from the present point of view to a 
differential equation of infinite order, an infinite number of 
terms is required in (5) for this assumed relation between 8 and 
8*. This is not a serious practical difficulty since all but a few 
of the q,- are of such magnitude that they have little effect on 
the solution. If the original equations contain constant inhomo- 
geneous terms that correspond to a steady disturbance, equa­
tions (5) m ust be modified by the addition to their right sides 
of constant factors ipo, etc.

The methods for determining the characteristic exponents 
qt will be discussed a little later. Once they are known, the 
general character of the motion can be inferred by inspection. 
If the real parts of all of the qi are negative, ib, 9, 8, and 8* all 
approach their steady state values ipo, etc., exponentially as s 
becomes very large; these steady state values are zero, of course, 
in the absence of steady disturbances. In  this event, the auto­
matically controlled ship is said to be directionally stable.

Definition o f the Quantity q. A convenient measure of the degree of directional stability is provided by the quantity q. which is defined to be the real part of the characteristic exponent that has the smallest negative real part; i.e., of the exponent q\ which corresponds to the dynamic stability parameter p\. The exponential term involving the particular qt of which q  is the real part dominates the motion for large s, and 1 /[<?) is roughly the number of ship lengths in which the departure of the controlled ship from its steady motion is reduced to 1/e of its initial value 2.718). If one or more of the q i  has a positive real part, the motion of the ship following an arbitrary small disturbance deviates farther and farther from the desired heading, until nonlinearities dominate. The ship is then called directionally unstable, and with the foregoing definition, q is positive. Thus positive q  implies directional instability, and negative q ,  directional stability. The larger the negative value of 
q ,  the more stable the controlled ship, and the more rapidly it returns to its original course following an impulsive disturbance.

When the number of terms N  in the summations (5) is 
finite, an algebraic equation for the <?, can be obtained by the 
same procedure that resulted in equation (21) of [ 1 ]. Substitu­
tion of equations (5) into equations (1), (3), and (4) gives rela­
tions between series of exponentials that also must hold between 
the coefficients of each exponential factor e n \  In  this way, the 
following simultaneous algebraic equations are obtained for each 
value of i :

m q fii -  n i,q t\pi -  C ^  = -8,C A
nqfdi +  Ckqfit -  C,,,^ = Sfi/j.
8i* = —ydi ~  <rqfii 
8( +  sq&  = 8,-* J

Equations (6) are four simultaneous homogeneous algebraic 
equations from which qt and the ratios of three of the four 
quantities ipi, Si, 8i( 8j* to the fourth can be determined. The 
condition for the existence of a non-zero solution is that the 
determinant of the coefficients vanishes:

- m 2q{ -  C, m q{ C \

(6)

nq< +  Crfl 
y  +  o-qt

-C
0

!>-
o
0
1 

- l
= o (7)

(8)

C„ j 

0
0 0 1 

Equation (7) is a quartic (N  = 4) that can be w ritten:
a<,q{ + (hq? + a2q? +  a3qt +  a, = 0 
i = 1 ,2 ,  3, 4 a0 = snm 2
iZi = l(nCi 4- m 2Ck) + nm 2 
a2 =  s(C,Ck — m C m) 4- (« C , +  m ,C k) +  crm 2C/i 
a* = ( C A  — m Cm) +  y ^ 2Cjx +  a-(.ClCn +  C \C m) a, = y(CiC/x 4- C \C m) )

Thus the characteristic exponents can be found by the solution 
of a fourth degree algebraic equation. In  the event that the 
actual values of the qt are not needed, but merely a determina­
tion of whether or not the motion is stable, it is sufficient to deter­
mine whether or not the real parts of all of the qt are negative. 
A simple method for doing this is provided by Routh’s rule,

which is a special case of the Hurwitz criterion [10]: the 
motion is stable if, and only if, all of the a’s in equations (8) 
are positive, and also aA «, — a„a/ — a,2a, >  0. From a study 
of this expression, it can be shown that increasing dynamic 
stability generally leads to increased directional stability, for 
the same control mechanism.

The same general procedure can be employed when equa­
tion (2) (constant lag) is used in place of equation (3) (exponen­
tial lag), for which N  is infinite. The only change is that the 
last of equations (6) is replaced by bie'l's = 8f*. This changes 
the element in the fourth row and third  column of the deter- 
minent of equation (7) from 1 +  sqt to ens. The quartic equa­
tion (8) is now replaced by the transcendental equation [9] : 
qieiis\nm 2.q? 4- (nCx 4- m 2C k)qi 4- (C lC k -  m Cm)] +

o-mzC nqi'‘ +  [ym 2Cfx + criCfip. 4- C \C m)]qi 4-y iC f in  4- CAC,J -  0 (9) 
which has an infinite number of solutions for qt. The solutions 
of equation (9) can be obtained by putting  qt = a + bi, where 
i -  V —1 and a and b are real, and equating the real and 
imaginary parts of the left side of (9) separately to zero. In  
this way, two simultaneous transcendental equations are 
obtained for a and b; these may be solved numerically or graphi­
cally to yield an infinite number of pairs of solutions. The 
assumption of exponential lag, which leads to (8) rather than 
(9), probably provides a better approximation to the functioning 
of a steering engine than does a constant lag. I t  has been 
shown, however, by D. Shanks of the Naval Ordnance Labora­
tory (see also [ 11]) that in practical problems, all of the solu­
tions <7, of (9) have large imaginary parts (high frequency of 
oscillation) and large negative real parts (rapid damping), 
except for a few that are given in order of magnitude by using 
the first two terms in the expansion of the exponential.4 (This 
corresponds to replacing (9) by (8).) However, the stability or 
instability of a system with constant lag can be determined 
without approximation in a simple manner by the Nyquist 
method (see the next section).

n y q u i s t ’s  m e t h o d
The stability or instability of the automatically steered ship 

can be determined also in a quite different way, by means of 
Nyquist’s criterion [9 ].5 This criterion is expressed in terms 
of the response of the ship and control system to sinusoidal 
rudder oscillations of all possible frequencies. The connexion 
between the output of the automatic steering control and the 
input to the rudder engine (both of which have been denoted by 
8*) is imagined to be broken, and the rudder engine input is 
oscillated sinusoidally with a particular frequency and ampli­
tude. The resulting rudder oscillation produces an oscillatory 
motion of the ship, which in turn  produces an oscillation of 
the steering control output. The stability can then be inferred 
from a plot of the ratio of the amplitude of the steering control 
output to that of the rudder engine input against the frequency 
of the oscillation, together with a plot of the phase difference 
between these two motions against frequency. If the unsteered 
ship is dynamically stable (negative p ,), the steered ship is direc­
tionally stable if, and only if, the frequency at which the ampli­
tude ratio is equal to unity is less than the frequency at which 
the phase difference is zero (the latter frequency may be infinite 
or may not exist). If the unsteered ship is dynamically unstable 
(pi positive) but directionally stable when steered, the two 
frequencies in the stability criterion just given are interchanged. 
(This statement of the Nyquist stability criterion is not com­
pletely general, but is sufficiently so for the problems studied in this paper.)

It is convenient to adopt the complex number notation
4While the approximation to a constant lag of retaining the first few terms in a Taylor’s series expansion was suggested by Minorsky [7], the apparent contradictions produced by this method when an odd number of terms of the series are retained were incorrectly explained in [7].
5The Nyquist method provides only a criterion of stability, and is not suited to computation of paths.
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used in alternating-current circuit theory. Each of the depen­
dent variables is assumed to have a time dependence propor­
tional to e ,wt = e'ks, where to is the angular frequency of the 
rudder engine input oscillation and k  = col/V  is the correspond­
ing “space frequency” ( l ^ / k  is the number of ship lengths 
travelled during one period of the oscillation). Then:

’/'(s) =  4>k.e'ks, 6 {S) =  8ke'ks, _ | ,
<5(s) =  8ke,lls, 8*(S) =  8*keiks, 8*(S> =  8*ke'ks J

Here 8* represents the rudder engine input and 8* the steering 
control output when the connexion between steering control 
and rudder engine has been broken. (If the control is function­
ing, 8* is of course equal to 8*.) Each of the coefficients \fsk, 
etc., is in general a complex number that depends on k  but not 
on s. Each of equations (10) is so interpreted that the quantity 
on the left, which is necessarily real, is equal to the real part 
of the quantity on the right. Thus if the complex number xpk 
is written as \if*ke,x,\ where % is the phase of ipk and \xpk\ is the 
m agnitude of \pk, then the first of equations (19) implies 
that ^(S) = 1^1 cos (ks +  x). I t  is well known from alternating- 
current circuit theory that this interpretation of the solutions
(10) is consistent provided that the original equations are linear.

Substitution of equations (10) into equations (1), (2), (3), 
and (4) gives, respectively:

ikmdu -  (ikm2 +  C{)\ph = - C \ 8 k \ 
(~ k  n + ikCk)Ok — Cm\jjk = C[xSk |

\ *  (y  + ikcr)6k (11.2)
8* ^  = 8** (11.3)

(1 +  ik~s)8k = 8k* (11.4)
Equations (11.1) can be solved for 0k and \f/k in terms of 
8k. Then (11.2) gives 8k* in terms of 6k and hence Sk; either 
(11.3) or (11.4) gives 8k in terms of 8k*. The first step yields:

ek =
(C fifx  + C A C J + ikm2CfjL

( 11. 1)

k [ - n m jv  +  (CjCfc -  m Cm) + ik(nC, +  m 2Ck)) 
mCfx +  C\ C k +  ik n C \  

8k

(1 2)

~nm.,k‘ +  ( C fik — m C m) +  ik(nCl +  m 2Ck)
The first of equations (12) and equations (11.2) and (11.3) then give:

8* *  =
8k *

~ (y  + iko-yiiC fin  +  C \C m) +  ikm ^C fx))____
ike"“ [ - n m sk 2 +  (C,Ck -  m C m) + ik(nCl + m 2Ck)] (13) 

Plots of the magnitude and phase of the right side of equation 
(13) as functions of k  determine the stability or instability of 
the automatically steered ship in accordance with Nyquist’s
criterion. Substitution of 1 4- iks for in the denominatortakes account of the change from equation (2) (constant lag) to 
equation (3) (exponential lag) in the description of the behaviour of the steering engine.

COMPARISON OF NYQUIST AND HURW ITZ METHODS
The Nyquist method can be used with relative ease when 

the steering engine and other delays are constant, for which 
case the Hurwitz criterion may be applied only approximately 
(though generally with a high degree of approximation). When 
only the stability of a hydrodynamic body fitted with various 
control devices needs to be examined, it is often simpler to use 
the Nyquist method. This may be seen from the expression

a*) ( fc ) ( t)+(S) Q vH t)
For a given body ^ j  and ( y 5) are constant and indepen­
dent of the control mechanism, while f  ^ ^ and

depend only on the control mechanism. In  the relatively
simple case of ships, there is little choice between the methods 
when different controls are applied to the same ship and when 
only stability is under consideration. Perhaps the Hurwitz 
method is somewhat simpler since it reduces to a quadratic 
equation in y  and <r. In  using the Hurwitz method, the 
characteristic exponent which yields the entire motion may be 
found with ease. However, the Nyquist method is not suited 
to obtain the characteristic exponents and so cannot be used to 
study the trajectory.

An im portant use of the Nyquist method is that quantities
such as ( I )  -  ( S )  can sometimes be measured on a ship
or model.6 Then the stability can be determined without know­
ing the steering engine or hydrodynamic constants, or using the 
equations of motion.

ANALYTICAL TREATMENT OF DISTURBANCES
As remarked earlier, the only disturbances treated in this 

paper are those due to steady forces and moments (constant 
inhomogeneous terms in equations (4)), and those due to im pul­
sive forces and moments (initial conditions in the solutions). 
Moreover, only the relation of equation (3) (exponential lag) 
between 8 and 8* is considered in connexion with impulsive dis­
turbances, since it probably provides a better description of the 
steering engine behaviour than equation (2) (constant lag) and 
is easier to handle analytically by the method of characteristic 
exponents. (When steady motion has been attained, there is 
of course no difference between equations (2) and (3), since 8 
is then constant.) It should be noted that the response of ships 
to external disturbances does not depend very m uch on the 
actual form of this disturbance. In  view of this fact, these 
calculations represent a preliminary step in the treatment of a 
ship’s response in rough water and air.

Steady Disturbances. The solution of the equations in the 
presence of steady disturbances under the assumption that the 
automatically steered ship is directionally stable, is obtained by 
setting ijj, 6, 8, and 8* equal to the constant values xj/0, 60, 80) 
and 8»*, respectively. A constant transverse external force to
starboard, F  l̂ A V C s , where p is the density of water and A
the longitudinal plane area of the ship, adds a term CN to the 
right side of the first of equations (4). If this force is applied 
at a distance \ l  forward of the centre of gravity of the ship, a 
term \ C N is also added to the right side of the second of 
equations (4). Equations (4) thus become in the steady s ta te :

— Cllflo =  ~ C \ S o  +  C N ) j - j  A
- C m̂ „ = Cm8„ +  A CN )

In  similar fashion, equations (1) and either (2) or (3) become, 
respectively: S«* = -y t f o  (14.2)

8. = 8„* (14.3)
Equations (14) are easily solved to give:

CN(Cm -  AC,) , _ C N(C,U + ACA) |~ y(cmc\ + c,cMy V" (cmc\ 4- c,cM) d5)
8 ,  =  8o* =  - y d o  1The simplest case is that in which the ship is initially 
(s = 0) on straight course with rudder amidships, and the 
steady disturbance is applied suddenly without any accompany­
ing impulsive disturbance. Then the initial values of if;, 6, O', 
and 8 are all zero; the initial values of and 0" are given by 
the first and second of equations (4), respectively, with the C N 
terms included; and the initial values of ifi" and O'" are deter­
mined by differentiation of the expressions for \p' and 6". Since 
8 and S* can be expressed in terms of 0, this gives eight equa­
tions for the eight unknown constants: 02, 0„ 6„  tii, 
yp3, and
6A study of this is being carried out at present at the Experimental Towing Tank, Stevens Institute of Technology. See also [12],
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Impulse Disturbances. The treatment of impulsive dis­

turbances, either by themselves or in combination with steady 
disturbances, involves the determination of the coefficients \pi, 
etc., that appear in equations (5) where i = 1, 2, 3, 4. \p<>, 
etc., are always given by equations (15), whether or not there 
is an impulsive disturbance present. When impulsive distur­
bance which is applied suddenly at s = 0, the initial values of 
bance which is appled suddenly at s 0, the initial values of 
xp and 8' are no longer zero, as previously assumed. This is 
because an ititial transverse force impulse gives the ship an initial 
transverse velocity, which is equivalent to an initial yaw angle; 
similarly, an initial moment impulse gives the ship an initial 
angular velocity. The explicit expressions for the eight equations 
are now given in terms of initial values that are denoted by the 
subscript a :
8a =  6o + 0i +  8z +  03 + 8a
8'a ~ QiOi +  <h8t +  qs8, +  q,8t 
0"a =  ~(Pfxha + \C fi -  Ck6'„ + Cmxpa) -- qr8i + 

qi8?  +  qs~83 + q /8 ,
9"'a = ~(CfJ.8'a -  Ck8"a +  Cmxp'a) = q,38, +  q2 82 +

q /8 , + q t ‘8< ^
Xp, + Xp2 + Xpa — Xpo + Xpz + Xpt

V'a = ^ i C \ 8 a -  C N +  md'a -  Cita) = q,xp, + 
q 2xp2 +  q 3xp3 +  q,\pt

4>"a = —(CAS'a + m8"a -  C '̂o) -  q/xpi + 
q -ixp2 +  q3'xp3 +  qSxpi 

Sa =  —(sS'a +  Y#a +  v P  a)
The coefficients obtained from a solution of equations (16) can 
be substituted into equations (5) to give expressions for xp and 8 
as functions of 5. From  these the course angle tf> (see Fig. 8) 
can be found from the relation cp = 8 -  xp. The trajectory of 
the ship can then be obtained by integrating the course equations:

dx dy
-fa = cos <P> ds = Sln  ̂ (17)

where x  and y  are the rectangular co-ordinates of the ship’s 
position, measured in ship lengths I. Equations (17) can be 
approximated in the linear region by assuming that <p ^  1, in 
which case cos <p g  1 and sin <l> ^  cp. Then x  ^  s and the 
second of equations (17) can be approximated by:

y  = fox <p(s)ds (18)
The integration in equation (18) can of course be carried out 
analytically in the present linear approximation.

AUTOMATIC CHANGE IN  COURSE
An im portant purpose of an automatic control system is 

to effect course changes in an optimum way when they are 
called for by the conning officer. This purpose should be con­
sidered in choosing the control parameters y  and cr, due allow­
ance being made for the properties of the ship. A mathematical 
treatment of the course change problem can be given by solving 
the equations of motion for ship and control subject to the 
initial conditions xp = 8' = 8 - 0, 0 = 8a, where da is the change 
in heading called for at .s = 0 when the ship is on straight 
course with rudder amidships. Then y  and cr must be varied 
until a combination is found that makes 8 approach zero in the shortest possible time.

There are two difficulties in the way of this ideal approach. 
First, the actual equations of motion for the ship, given by (11) 
and (12) of [ 1], are non-linear for large values of 8 and can be 
handled only by numerical (step-by-step) integration. While a

treatment of this type is possible and has actually been carried 
through (see [1], part 3, Section 7), it is not adapted to the 
determination of optimum values lor the control parameters. 
This would require a large number of integrations to obtain 8(S) 
and hence an enormous amount of numerical work. I t is 
desirable, therefore, to simplify the equations of motion as much 
as possible. This may be done by assuming that the ship equa­
tions of motion have the linear form (4) and by maintaining 
the form of the steering control function given by equation (1). 
The further assumption is made that the steering engine delay s 
can be neglected; apart from the initial application of the 
rudder, this is justified by the rate of tu rn  of the ship, which is 
usually small enough so that the rate at which the control calls 
for change of rudder is less than the rate of travel of the steer­
ing engine. The neglect of ~ reduces equation (8) for the 
characteristic exponents from a quartic to a cubic, so that only 
three exponentials enter into the solution. In  all cases, one of 
the q ls is real and negative, and the other two are generally 
complex conjugates of each other and have negative real parts. 
Thus the motion following initial application of the rudder is 
approximated as a sum of decreasing exponentials and a damped 
sinusoidal oscillation.

The second difficulty arises in the specification of what is 
meant by an optimum change in course. The appearance of 
complex q t’s implies that the ship may overshoot its course, 
although the overshoot can be unobservably small if the damp­
ing factor associated with the oscillatory motion is large enough. 
The dependence of 8 on s following initial application of the 
rudder then has the fo rm :
8(s) = A ei's + eas (B ■ cos bs +  C • sin bs)

Ae<>'s +  (£F +  C 2) i  eas cos (j>s -  tan-1 ^  ^ (19)
where q2,3 = a ± ib. The envelope of equation (19), Ae‘<'s +  
(.B2 +  C2)ieas, is used here as a criterion of the approach of the 
ship to its new course. The course change is said to be optimum 
when this envelope is a minimum at some definite number of 
ship lengths after calling for the course change.

The calculation can proceed by assuming that the course 
change is large enough (one radian) so that the control initially 
calls for more than full rudder. There is a fixed interval during 
which the rudder moves out against its stop and stays, while 
the ship attains its steady angular velocity. Following this, 
the ship turns steadily under full rudder until the combination 
of heading deviation and its rate of change are such that the 
control calls fo rexactly full rudder. The constants A, B, and 
C in equation (19) are fitted at this point, and the envelope of 8 
computed from then on. Variation of y  and cr changes the 
point at which the control takes over as well as the shape of 
the 8 envelope. The fixed interval s, during which steady 
turning with full rudder is attained, is omitted from the curves 
shown in Part 3; the curves are drawn as though the ship 
started immediately in the full rudder turn, so that 8 decreases 
linearly with s near s = 0. The choice of optimum values for 
y  and cr is not affected by the omission since the initial motion 
is independent of the control parameters. The optimum control 
parameters found in this way do not depend appreciably on 
the course change that is called for, provided the change is large 
enough so that there is an interval during which the ship turns 
under full rudder. The problem for smaller course changes is 
completely equivalent to the impulsive disturbance problem, and 
requires a solution of equations (16) with the initial conditions 
given at the beginning of this section. The general behaviour 
of the ship in this instance can be inferred from the values of 
the characteristic exponents without additional computation. 
The characteristic exponents are, of course, the same as those 
which appear in the earlier consideration of directional stability. 
Thus, optimum small changes in course are obtained by making q as large (negative) as possible.
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F ig . 10— S h ip  “B”

1

Characteristic exponents q: for <r -  0, 7 = 0 
Three characteristic exponents when two are complex conjugates

P art 3
NUMERICAL RESULTS FOR PARTICULAR SH IPS

The analytical methods described in Part 2 have been 
applied to the three ships : “A”, “B”, and “C” . The numerical 
results are presented in four g roups:

(1) Values of the characteristic exponents for 7 = 0, limit­
ing values of the control parameters and s for directional stabi­
lity, and values of q for various cases.

(2) Nyquist plots Sk*/Sk* against k,
(3) The effect of a disturbance on ship “C”,
(4) H envelopes for course changes of one radian.
It should be noted in considering the subsequent calcula­

tions that y  is associated with rudder “power” ; wherever 7 
appears in the equations, it is multiplied by C \  or Cp. The 
products y C \  and yC/x may thus be altered by a change of 
either the proportionality y, or of the rudder characteristics C \  
and C 1 1 . For the control of other bodies such as torpedoes, 7 
may assume values many times larger than for ships; the rudder 
power terms 7C \  and y C u may not be greatly different.

VALUES OF SH IP PARAMETERS
The numerical values of the parameters are given in Table

1. These are all for straight-line motion; for example, Cm is 
the derivative of the moment coefficient with respect to yaw 
angle measured at zero yaw angle and zero path curvature. 
I t should be remembered that the graphs of measured moment 
and force coefficient against yaw angle and path curvature are 
not straight lines except in the neighbourhood of straight 
course. Thus, while the parameters listed in Table 1 provide 
a reliable basis or studies of dynamic and directional stability, F ig . 11— S h ip  “C ”
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T a ble  1

Ship “A” Ship “B” Ship “C
m , 0122 0-218 0074
m. 0-235 0 409 0142
n 00116 0024 00085cm 0 069 0126 0092c, 0356 0-353 0-256ck 0069 0-0588 0032c,m — — C, 
Cju

0063 00207 0009
0059 0197 0065
0-0287 00333 00143

C \ 0 0630 00715 00312
p, (unsteered) — 1 18 + 0 1 6 -0-35
they can be used for only approximate calculations of course 
changes. The coefficients correspond to a speed-length ratio 
of V  /  >Jl = 0 8. These same coefficients are valid for all speed- 
length ratios up to about V / *JI = IT  where wave-making 
becomes large. The effect of speed is discussed in reference 1.

CHARACTERISTIC EXPONENTS AND DIRECTIONAL STABILITY 
Proportional Control Only. As may be seen from equa­

tions (8), the quartic equation for the characteristic exponents 
reduces to a cubic when s 0. The three roots of this equa­
tion are plotted in Figs. 9, 10, and 11 as functions of y ,  for 
the three ships, when i t  = 0. One of the exponents is always 
large and negative, and is plotted in the lower part of each 
figure. The other two exponents may be real, in which case 
they are indicated by solid lines in the upper part of each 
figure; or if they are complex conjugates of each other, the real 
part of each is indicated by a solid line and the imaginary part

by a dotted line. When y  = 0, there is no control and one of 
the exponents becomes zero. The remaining two exponents are 
negative for the dynamically stable ship “A” and ship “C” ; one 
is positive and the other negative for the dynamically unstable 
ship “B”. Because of the dynamic instability of ship “B”, the 
ship will be directionally unstable for sufficiently small y ; Fig.
10 shows that y  must exceed 0'7 for the ship to be directionally 
stable. From the definition of q given earlier, it is apparent 
that q is the upper branch of the solid curve on each chart.

Proportional and Rate Control with cr = 1. Figs. 12 and 
13 are similar graphs for two of the three vessels under con­
sideration (one directionally stable, and one unstable) showing 
the three q, values plotted against y  but with cr = 1. This value 
of cr corresponds to cr = l /V  in equation (1), and means that in a 
typical case an angular velocity of i  degree per second calls for 10 
degrees of correcting rudder. Comparison of Figs. 9 and 12 
shows that little is gained by the addition of rate control, as 
far as the directional stability of ship “A” is concerned; this 
was not calculated for “C” which, being less stable dynamically, 
would presumably show a somewhat greater improvement. On 
the other hand, comparison of Figs. 10 and 13 shows that the 
directional stability of “B” is substantially improved over the 
entire range of y  by the addition of rate control. This improve­
ment is more than sufficient to change the motion from insta­
bility to stability for y  between 0 and 0 7.

Effect of the Lag s in the Rudder Control. On Figs. 14, 
15, and 16, the connection between s and stability is shown by 
plots, against -y, of the maximum value of s that just permits 
the ship to be directionally stable; 1 is used as it appears in 
equation (3) to define an exponential lag. I t  is apparent that

F ig . 12— Ship  “A ” F ig . 13— Ship “B"
Characteristic exponents q t for cr =  1 , s =  0  

Three characteristic exponents when two are complex conjugates
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F i g . 1 4 — Ship “A ” F i g . 1 5 — Ship  “B”

F i g . 16—Ship  “C ”

ship “A” can tolerate much larger steering delays than “C”, 
just as “C” can tolerate much larger delays than “B” . For 
“A”, s  can be arbitrarily large if y  <  2 6 ;  similarly, “ can be 
arbitrarily large for “C” if y <  012 . As expected, however, 
“B” is directionally unstable for any actual (positive) " if 
y  <  0'7 and cr = 0. When rate control is added to “B” (cr = 1), 
the curve of allowable “ resembles that for “C” .

Similar curves are shown in Figs. 17, 18, and 19 for the

Allowable lag ~ for directional stability 
8 + lb ' = 8(s) * (exponential lag)

case of constant lag, as in equation (2); these curves are derived 
from the Nyquist plots that are presented in the next section. 
I t  is apparent that there is little difference between the results 
obtained from ships “B” and “C” from equations ( 2 )  (constant 
lag) and (3) (exponential lag) in the region of small s; this would 
be expected from the discussion of Part 2 . Ship “A”, how­
ever, is so stable that large values of y  are required to make the 
allowable s small; in this case, the two curves need not approach 
each other closely.

Since equation ( 2 )  (constant lag) implies that whenever 
J >  0 there is always an out-of-phase component of the rudder 
motion, it is found that for each value of s there is a maximum 
value of y  which will permit directional stability. This is quite 
different from the case with exponential lag, for which the out- 
of-phase component is not always present, and for which suffi­
ciently small values of s will still permit stability with infinite 
values of y .

From  the discussion of equations ( 2 )  and (3), it is apparent 
that ~s = VJ/l, where t is roughly equal to the rudder throw 
that is suddenly called for divided by the rate of rudder motion 
(generally about 3 degrees per second). Assuming that in 
normal steering, a few degrees of rudder at most is called for 
suddenly, 7 turns out to be about 0T for “A” , a little larger 
for “B”, and a little smaller for “C”. Thus, s appears to be 
small enough so that the steering engine delay is of decisive 
importance only in connection with “B”.
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F ig . 17— Ship “A"

F ig . 19— Ship  “C”
Effect of y ,  cr, and s on the Directional Stability Index q. 

Figs. 20 through 23 are graphs of q against y  and against s, 
where s appears as in equation (3) to define an exponential lag. 
For sufficiently large s, a decrease of y  improves the stability 
slightly. For moderate s, however, including values in the 
practical range, the directional stability improves with increasing 
y. I t should be remembered, however, that the value of s 
increases with -y (for reasons, see previous paragraph; essentially 
larger y  means larger rudder throws). Ship “A” is satisfactorily 
stable with cr =  0, “B” is just on the edge of instability, and 
“C” is in between. Fig. 23 shows the improvement that results 
in “B” when cr is increased from 0 to 1; her behaviour is then 
comparable with that of “A”, and substantially better than that 
of “C” . As remarked in Part 2, l/\q \  is approximately the 
number of ship lengths travelled during the time in which a 
disturbance falls off to 1/e of its initial value. Thus q should 
probably be less (more negative) than —0 5  for satisfactory 
directional stability. This estimate is confirmed independently 
in the next section.

APPLICATION OF THE NYQUIST METHOD
As discussed in Part 2, the stability of an automatically 

steered ship can be inferred from plots of the magnitude and 
phase of the quantity 8k*/8k against k, where 2 n /k  is the 
number of ship lengths travelled in one complete oscillation. 
The logarithm of the magnitude of the quantity and its phase 
are plotted in Figs. 24 through 28; these figures are based on 
equation (13), which assumes that the rudder engine delay is

F ig . 18— Ship  “B"

Allowable lag 1 for directional stability
8 4- s8' = 8(s) * (constant lag)

given by equation (2) (constant lag). The two critical points on 
these graphs are the k  value at which the logarithm of the 
magnitude is zero, and the k value at which the phase is zero 
(if there is such a point).

Fig. 24 shows stability plots for ship “A” with cr = 0. 
Here y  appears only as a multiplying factor in equation (13), 
and hence affects the magnitude but not the phase of 8k*/8k*. 
The solid lines are the logarithms of the magnitude for y  =  1 ,
2, and 5, and the dashed line is the phase (k  is plotted on a 
logarithmic scale). I t  is apparent that this ship is directionally 
stable, since the phase is not zero until k = x>t whereas the 
magnitude is unity (logarithm of the magnitude zero) for finite 
k. From equation (13), it follows that a constant steering 
engine delay 7, introduced as in equation (2), does not affect the 
magnitude but reduces the phase by ks radians. The dotted 
line in Fig. 24 was obtained by subtracting the phase ks from 
the dotted line, when 7 = 01 . Since the k  at which the phase 
is zero is still higher than those at which the magnitudes are 
zero, the ship is still stable with this delay and any of the y  
values illustrated. The maximum allowable value of 5 for 
stability with 7  = 5, say, can be found by noting that in this 
case the magnitude is unity for k  = 2 2, and the phase with 
j  = 0 is then 55 degrees = 0 96  radians. Thus, 7 cannot exceed 
0 '96/2 '2  = 0 43 if the ship is to be directionally stable with
7 = 5 and cr = 0; this gives one point for plotting Fig. 17.

Fig. 25 shows similar plots for ship “B” with cr = 0. Since 
this ship is dynamically unstable when unsteered, the smallest k 
value at which the phase is zero must be less than the k  value at

2 0 0
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F ig . 22— Ship “C”. a- =  0 F ig .  23—Ship “B”. <r = 1
Variation of directional stability index q with 1 and y

8 + sS' = 8(S) * (exponential lag)
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F ig . 24— Ship “A ”

F ig . 25— Ship “B"

F ig .  26— Ship  “C”
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F ig . 27— Ship “A"

F ig . 28— Ship  “B”

Stability plots by N yquist method for cr 1 (constant lag)
which the magnitude is unity, in order that the steered ship be directionally stable. With s = 0, it is apparent that this is the case for 7  = 1, 2, and 5, but that the ship is directionally unstable for 7  = 01 . This is in agreement with the earlier results. Introduction of the lag s = 01  (dotted phase curve) puts the ship on the edge of instability with 7  = 1, but is still stable with 7  = 2 and 5.The curves of Fig. 26 for “C” with <r = 0 are similar to those of Fig. 24 and require no further comment.Effect of Introducing Rate Control in N yquist M ethod  
(a  -  1). In Figs. 27 and 28 the effect of introducing rate control (cr = 1) is shown. “A” is still stable for all 7 ’s shown with s = 0  or 0 1 , since in all cases the phase curves are zero for higher k than the magnitude curves. As expected, the crossing points for phase and magnitude are pushed farther apart by the rate control, thus giving a qualitative indication of increased directional stability. “B” is now stabilized for 7  = 1,

s = 0 1 , by the introduction of rate control. It is interesting to note that the phase curves are no longer the same for all values of 7  when rate control is added, since the phase has an extra term, tan- 1  (for/7 ), that involves 7  when cr is other than 
zero.A semi-quantitative indication of the attainment of satis­factory directional stability can be obtained from the Nyquist plots by taking over a rule-of-thumb from the field of electronic feed-back amplifier design, where the Nyquist method has been used for many years. A linear feed-back amplifier is generally said to be sufficiently stable if the logarithm of the magnitude of the ratio analogous to (13) is less than - 0  5 when the phase is zero, and if the phase lead is 30 degrees when the magnitude is unity [13]. Comparison of Figs. 20 through 23 with Figs. 24 through 28 indicates that a value of q less than about - 0  5 would be regarded as satisfactory in feed-back amplifier design. This confirms the estimate made in the last section.
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EFFECT OF CONSTANT DISTURBANCE

As an example of the effect of a suddenly applied constant 
disturbance, Fig. 29 shows the path of ship “C” following 
application of a transverse force (represented by the coefficient 
CN) at a point 0 2 ship lengths forward of the centre of gravity, 
when y = 2, cr = 0 and 7 = 0. The computation makes use of 
equations (15) through (18); since s -  0, only three characteris­
tic exponents appear instead of four. As shown in Fig. 29, 
the initial motion of the ship is in the direction of the applied 
force (to starboard if CN is positive) and the subsequent dis­
placement is proportional to CN. The final course angle of the 
ship <p„ can be obtained from equations (15):

„ , CN[y(C/j. +  \ C \ )  — (C . — AC,)]
7(CmCA +  C,C/m) { )

I t  is apparent from the structure of equation (20) that the ratio 
<p«/CN can be positive or negative, depending on the values of 
■y, A and the ship parameters. In  the situation illustrated in 
Fig. 29, this ratio is positive, so that with positive CN the ship 
eventually moves to starboard. The path is shown with two 
different x  scales that differ by a factor of 10; the lower graph 
shows the short term and the upper graph shows the long term 
motion of the ship.

As expected from the earlier discussion, one of the three 
characteristic exponents is real and the other two are complex 
conjugates of each other. This gives rise to the oscillatory motion 
shown in Fig. 29. The oscillations are rather completely 
damped out in about 10 lengths. This could have been inferred 
from Fig. 22, according to which q = - 0  31 for these para­
meters. Thus, in ten lengths the disturbance has decreased to 
roughly eis = e-3'1 ^  5 per cent of its initial value. This illus­
trates the general conclusion that the character of the recovery 
from disturbances can be inferred roughly from the q value, 
and in somewhat more detail from the values of all of the 
characteristic exponents.

Fig. 29 indicates that after a few oscillations, immediately 
following the sudden application of the steady disturbance, the

F ig .  29— Course resulting from constant external force and 
moment— ship “C”

Shown for y =  0, 8 =  0, s =  0, >. =  0.2 External force =  Cn (p I2)A V 2 (to starboard)External moment =  Cn K ?I^)A V 21 (clockwise)
ship settles on a new straight course. Fig. 30 indicates the 
resulting attitude for the assumed side force coefficient CN = 
0'020; it corresponds to a lateral drift of 0 04 ship lengths in a 
travel of 100 ship lengths; i.e., a course change of only 0 02 
degree. All forces and moments are balanced.

Disturbing Moment 
= 0 . 2 x 0 .0 2 0  = 0 .0 0 4 0

Coefficient o f lateral force due to yaw =  if x Cl =  0.063 x 0.256 =  0.0161 Coefficient o f lateral force due to the rudder =  8 x CX =  7.17 x 0.0312/57.3 =  0.0039 Coefficient o f total (external) force Cat =  0.0200Coefficient o f yawing moment due to external force =  0.02 x 0.2 =  0.00400Coefficient o f yawing moment due to yaw =  41 x Cm =  0.063 x 0.092 =  0.00579Coefficient o f total moment =  coefficient o f rudder moment =  S x C|i =  7.17 x 0.0143/57.3 =  0.00179
F i g . 30
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s
F ig . 31— Ship “A " F ig . 32—Ship  “C”

F ig .  33— Ship  “C” F ig . 34— Ship  “C”
Envelopes of heading change during change of course for various values of tr and for s = 0

CD

CD

CD

I t is interesting to observe that in the case of the particular 
ship and the assumed type of steady disturbance of magnitude 
corresponding to CN =  0'020, which can be visualized as due to 
side wind, the heading changes by 3 5 8 degrees to windward, 
while the course-made-good is practically identical with the 
original one. For a ship of different stability characteristics, 
and for a different kind of disturbance, the result, of course, 
would be different.

CHANGES IN  COURSE
The results of the simplified calculation of automatic 

changes in course, outlined in Part 2, are plotted in Fig. 31 for 
ship “A” and in Figs. 32, 33, and 34 for “C” . In  each figure, 
(9 is plotted in radians against the distance travelled 5 in ship 
lengths. The initial part of each curve is a straight line whose 
slope is the rate of turn  under full rudder, measured in radians 
per ship length. The horizontal line segment that breaks across 
from the initial steady turn  to the curved portion occurs at the 
value of 6 for which the control ceases to call for full rudder. 
The remaining curved part is the envelope of 6 : A ei's +  (Bz + 
C 'yeas. Since 0(S) itself, as given by equation (19), fits con­
tinuously onto the initial straight line, it is not to be expected 
that the envelope will also. Thus the horizontal break and the

F ig .  35 — Ship “C”
Variation of heading error envelope with y  and a- taken at 

s = 5 and for 1 = 0
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early part of the curve are not to be taken literally. The latter 
part of the curve shows the maximum heading error of the ship; 
the actual heading error oscillates within this envelope.

Fig. 31 contains the results for “A” with y = 3, and <r =  0, 
1, and 2. There is a slight improvement when cr increases from
0 to 1, but no appreciable change when cr goes from 1 to 2. 
As a  increases, the point at which the control takes over is of 
course shifted to smaller 5.

Figs. 32, 33, and 34 are for “C” when y  = 1, 2, and 3, 
respectively, with computations in each case for several values 
of cr. W ith the smallest amount of control (y  = 1), change of 
cr from 0 to 0 5  effects a considerable improvement in the con­

trol. The change is still substantial, but not quite as marked, 
when y  = 2 and 3. In  general, the initial introduction of a 
small amount of rate control (tr) improves the approach to new 
course considerably, and subsequent increments have less effect.

Fig. 35 summarizes the results for “C” at s = 5. The 
envelope of the heading error, 5 ship lengths after the ship 
starts on its steady turn, is plotted against cr for the three 
values of y .  The general conclusion to be drawn from Fig. 35 
is that increases in both y  and tr improve the course change, 
but that little is gained by making either of them greater than 
about 2. By the same criterion, Fig. 31 shows that little is 
gained with ship “A” by introducing rate control at all.

P art  4
SUMMARY a n d  c o n c l u s io n s

This paper presents the theory behind a particular type of 
automatic ship steering control—one in which the rudder angle 
is proportional to a combination of heading deviation and rate 
of change of heading, with a time delay. As discussed in Part 1, 
this is sufficiently representative of more general types of ship 
controls so that useful conclusions can be drawn from a study 
of it. The analytical work of Part 2 is implemented by numeri­
cal computations in Part 3. The computations are for three 
ships of widely differing dynamic stability: the very stable 
ship “A” (.p, = —118), the unstable “B” (p, = +0'16), and the 
moderately stable “C” (p, =  —0 35). The calculations were 
carried out with coefficients corresponding to a speed-length 
ratio F /V  I = 0'8. These same coefficients are valid for all 
speed-length ratios up to about V/  I = 11 , when wave- 
making becomes substantial.

I t  is possible to set up a quantitative measure of the direc­
tional stability of the automatically steered ship. This quantity 
q is negative for a stable ship and positive for an unstable ship. 
For stable ships, l /\q \  is approximately the number of ship 
lengths in which a heading error is reduced to 1/e of its initial 
value. Thus q is a directional stability parameter that is com­
pletely analogous to the dynamic stability parameter p,. The 
relation between q and p , for typical values of the control para­
meters (y = 1, tr  = 0, s = 0 1 ) is shown in Fig. 36 (constructed 
from three points for the three ships). As mentioned earlier 
(Part 2), it can be demonstrated analytically that increased q 
generally accompanies p„ for the same control mechanism. I t  is 
apparent in Fig. 36 (lowest curve) that this simple relationship 
actually exists. The curve shown is for exponential lag—a 
similar curve for constant lag would not be materially different. 
Also, the maximum allowable steering delay “ is seen to be an 
increasing function of p„  as might be expected. The figure 
shows the allowable s for q = 0 (neutral directional stability). 
Since q <  0 is necessary for actual ships (q <  - 0 '5  is indicated), 
Fig. 36 is to be regarded simply as an illustrative example, chosen 
on the basis of ease of calculation, of the effect of increasingly 
negative />, values on the allowable s.

From the discussion of Part 3, it follows that q probably 
should be less (more negative) than - 0  5 for satisfactory steer­
ing. Fig. 20 then shows that for reasonable values of " (less 
than about 0'2), ship “A” behaves satisfactorily with a control 
for which a- is 0 and y  is greater than about 1. On the other 
hand, Fig. 21 shows that “B” is quite unsatisfactory as long 
as cr is 0. W ith tr = 1, Fig. 23 shows that this ship behaves 
well with y  in the range of 2 to 3. These results are not sur­
prising, since an examination of equations (8) shows that an 
increase in cr is approximately equivalent to an increase in the 
hydrodynamic coefficients Q. and C„ and these “damping” 
terms favour stability. (When 7 = 0, a change in tr  is exactly 
equivelent to C,,_ times this change is Ck, and C \  times this 
change in Cf.) According to Fig. 22, the behaviour of “C” with 
tr = 0 is marginal except for very small s. I t seems likely that 
this ship would perform satisfactorily with tr  = 1 and a value 
of y  in the range 1 to 3. It thus appears that some rate control 
(tr term) is desirable for all but the most stable ships, and is 
essential for the steering of dynamically unstable ships.

Figs. 31 through 35 bear out these conclusions as far as 
course-changing is concerned. Here again the introduction of 
rate control is not necessary for “A” , but effects a substantial 
improvement in “C” . An even larger improvement would be 
expected in the less stable ship “B” . Considerations of course- 
changing would suggest slightly larger values of the control 
parameters for “C” than would considerations of directional 
stability: y  = 2 to 3 and <r = 1 to 2.

I t  appears from these results tha t among existing ships, no 
limitations need be placed on the hydrodynamic parameters for 
a ship to be capable of satisfactory automatic steering in rela­
tively still water and air. The more dynamically stable the 
unsteered ship, the smaller the <r value necessary for a fixed 
degree of directional stability (for constant s). A single control 
incorporating both y  and tr terms should be adequate for all 
ships, although for the most stable ships the control could be 
simplified by omitting the rate control. The values of y  and cr 
should probably be left adjustable for the individual ship; they 
could be chosen either by trial and error or by analytical studies 
of the present type, and would depend on the value of s for 
the ship. The present analysis serves the useful purpose of

F ig . 36—M axim um  allowable ~ for directional stability (q _ 0 )  
as a function of dynamic stability and directional stability (q) 

when "s = 0 1  for y  = 1 and tr = 0
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indicating the range of values required for existing types of 
ships. The effect of disturbances has been mentioned. The 
behaviour in rough water is now under study and further work 
on the subject is necessary.

The entire automatic control problem becomes more critical 
as the speed of the ship increases, since for a given time delay 
t, the quantity s is proportional to the speed. Thus the analysis 
is relatively more im portant at the higher speeds. The converse 
is true as the length of the ship increases. Since s = V I/I  = 
(7/</ I )  (V / 'J I ) , ~s decreases as the ship length increases for 
constant “speed-length ratio” V /  \J I . T hus the most critical 
situations can be expected to arise in connection with small 
ships run at high speed; an extreme example would be a high­

speed submarine or torpedo. In  such cases, the control problem 
will probably prove to be too delicate for rule-of-thum b adjust­
ment, and will require analytical studies of the type illustrated 
in this paper.
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A p p e n d i x  1
EXPLANATORY L IST  OF SYMBOLS

t ............................ time, regarded as the independent variable of
the motion; dot denotes time derivative

I .............................length of ship
V  ...........................speed of ship

Vs = ................... number of ship lengths travelled in time t;
prime denotes derivative with respect to 5

0   heading angle, in radians
£2 O' ................space angular velocity or instantaneous path

curvature
^  ...........................yaw angle, in radians
(j> = 0 -  xf/ .......... course angle, in radians
b ............................actual rudder angle, in radians
8* ..........................rudder angle called for by control, in radians;

or in the Nyquist method, the rudder 
engine input when the control is discon­
nected from the rudder engine

8* ..........................in the Nyquist method, the steering control
output when the control is disconnected 
from the rudder engine

to ...........................angular frequency of oscillation in Nyquist
method

k = 7 7 ................... space angular frequency in Nyquist method

y, tr....................... steering control parameters in equation ( 1)
1, s ..........................delay parameters in equation (2) or (3)
nii .........................longitudinal mass coefficient
m 2 .........................transverse mass coefficient
n ............................moment of inertia coefficient
C„............................derivative of moment coefficient with respect

to yaw angle
C, ..........................derivative of force coefficient with respect to

yaw angle
Ck .........................derivative of moment coefficient with respect

to £2
C/ ..........................derivative of force coefficient with respect

to 12
C p  .........................derivative of moment coefficient with respect

to rudder angle
CA .........................derivative of force coefficient with respect to

rudder angle
m = w , — C,
CN .........................coefficient of applied transverse force
A ...........................number of ship lengths that point of applica­

tion CN lies forward of centre of gravity
pi ..........................dynamical stability parameter for unsteered

ship
q ............................directional stability parameter for steered ship

A p p e n d i x  2
c o u r s e - k e e p i n g  i n  a  s t e a d y  c r o s s  W IN D

Equation (26) in Part 3 gives the steady course angle cp„ 
under the influence of a steady transverse force coefficient CN 
applied at a point A ship lengths forward of the centre of 
gravity of the ship. It is apparent that this can be made zero 
by choosing y  such that

_  _  Cm — A Cx 
y y ° ; Cfl + ACA •y„ is independent of C v, which determines the strength of the 

disturbance, but involves some of the ship parameters and A- 
If it is assumed that the disturbance is a steady cross wind, with 
which a definite centre of pressure is associated, then the control 
constant y„ automatically maintains the ship on its proper path, 
even though the ship carries rudder and there is a heading 
deviation as well.

For A = 0 2, the values of y„ given by the above equation
are:

Ship “A” ... ... ... ... y„ = 0 9
Ship “B” .......................................... y„ = 2 5
Ship “C” .......................................... y„ = 3 '8

These lie in the practical range, especially since considerations 
of this type place no restrictions on cr, so tha t any departure 
of -y from the optimum for automatic steering can be com­
pensated by a suitable choice of cr. T he principal difficulty in 
using this as a criterion for the choice of y  is the uncertain 
value of A and its possible variability under different wind 
conditions. More experimental data on A should be obtained 
before y„ is adopted for the automatic steering control.
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AUTUMN GOLF MEETING, 1949

Chigwell was again chosen as the venue for the Autumn 
Golf Meeting which took place on Friday, 21st October. The 
weather remained fine during the whole of the day, and twenty- 
two players participated. The m orning Medal Competition was 
won by M r. G. M. McGavin with a score of 75; he received a 
leather brief case. Mr. J. A. Goddard and M r. J. W hite tied 
for second place with a score of 78; M r. W hite won second 
prize on the best performance in the second half of the round, 
and Mr. Goddard therefore gained the third  prize. They 
received a leather zipp case containing hair brushes and half a 
dozen golf balls respectively.

In  the afternoon Bogey Greensome Competition, Messrs. 
J A. Rhynas and J. White gained first place with a score of 
3 down; and Messrs. G. M. McGavin and J. C. Edmiston 
second place with 4 down. As both M r. M cGavin and Mr. 
White had won prizes in the morning, they had to forego the 
afternoon prizes, and therefore Mr. Rhynas and M r. Edmiston 
were awarded the two first prizes, which were chromium travel­
ling alarm clocks. This brought Mr. E. F. J. Baugh and Mr. 
H. M. Gorringe, the third couple, into second place with a 
score of 5 down, and they received leather wallets.

D uring the tea interval Mr. Robertson presented the prizes, 
and the company present passed a very hearty vote of thanks to 
the Committee of Chigwell Golf Club and to the Secretary, 
Mr. Hartness, for the arrangements which had been so ably made for the meeting.
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