
RESILIENT: Advance a Ship’s HM&E resiliency through contextual information models 

and innovative ML/AI analytics At-The-Edge  

W A Johnson, BSE Chem Eng, University of Michigan, United States 

Corresponding author, Email: wajohnson@ra.rockwell.com 

J G Walker, BS Computer Science, University of Oklahoma, United States 

Corresponding author, Email: johnnywalker@thorsolutions.us 

Synopsis 

Maritime supply chain disruptions over recent years stemming from causes such as piracy, the COVID-19 

pandemic, blockage of the Suez Canal and the ongoing Red Sea crisis, underscore the pressures on navies and 

commercial ships for higher ship operational availability. Ships are sailing longer distances, at higher speeds 

and in more challenging environmental conditions. These settings are consequentially increasing demands for 

more effective ship machinery monitoring. However, although shipboard systems generate more data than ever, 

using that information to improve operational availability remains elusive; data from a ship’s electrical 

auxiliary and main propulsion systems are often disorganized, undefined, and not timely. Further, data is 

sometimes undiscoverable and frequently unusable by the ship’s information system to prevent or mitigate 

equipment failures. Moreover, increasing demands for more sophisticated analytics to improve machine 

reliability, with likely thousands of data points per system without any relationship model to help interpret this 

data continues to make machinery monitoring efforts more complex and costly. Creating the datasets is just 

one piece of the puzzle. These data points take on different meanings dependent on grouping. The lack of 

consistent data requirements definitions and context from one information system to another introduces other 

challenges to integrating machinery room operational data into the ship’s higher-level information system and 

further up into an organization’s fleet maintenance center. To this end, this paper explores two evolving areas 

of technology: 1) Machine learning schema for common hull, mechanical, and electrical system machinery 

equipment to improve contextualizing performance anomalies and that equipment’s baseline operations and 2) 

an AI Information model for machinery equipment that could advance the ability of crews to reduce unplanned 

failures, increase availability, and obtain an accurate representation of the ship’s readiness state. These activities 

will drive improved reliability, maintainability, and supportability of these systems and a higher readiness for 

a propulsion plant, electrical plant, damage control system, and ship’s auxiliaries.  
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1 Introduction 

It’s often said that the workhorse of manufacturing and industrial control systems is the ubiquitous 3-phase, induction 

motor.  A globally pervasive converter of electrical energy into mechanical energy, electric motors, not just induction, 

but also synchronous AC, field DC, wound, and more, transform electrical power into a cyclical mechanical activity 

with a typical robust, long operational life. Moreover, Machine Learning and AI algorithms applied within the 

technology of variable frequency drives and similar controllers are derived by the foundational principles that operate 

an electric motor. The current signature, voltage signature, and instantaneous power signature between the motor’s 

stator and rotor are the essential forces that create the initial and continuous torque produced by a motor. Each of these 

forces can be analyzed to determine motor performance, health and the operational conditions of the equipment driven 

by the motor with predictive results.  This predictive analysis, often termed Condition Based Maintenance Plus 

(CbM+), is a significantly beneficial result. Accordingly, this paper presents how a spectral analysis of the electric 

current is a valuable method to separate components of the current sine wave and to associate these components with 

useful mechanical properties of the motor. For example, a gradual degradation in one of the mechanical features within 

the motor can be detected by an analysis of the electric field interactions between the rotor and stator. This discovery 

is determined by comparing healthy, normal operation of the motor (defined as baseline performance characteristics), 

and deviation from this baseline. Different types of deviation from baseline operations represent different mechanical 
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problems developing inside the motor. The mechanical properties of electric motor failure types are revealed in 

different current signatures within the motor. Research shows that we can use motor current signatures to identify ball 

bearing wear, rotor rub, outer/inner race bearing faults, motor unbalance, shaft misalignment, and more. Coupling 

these earlier efforts with today’s computer processing advances, we can begin to train an automation system, i.e. 

machine learning, and define other AI basis tools to describe equipment condition predictively.   
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2 Motor Current Signature Analysis 

With the rapid advances in computer processing for capturing high speed minutiae events and their interactions, 

electric motor performance trends can now be reasoned from the motor’s electrical current events (sic. trend analysis). 

An alternating current (AC) motor’s current sine wave is a cyclic event that occurs across a typical frequency range 

from 1 - 60hz and even higher frequencies depending on 

application. Whereby the amplitude and waveform vary as the 

motor poles are passed by each revolution of the motor’s rotor.  

Variable frequency drives are power supply devices to motors 

which have the electronics to capture a buffer of the motor’s 3-

phase current waveform. Motor waveform characteristics are 

critical for today’s Motor Current Signature Analysis (MCSA) 

techniques—establishing a motor’s operational baseline and 

assessing deviations from this baseline. Earlier studies 

established correlations (or signature analysis), between the 

motor’s current waveforms and known mechanical problems 

in that motor. For example, each motor type has a general set 

of correlations established for equivalent mechanical problems 

like bearing wear, rotor static and dynamic eccentricity, broken 

bar and shorted windings. To establish these correlations, Fast 

Fourier Transformations are used to decompose the motor 

current waveform’s components from the time domain into the 

frequency domain. This analysis reveals the amplitudes (dB) of those different component frequencies (within the 

output resultant current supplied to the motor stator), whereby those frequencies are derived from effects between the 

magnetic fields of the rotor and stator. These effects are caused by hardware parts degradation which can cascade into 

mechanical failure. For a 50Hz motor, the MCSA primary frequency peak is 50Hz and correspondingly 60Hz for a 

60Hz motor. Figure 1’s MCSA frequency spectrum shows 60Hz motor with a rotor asymmetry condition indicative 

of a broken bar condition within its rotor cage; the MCSA’s two sideband peak frequencies have occurred at those 

frequencies defined as the motor’s “twice slip frequency” as calculated from the motor’s 60Hz supplied frequency 

(Miljkovic, 2015). The magnitude (dB) of the two MCSA sidebands indicates the severity of the rotor’s asymmetry 

which, because those sidebands are more proportionally near the primary frequency dB, indicates a broken bar 

condition, i.e. a First Principle. The “slip frequency” sidebands for a healthy motor will be at much smaller magnitudes 

(dB) compared to the primary peak frequency.  

Similar effects of sideband frequencies occur when there are air gap differences between a motor’s rotor and stator.  

This anomaly, which leads to increased vibration, lower output peformance, and even motor failure, is called rotor 

static eccentricity and rotor dynamic eccentricity. Rotor static eccentricity is when the air gap deviation remains 

stationary during the rotor’s rotation while dynamic eccentricity occurs when the air gap deviation transits around 360 

Figure 1: Frequency spectrum from motor with 

broken rotor bars (Miljković, 2015). 
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degrees of rotor rotation. This is detected because the rotor’s magnetic field will influence the AC current within the 

stator windings due to the air gap proximity between the rotor and stator at the closest point around the circumference, 

causing an Unplanned Magnetic Pull force that creates other sideband current peak frequencies (Thompson and 

Gilmore, 2003). Those sideband frequencies are calculated by equation (1) for the static eccentricity of an induction 

motor. 

 

  

Of which, the fec is the eccentricity frequency, fg is the grid or supply frequency, R is the number of rotor bars, nd is 

plus/minus 1, s is slip, p is pole pairs, and nws is 1, 3, 5, 7….  The fec is seen on a spectral analyzer at multiples of the 

fg and is the anticipated motor current frequency signature for this type of motor fault condition (Miljković, 2015). 

 

 

Figure 2: Air Gap Eccentricity (Miljkovic, 2015). 

 

 

Figure 3: Current Signatures of Static & Dynamic Eccentricity (Lambert-Torres, 2009). 

 

Voltage and Instantaneous Power signatures are used similarly to discern even more motor (and mechanical load) 

diagnostic conditions. Applying these earlier MCSA principles with today’s AI and Machine Learning At-The-Edge 

technology advances condition-based maintenance plus CbM+ programs to the next level of resilient ship 

performance: optimal operating levels of the vessel’s machinery equipment and determining hardware remaining 

useful life. Opportunely, new methods can capture these signature data without added spectral analyzers and separate 

(1) 
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current and/or voltage sensing equipment. This no longer needed additional hardware is replaced by intelligent control 

devices like soft starters and variable frequency drives—which, while operating motors, simultaneously cache the 

motor current data into their memory and that data is pulled forward to a Machine Learning application.      

3 AI & MACHINE LEARNING At-The-Edge 

Industry continues to collect voluminous machinery data into Cloud-Based systems to perform data analysis. Using 

significant computing resources and data scientists, firms pursue process correlations leading to new capacity and 

optimization. This analytical loop continues refinement with less and less data analysis latency coming near real time 

to production events on the factory floor. Artificial Intelligence (AI) and Machine Learning have made this possible. 

Further, the closer AI and Machine Learning get to the data source, the more these processing techniques reach the 

“Edge.” Inasmuch, near/ real-time analytics at sea requires AI and/or Machine Learning to function at the vessel’s 

equipment level. The existing motor soft starters and variable frequency drives in the ship’s machinery plant equipment 

become those data sources, feeding their operational parameters not into a huge data server cluster and up to the Cloud, 

but rather to immediate local applications within the ship’s machinery rooms. For example, integrating a Dockers 

Container OCI based machine learning app into a ship’s PLC-chassis slot processor and connecting it via the ship’s 

network to every soft starter and VFD in the machinery room. 

Machine Learning (ML) apps can be straightforward—i.e., don’t require significant engineering expertise to determine 

what data needs to be captured. The operator simply follows a user guide to identify each VFD type for data capture, 

select its IP address, and then add the particular load device, asset, or motor’s nameplate information. Each asset’s 

configured input fields may include bearing information (inner/ outer/  race multiplier, rolling element multiplier, cage 

multiplier, etc.), for an induction motor as well as the number of blades for a pump or fan. The embedded intelligence 

within an ML app uses this pump/fan and motor bearing configuration as inputs into its First Principles derived failure 

modes. When power is applied to the motor and it becomes operational from the vessel’s activity, a ML app can begin 

training itself on motor performance to establish a baseline. If the motor load runs at a single speed/frequency, the app 

trains on that frequency in minutes. If the motor has operational modes at different frequencies, an ML app can adapt 

to monitor the change and automatically begin the training process for the new frequency. Or a frequency range can 

be specified in advance and that guidance sets the range of frequencies which will be trained for that asset within the 

ML app.  This is “no code” machine learning done through the following process steps.  

  Operational Steps      Process Steps 

 

 

 

The motor’s baseline is established by training for each 1/2hz frequencies throughout the user defined operating 

frequency range. The commanded frequency of the VFD is automatically communicated to the ML app through the 

ship’s network; onwards the ML app accomplishes the training and monitoring simultaneously.  Once sufficient data 

Process raw sensor signal with AI 
driven feature extraction 

Analyze deviation / drift from 
baseline (unsupervised learning) 

Contextualize anomaly / deviation 

Share the insights to the bridge and 
engineering stations 

Figure 4: Embedded ML Expertise alignment of the operation to process steps. 
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is acquired from the asset, the training switches to automatic monitoring. Figure 5 presents an example architecture.  

Of significance: this design adds no additional equipment that’s not already installed in the ship’s machinery room 

other than a single edge analytics processor.  

 

 

 

Deviations from the asset’s established baseline are anomalies which will be evaluated against the embedded expertise 

of First Principles derived failure modes and effects within the ML app—categorized as a particular failure anomaly. 

If the deviation is outside of embedded knowledge cases, then the user has the option to flag it as either normal 

behavior or identify it as a new anomaly issue. This new anomaly becomes a new failure risk for the asset and it is 

tracked onward.   

Rather than being an anecdotal set of concepts, the ML app directly applies those embedded expertise First Principles 

of MCSA which alleviates the need for those higher-level skills or unique expertise of vibration engineers and data 

scientists. The ML app addresses the two categories of anomalies: the first anomalies which align to recognized 

problems like bearing failure, identified through prior industry knowledge and the second category, anomalies unique 

to the user’s application. Beyond the First Principles’ recognized anomalies, an ML At-The-Edge app can be applied 

to those second category of anomalies to reclassify them per the user’s definition and accumulate that continuous 

learning through user training that identifies more unique anomalies at that single asset or from multiple assets. As 

anomalies are labelled by crewmembers, ML At-The-Edge becomes a critical tool operating around the clock 24 hours, 

7 days a week and advancing the crew awareness of machinery plant condition. This is significant because 

organizations today simply don’t have the depth of CbM analysis experts to accomplish round the clock analyses 

across the breadth of their plant’s motors and other assets (Bernet, 2022).  

3.1  AI/ML First Order Readiness Improvement 

This description of configuration steps annotates an example of an actual, deployable MCSA ML At-The-Edge 

architecture and shares the extent of how little added capital expenditure is necessary to begin to gain ML predictive 

analytics of the conditional readiness for a ship’s machinery assets. When this ML At-The-Edge is incorporated into 

an existing Condition Based Maintenance (CbM) system, the result is more than the preventative CbM time-based 

maintenance and becomes predictive CbM+ maintenance with maintenance activities occurring only when needed.  

The readiness of the vessel is more predictable and achieved with direct, first order improvements in operational 

savings, maintenance cost reduction, and failure costs’ lead time delays dramatically reduced.  

Figure 5: Example ML-At-The-Edge Architecture 
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3.2  AI/ML Second Order Readiness Improvement 

We take this another step further to realize there is a second order of improvement to a ship’s readiness and resiliency.  

Couple this onboard MCSA ML At-The-Edge analysis of all electrical assets within a ship’s electric and propulsion 

plants together with the operational parameters already captured by the PLC-controlled system for these same assets’ 

duty cycles and operational modes, leads to an increased knowledge about how certain operational processes effect 

the asset’s optimal performance and captures historical causes of advanced deterioration of that asset. Blade wear, 

shaft imbalance, bearing failures, etc. are now interconnected with that asset’s historical data of its operations and can 

benefit the ship’s engineering officer and engineering department in determining the remaining useful life of 

components and subsystems thereby gaining a higher understanding about the readiness state of the vessel. For the 

world’s navies and commercial shipowners of large vessel fleets, they could advance their understanding of how 

different kinds of auxiliary subsystems serving the same purposes, i.e. compressors, pumps, ballast management, 

blowers, etc., have the longest service life and reliability/robustness factors across their multiple vessel types.  These 

quantifiable results can be inputs into a derivation of the earlier proposed Value Driven Power Management 

Philosophy (VDPMP) value function to ascertain which assets or subsystems within the electric plant have the greatest 

improvement to robustness/reliability and therefore return on expense for accomplishing future retrofit upgrades to 

that ship’s electric plant (Ditaranto, Samimi, Walker, Withee, and Woodward, 2014).  This further promotes one of the 

original principles of VDPMP which is achieving those resiliency requirement tenets of a sound, reliable, and robust 

electrical power generation and distribution system that is composed from a best practice applied standard 

configuration architecture (Ditaranto, Samimi, Walker, Withee, and Woodward, 2014).   

The derivation here from the original VDPMP value function F is that the variables N, O, P,…V now represent the 

value metrics associated of a single asset or subsystem Fs within the electric plant with specific outcome requirements 

such as remaining useful life, degradation rate, robustness, maintenance cost, and acquisition costs; and the Constants 

An  represent their relative weighting factors.  By combining MCSA ML At-The-Edge analysis with the existing 

operational modes/duty cycles of that same asset into a database of metrics, establishes those quantifiable inputs that 

contribute to a formal method, and an AI information model, to provide the selection of improvements based upon 

optimal outcomes at the lowest cost.  The result of each sub-system’s robustness value Fs can then be pulled up into 

the individual Redundancy/Robustness/Reliability (RRR) variable F(An) within the overarching, original VDPMP 

level analysis of the entire electric plant’s VDPMP for resiliency and adaptive capacity.  In their paper, Walker et al, 

state that this is the principal purpose for VDPMP’s importance.   

4 Information Model toward Remaining Useful Life Metric   

A dataset that contains the MCSA analytics, the operational modes, duty cycles, and individual operational parameter 

values, i.e. pressure, temperature, flow etc. can be applied into a gradient boost decision tree model.  Gradient boosting 

is a machine learning ensemble technique of adding the predictions of weak learners, each a Decision Tree, 

sequentially. In each iteration, the goal is to optimize the model’s predictive weighting of data points based on the 

previous errors of the last Decision Tree until the predicted output error of the model is minimized.  To create this 

gradient boost model, one begins by establishing a base model from a set of operational parameters that have a 

relationship to a particular failure mode of the asset and create an initial set of error residuals through the first Decision 

Tree by using the Gradient boosting regressor function because our target, the predicted remaining useful life, is a 

continuous function. That base model’s error residuals are then plugged into a second Decision Tree and a new data 

point in the data set is plugged through the first and second Decision Trees to produce another set of error residuals, 

and this is done iteratively until the model’s prediction errors from that collected data point parameter becomes 

sufficiently close to the observed correlated value (Saini, 2024).  If the error of the model becomes greater from one 

iteration to the next, that particular error residual is weighted higher in the model’s next successive decision tree 

𝐹s(𝑁, 𝑂, 𝑃, 𝑄, 𝑅, 𝑆, 𝑇, 𝑈, 𝑉) = 𝐴1𝑁 + 𝐴2𝑂 + 𝐴3𝑃 + 𝐴4𝑄 +

𝐴5𝑅 + 𝐴6𝑆 +  𝐴7𝑇 + 𝐴8𝑈 +  𝐴9V      (2) 
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against the other correct predictions giving it precedence in improving the model until these combined weak learners 

are now a strong model that accurately predicts the future operational correlation. This strong model has the outcome 

of more reliably predicting the remaining useful life of that asset. The overall iterative process of sequentially adding 

weak learners is shown in Figure 6 and is the gradient boost principle.  

Figure 6: Gradient Boosting Tree regression (Saini, 2024). 

In Gradient boosting regression, the loss function used to calculate error residuals from the Base model prediction and 

then from each Decision Tree iterative prediction is the following equation: 

    (3) 

 

Where n is the number of stumps in the decision tree, yi is the observed value, γi is the predicted value. To find the 

minimum value of the error, i.e. difference between observed and predicted values, an individual takes the derivative 

of that loss function and sets it equal to zero. This calculates the minimum error residual for each of the decision tree’s 

leaves. A learning rate, typically a value between 0 and 1, is selected and multiplied to that decision tree prediction to 

reduce the model’s inherent bias. For a learning rate of 0.1, the gradient boosting model can be represented like Figure 

7 which in this case the decision trees are for the height data parameter. 
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Figure 7: Gradient boost model (Saini, 2024) 

This method of creating a gradient boosted tree predictive AI model was applied to a U.S. Air Force facility’s 

compressor system which led to an AI information model result that successfully predicted the remaining useful life 

of that compressor with a prediction of failure within 40 minutes of that event (Reis and Resseguie, 2023).  This result 

underscores the value of ML At-The-Edge for ships when combined with an AI information model to determine those 

numerous assets’ health and readiness throughout the ship’s machinery plant and its auxiliary systems before the vessel 

deploys and while underway.   

 

5 Conclusions 

This paper surveyed the significant benefits of using ML At-The-Edge in shipboard applications to advance 

crewmembers’ efforts to keep the ship’s conditional readiness and reliability to meet requirements. Years ago, Motor 

Current Signature Analysis (MCSA) was performed by contracted CbM/vibration analysts or motor experts on a 

defined cadence; this and similar traditional CbM monitoring techniques were left to the dedicated few experts to 

perform. Alternatively, reams of data have been collected into the Cloud for data scientists to comb through to discover 

possible insights and correlations between operational activities. All at higher costs that came along with delays to 

transform that data into root causes and preemptive insights needed of real-time operations. These hurdles are even 

greater to maritime operations of vessels at sea. However, these obstacles can be overcome through embedded 

expertise ML apps deployed within OCI containers at the deck plates. The embedded knowledge of earlier classified 

MCSA anomalies of shipboard motor and machinery assets can be trained into the ML app without a CbM analyst’s 

expertise and, even in the unique shipboard environment, can be continuously monitored all the time without pulling 

voluminous data into the Cloud. Combining this MCSA ML embedded expertise with those assets’ operational events 

and duty cycles into lower density datasets at the ship can lead to greater readiness capabilities from leveraging AI 

information model algorithms like gradient boosted decision trees. Gaining metrics such as remaining useful life 

means even greater shipboard readiness is achievable.    
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